Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94922
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱麗珠zh_TW
dc.contributor.advisorLih-Chu Chiouen
dc.contributor.author杜戎珏zh_TW
dc.contributor.authorJung-Chieh Duen
dc.date.accessioned2024-08-21T16:36:34Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAbelson, J. F., Kwan, K. Y., O'Roak, B. J., Baek, D. Y., Stillman, A. A., Morgan, T. M., Mathews, C. A., Pauls, D. L., Rasin, M. R., Gunel, M., Davis, N. R., Ercan-Sencicek, A. G., Guez, D. H., Spertus, J. A., Leckman, J. F., Dure, L. S. t., Kurlan, R., Singer, H. S., Gilbert, D. L., . . . State, M. W. (2005). Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science, 310(5746), 317-320. https://doi.org/10.1126/science.1116502
Abudukeyoumu, N., Hernandez-Flores, T., Garcia-Munoz, M., & Arbuthnott, G. W. (2019). Cholinergic modulation of striatal microcircuits. Eur J Neurosci, 49(5), 604-622. https://doi.org/10.1111/ejn.13949
Alcantara, A. A., Chen, V., Herring, B. E., Mendenhall, J. M., & Berlanga, M. L. (2003). Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res, 986(1-2), 22-29. https://doi.org/10.1016/s0006-8993(03)03165-2
Amiri, A., Barreto, G., Sathyapalan, T., & Sahebkar, A. (2021). siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr Neuropharmacol, 19(11), 1896-1911. https://doi.org/10.2174/1570159X19666210402104054
Aoki, S., Liu, A. W., Akamine, Y., Zucca, A., Zucca, S., & Wickens, J. R. (2018). Cholinergic interneurons in the rat striatum modulate substitution of habits. Eur J Neurosci, 47(10), 1194-1205. https://doi.org/10.1111/ejn.13820
Apicella, P., Legallet, E., & Trouche, E. (1997). Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp Brain Res, 116(3), 456-466. https://doi.org/10.1007/pl00005773
Aruga, J., & Mikoshiba, K. (2003). Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci, 24(1), 117-129. https://doi.org/10.1016/s1044-7431(03)00129-5
Association, A. P. (2022). Diagnostic and Statistical Manual of Mental Disorders, 5th edition, text revision. American Psychiatric Association.
Assous, M., & Tepper, J. M. (2019). Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry. Eur J Neurosci, 49(5), 593-603. https://doi.org/10.1111/ejn.13881
Baldan, L. C., Williams, K. A., Gallezot, J. D., Pogorelov, V., Rapanelli, M., Crowley, M., Anderson, G. M., Loring, E., Gorczyca, R., Billingslea, E., Wasylink, S., Panza, K. E., Ercan-Sencicek, A. G., Krusong, K., Leventhal, B. L., Ohtsu, H., Bloch, M. H., Hughes, Z. A., Krystal, J. H., . . . Pittenger, C. (2014). Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron, 81(1), 77-90. https://doi.org/10.1016/j.neuron.2013.10.052
Bartlett, D. W., & Davis, M. E. (2006). Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res, 34(1), 322-333. https://doi.org/10.1093/nar/gkj439
Benarroch, E. E. (2016). Intrinsic circuits of the striatum: Complexity and clinical correlations. Neurology, 86(16), 1531-1542. https://doi.org/10.1212/WNL.0000000000002599
Bennett, B. D., & Wilson, C. J. (1999). Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci, 19(13), 5586-5596. https://doi.org/10.1523/JNEUROSCI.19-13-05586.1999
Bertran-Gonzalez, J., Chieng, B. C., Laurent, V., Valjent, E., & Balleine, B. W. (2012). Striatal cholinergic interneurons display activity-related phosphorylation of ribosomal protein S6. PloS one, 7(12), e53195-e53195. https://doi.org/10.1371/journal.pone.0053195
Bloch, M. H., Leckman, J. F., Zhu, H., & Peterson, B. S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology, 65(8), 1253-1258. https://doi.org/10.1212/01.wnl.0000180957.98702.69
Bonsi, P., Cuomo, D., Martella, G., Madeo, G., Schirinzi, T., Puglisi, F., Ponterio, G., & Pisani, A. (2011). Centrality of striatal cholinergic transmission in Basal Ganglia function. Front Neuroanat, 5, 6. https://doi.org/10.3389/fnana.2011.00006
Bouet, V., Boulouard, M., Toutain, J., Divoux, D., Bernaudin, M., Schumann-Bard, P., & Freret, T. (2009). The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc, 4(10), 1560-1564. https://doi.org/10.1038/nprot.2009.125
Brainstorm, C., Anttila, V., Bulik-Sullivan, B., Finucane, H. K., Walters, R. K., Bras, J., Duncan, L., Escott-Price, V., Falcone, G. J., Gormley, P., Malik, R., Patsopoulos, N. A., Ripke, S., Wei, Z., Yu, D., Lee, P. H., Turley, P., Grenier-Boley, B., Chouraki, V., . . . Murray, R. (2018). Analysis of shared heritability in common disorders of the brain. Science, 360(6395). https://doi.org/10.1126/science.aap8757
Bronfeld, M., & Bar-Gad, I. (2013). Tic disorders: what happens in the basal ganglia? Neuroscientist, 19(1), 101-108. https://doi.org/10.1177/1073858412444466
Cadeddu, R., Braccagni, G., Branca, C., van Luik, E. R., Pittenger, C., Thomsen, M. S., & Bortolato, M. (2024). Activation of M(4) muscarinic receptors in the striatum reduces tic-like behaviours in two distinct murine models of Tourette syndrome. Br J Pharmacol. https://doi.org/10.1111/bph.16392
Cadeddu, R., Knutson, D. E., Mosher, L. J., Loizou, S., Odeh, K., Fisher, J. L., Cook, J. M., & Bortolato, M. (2021). The alpha 6 GABA(A) Receptor Positive Allosteric Modulator DK-I-56-1 Reduces Tic-Related Behaviors in Mouse Models of Tourette Syndrome. Biomolecules, 11(2). https://doi.org/ARTN 175
10.3390/biom11020175
Cadeddu, R., Van Zandt, M., Santovito, L. S., Odeh, K., Anderson, C. J., Flanagan, D., Nordkild, P., Pinna, G., Pittenger, C., & Bortolato, M. (2023). Prefrontal allopregnanolone mediates the adverse effects of acute stress in a mouse model of tic pathophysiology. Neuropsychopharmacology. https://doi.org/10.1038/s41386-023-01603-6
Campbell, K. M., de Lecea, L., Severynse, D. M., Caron, M. G., McGrath, M. J., Sparber, S. B., Sun, L. Y., & Burton, F. H. (1999). OCD-Like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci, 19(12), 5044-5053. https://doi.org/10.1523/JNEUROSCI.19-12-05044.1999
Campbell, K. M., McGrath, M. J., & Burton, F. H. (1999). Differential response of cortical-limbic neuropotentiated compulsive mice to dopamine D1 and D2 receptor antagonists. Eur J Pharmacol, 371(2-3), 103-111. https://doi.org/10.1016/s0014-2999(99)00184-3
Cavanna, A. E., Black, K. J., Hallett, M., & Voon, V. (2017). Neurobiology of the Premonitory Urge in Tourette's Syndrome: Pathophysiology and Treatment Implications. J Neuropsychiatry Clin Neurosci, 29(2), 95-104. https://doi.org/10.1176/appi.neuropsych.16070141
Chen, Y. H., Lee, H. J., Lee, M. T., Wu, Y. T., Lee, Y. H., Hwang, L. L., Hung, M. S., Zimmer, A., Mackie, K., & Chiou, L. C. (2018). Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray. Proc Natl Acad Sci U S A, 115(45), E10720-E10729. https://doi.org/10.1073/pnas.1807991115
Chou, I. C., Wan, L., Liu, S. C., Tsai, C. H., & Tsai, F. J. (2007). Association of the Slit and Trk-like 1 gene in Taiwanese patients with Tourette syndrome. Pediatr Neurol, 37(6), 404-406. https://doi.org/10.1016/j.pediatrneurol.2007.06.017
Chu, R., Lu, Y., Fan, X., Lai, C., Li, J., Yang, R., Xiang, Z., Han, C., Tian, M., & Yuan, H. (2024). Changes in SLITRK1 Level in the Amygdala Mediate Chronic Neuropathic Pain-Induced Anxio-Depressive Behaviors in Mice. J Integr Neurosci, 23(4), 82. https://doi.org/10.31083/j.jin2304082
Clarke, R., & Adermark, L. (2015). Dopaminergic Regulation of Striatal Interneurons in Reward and Addiction: Focus on Alcohol. Neural plasticity, 2015, 814567-814567. https://doi.org/10.1155/2015/814567
Costall, B., Naylor, R. J., & Nohria, V. (1978). Climbing behaviour induced by apomorphine in mice: a potential model for the detection of neuroleptic activity. Eur J Pharmacol, 50(1), 39-50. https://doi.org/10.1016/0014-2999(78)90251-0
Crittenden, J. R., Lacey, C. J., Weng, F. J., Garrison, C. E., Gibson, D. J., Lin, Y., & Graybiel, A. M. (2017). Striatal Cholinergic Interneurons Modulate Spike-Timing in Striosomes and Matrix by an Amphetamine-Sensitive Mechanism. Front Neuroanat, 11, 20. https://doi.org/10.3389/fnana.2017.00020
Darvesh, A. S., Carroll, R. T., Geldenhuys, W. J., Gudelsky, G. A., Klein, J., Meshul, C. K., & Van der Schyf, C. J. (2011). In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov, 6(2), 109-127. https://doi.org/10.1517/17460441.2011.547189
Delorme, C., Salvador, A., Valabregue, R., Roze, E., Palminteri, S., Vidailhet, M., de Wit, S., Robbins, T., Hartmann, A., & Worbe, Y. (2016). Enhanced habit formation in Gilles de la Tourette syndrome. Brain, 139(Pt 2), 605-615. https://doi.org/10.1093/brain/awv307
Descarries, L., Gisiger, V., & Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol, 53(5), 603-625. https://doi.org/10.1016/s0301-0082(97)00050-6
Ding, Y. M., Li, Y. Y., Wang, C., Huang, H., Zheng, C. C., Huang, S. H., Xuan, Y., Sun, X. Y., & Zhang, X. (2017). Nischarin-siRNA delivered by polyethylenimine-alginate nanoparticles accelerates motor function recovery after spinal cord injury. Neural Regen Res, 12(10), 1687-1694. https://doi.org/10.4103/1673-5374.217348
Doig, N. M., Magill, P. J., Apicella, P., Bolam, J. P., & Sharott, A. (2014). Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J Neurosci, 34(8), 3101-3117. https://doi.org/10.1523/JNEUROSCI.4627-13.2014
Du, J. C., Chiu, T. F., Lee, K. M., Wu, H. L., Yang, Y. C., Hsu, S. Y., Sun, C. S., Hwang, B., & Leckman, J. F. (2010). Tourette syndrome in children: an updated review. Pediatr Neonatol, 51(5), 255-264. https://doi.org/10.1016/S1875-9572(10)60050-2
Durdagi, S., Salmas, R. E., Stein, M., Yurtsever, M., & Seeman, P. (2016). Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques. ACS Chem Neurosci, 7(2), 185-195. https://doi.org/10.1021/acschemneuro.5b00271
Felling, R. J., & Singer, H. S. (2011). Neurobiology of tourette syndrome: current status and need for further investigation. J Neurosci, 31(35), 12387-12395. https://doi.org/10.1523/JNEUROSCI.0150-11.2011
Fowler, S. C., Mosher, L. J., Godar, S. C., & Bortolato, M. (2017). Assessment of gait and sensorimotor deficits in the D1CT-7 mouse model of Tourette syndrome. J Neurosci Methods, 292, 37-44. https://doi.org/10.1016/j.jneumeth.2017.01.009
Frick, L. R., Rapanelli, M., Jindachomthong, K., Grant, P., Leckman, J. F., Swedo, S., Williams, K., & Pittenger, C. (2018). Differential binding of antibodies in PANDAS patients to cholinergic interneurons in the striatum. Brain Behav Immun, 69, 304-311. https://doi.org/10.1016/j.bbi.2017.12.004
Gao, M., Lin, H., Li, B., Wen, J., Wang, Y., Zhang, Z., & Chen, W. (2022). Lack of Association of FLT3 rs2504235 and Absence of SLITRK1 var321 in Patients with Tic Disorders from Guangdong Province, China. Neuropsychiatr Dis Treat, 18, 155-161. https://doi.org/10.2147/NDT.S340197
Gerfen, C. R., & Wilson, C. J. (1996). Chapter II The basal ganglia. In L. W. Swanson, A. BjÖrklund, & T. HÖkfelt (Eds.), Handbook of Chemical Neuroanatomy (Vol. 12, pp. 371-468). Elsevier. https://doi.org/https://doi.org/10.1016/S0924-8196(96)80004-2
Gilbert, D. L., Dubow, J. S., Cunniff, T. M., Wanaski, S. P., Atkinson, S. D., & Mahableshwarkar, A. R. (2023). Ecopipam for Tourette Syndrome: A Randomized Trial. Pediatrics, 151(2). https://doi.org/10.1542/peds.2022-059574
Godar, S. C., Mosher, L. J., Strathman, H. J., Gochi, A. M., Jones, C. M., Fowler, S. C., & Bortolato, M. (2016). The D1CT-7 mouse model of Tourette syndrome displays sensorimotor gating deficits in response to spatial confinement. Br J Pharmacol, 173(13), 2111-2121. https://doi.org/10.1111/bph.13243
Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B., Nowak, N. J., Joyner, A., Leblanc, G., Hatten, M. E., & Heintz, N. (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature, 425(6961), 917-925. https://doi.org/10.1038/nature02033
Guo, P., Coban, O., Snead, N. M., Trebley, J., Hoeprich, S., Guo, S., & Shu, Y. (2010). Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev, 62(6), 650-666. https://doi.org/10.1016/j.addr.2010.03.008
Hallett, M. (2015). Tourette Syndrome: Update. Brain & development, 37(7), 651-655. https://doi.org/10.1016/j.braindev.2014.11.005
Hatayama, M., & Aruga, J. (2022). Developmental control of noradrenergic system by SLITRK1 and its implications in the pathophysiology of neuropsychiatric disorders. Front Mol Neurosci, 15, 1080739. https://doi.org/10.3389/fnmol.2022.1080739
Hatayama, M., Katayama, K. I., Kawahara, Y., Matsunaga, H., Takashima, N., Iwayama, Y., Matsumoto, Y., Nishi, A., Yoshikawa, T., & Aruga, J. (2022). SLITRK1-mediated noradrenergic projection suppression in the neonatal prefrontal cortex. Commun Biol, 5(1), 935. https://doi.org/10.1038/s42003-022-03891-y
Helmschrodt, C., Hobel, S., Schoniger, S., Bauer, A., Bonicelli, J., Gringmuth, M., Fietz, S. A., Aigner, A., Richter, A., & Richter, F. (2017). Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce alpha-Synuclein Expression in a Model of Parkinson's Disease. Mol Ther Nucleic Acids, 9, 57-68. https://doi.org/10.1016/j.omtn.2017.08.013
Hibberd, C., Charman, T., Bhatoa, R. S., Tekes, S., Hedderly, T., Gringras, P., & Robinson, S. (2020). Sleep difficulties in children with Tourette syndrome and chronic tic disorders: a systematic review of characteristics and associated factors. Sleep, 43(6). https://doi.org/10.1093/sleep/zsz308
Hienert, M., Gryglewski, G., Stamenkovic, M., Kasper, S., & Lanzenberger, R. (2018). Striatal dopaminergic alterations in Tourette's syndrome: a meta-analysis based on 16 PET and SPECT neuroimaging studies. Transl Psychiatry, 8(1), 143. https://doi.org/10.1038/s41398-018-0202-y
Higley, M. J., Gittis, A. H., Oldenburg, I. A., Balthasar, N., Seal, R. P., Edwards, R. H., Lowell, B. B., Kreitzer, A. C., & Sabatini, B. L. (2011). Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS One, 6(4), e19155. https://doi.org/10.1371/journal.pone.0019155
Inai, A., Tochigi, M., Kuwabara, H., Nishimura, F., Kato, K., Eriguchi, Y., Shimada, T., Furukawa, M., Kawamura, Y., Sasaki, T., Kakiuchi, C., Kasai, K., & Kano, Y. (2015). Analysis of SLITRK1 in Japanese patients with Tourette syndrome using a next-generation sequencer. Psychiatr Genet, 25(6), 256-258. https://doi.org/10.1097/YPG.0000000000000104
Jeppesen, S. S., Debes, N. M., Simonsen, H. J., Rostrup, E., Larsson, H. B., & Skov, L. (2014). Study of medication-free children with Tourette syndrome do not show imaging abnormalities. Mov Disord, 29(9), 1212-1216. https://doi.org/10.1002/mds.25858
Johnson, K. A., Worbe, Y., Foote, K. D., Butson, C. R., Gunduz, A., & Okun, M. S. (2023). Tourette syndrome: clinical features, pathophysiology, and treatment. Lancet Neurol, 22(2), 147-158. https://doi.org/10.1016/S1474-4422(22)00303-9
Kajiwara, Y., Buxbaum, J. D., & Grice, D. E. (2009). SLITRK1 binds 14-3-3 and regulates neurite outgrowth in a phosphorylation-dependent manner. Biol Psychiatry, 66(10), 918-925. https://doi.org/10.1016/j.biopsych.2009.05.033
Karagiannidis, I., Rizzo, R., Tarnok, Z., Wolanczyk, T., Hebebrand, J., Nöthen, M. M., Lehmkuhl, G., Farkas, L., Nagy, P., Barta, C., Szymanska, U., Panteloglou, G., Miranda, D. M., Feng, Y., Sandor, P., Barr, C., Paschou, P., & TsgeneSee. (2012). Replication of association between a SLITRK1 haplotype and Tourette Syndrome in a large sample of families. Molecular Psychiatry, 17(7), 665-668. https://doi.org/10.1038/mp.2011.151
Kataoka, Y., Kalanithi, P. S., Grantz, H., Schwartz, M. L., Saper, C., Leckman, J. F., & Vaccarino, F. M. (2010). Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol, 518(3), 277-291. https://doi.org/10.1002/cne.22206
Katayama, K., Yamada, K., Ornthanalai, V. G., Inoue, T., Ota, M., Murphy, N. P., & Aruga, J. (2010). Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities. Mol Psychiatry, 15(2), 177-184. https://doi.org/10.1038/mp.2008.97
Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci, 13(11), 4908-4923. https://doi.org/10.1523/JNEUROSCI.13-11-04908.1993
Kelley, A. E. (2001). Measurement of rodent stereotyped behavior. Curr Protoc Neurosci, Chapter 8, Unit 8 8. https://doi.org/10.1002/0471142301.ns0808s04
Kondabolu, K., Roberts, E. A., Bucklin, M., McCarthy, M. M., Kopell, N., & Han, X. (2016). Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits. Proc Natl Acad Sci U S A, 113(22), E3159-3168. https://doi.org/10.1073/pnas.1605658113
Kreitzer, A. C. (2009). Physiology and Pharmacology of Striatal Neurons. Annual Review of Neuroscience, 32(1), 127-147. https://doi.org/10.1146/annurev.neuro.051508.135422
Kumar, A., Trescher, W., & Byler, D. (2016). Tourette Syndrome and Comorbid Neuropsychiatric Conditions. Curr Dev Disord Rep, 3(4), 217-221. https://doi.org/10.1007/s40474-016-0099-1
Lamanna, J., Ferro, M., Spadini, S., Racchetti, G., & Malgaroli, A. (2023). The Dysfunctional Mechanisms Throwing Tics: Structural and Functional Changes in Tourette Syndrome. Behav Sci (Basel), 13(8). https://doi.org/10.3390/bs13080668
Lapper, S. R., & Bolam, J. P. (1992). Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience, 51(3), 533-545. https://doi.org/10.1016/0306-4522(92)90293-b
Leckman, J. F. (2002). Tourette's syndrome. Lancet, 360(9345), 1577-1586. https://doi.org/10.1016/S0140-6736(02)11526-1
Leckman, J. F., Bloch, M. H., Scahill, L., & King, R. A. (2006). Tourette Syndrome: The Self Under Siege. Journal of Child Neurology, 21(8), 642-649. https://doi.org/10.1177/08830738060210081001
Lee, K., Dixon, A. K., Freeman, T. C., & Richardson, P. J. (1998). Identification of an ATP-sensitive potassium channel current in rat striatal cholinergic interneurones. J Physiol, 510 ( Pt 2)(Pt 2), 441-453. https://doi.org/10.1111/j.1469-7793.1998.441bk.x
Lerner, A., Bagic, A., Simmons, J. M., Mari, Z., Bonne, O., Xu, B., Kazuba, D., Herscovitch, P., Carson, R. E., Murphy, D. L., Drevets, W. C., & Hallett, M. (2012). Widespread abnormality of the gamma-aminobutyric acid-ergic system in Tourette syndrome. Brain, 135(Pt 6), 1926-1936. https://doi.org/10.1093/brain/aws104
Levine, J. L. S., Szejko, N., & Bloch, M. H. (2019). Meta-analysis: Adulthood prevalence of Tourette syndrome. Prog Neuropsychopharmacol Biol Psychiatry, 95, 109675. https://doi.org/10.1016/j.pnpbp.2019.109675
Lim, S. A., Kang, U. J., & McGehee, D. S. (2014). Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci, 6, 22. https://doi.org/10.3389/fnsyn.2014.00022
Lopez-Barbosa, N., Garcia, J. G., Cifuentes, J., Castro, L. M., Vargas, F., Ostos, C., Cardona-Gomez, G. P., Hernandez, A. M., & Cruz, J. C. (2020). Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer's. Drug Deliv, 27(1), 864-875. https://doi.org/10.1080/10717544.2020.1775724
Lozovaya, N., Eftekhari, S., Cloarec, R., Gouty-Colomer, L. A., Dufour, A., Riffault, B., Billon-Grand, M., Pons-Bennaceur, A., Oumar, N., Burnashev, N., Ben-Ari, Y., & Hammond, C. (2018). GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat Commun, 9(1), 1422. https://doi.org/10.1038/s41467-018-03802-y
Luft, C., & Ketteler, R. (2015). Electroporation Knows No Boundaries: The Use of Electrostimulation for siRNA Delivery in Cells and Tissues. J Biomol Screen, 20(8), 932-942. https://doi.org/10.1177/1087057115579638
Maia, T. V., & Conceição, V. A. (2017). The Roles of Phasic and Tonic Dopamine in Tic Learning and Expression. Biol Psychiatry, 82(6), 401-412. https://doi.org/10.1016/j.biopsych.2017.05.025
Maia, T. V., & Conceicao, V. A. (2018). Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account. Biol Psychiatry, 84(5), 332-344. https://doi.org/10.1016/j.biopsych.2018.02.1172
Manczak, M., & Reddy, P. H. (2013). RNA silencing of genes involved in Alzheimer's disease enhances mitochondrial function and synaptic activity. Biochim Biophys Acta, 1832(12), 2368-2378. https://doi.org/10.1016/j.bbadis.2013.09.008
Martos, Y. V., Braz, B. Y., Beccaria, J. P., Murer, M. G., & Belforte, J. E. (2017). Compulsive Social Behavior Emerges after Selective Ablation of Striatal Cholinergic Interneurons. J Neurosci, 37(11), 2849-2858. https://doi.org/10.1523/JNEUROSCI.3460-16.2017
Mataix-Cols, D., Isomura, K., Perez-Vigil, A., Chang, Z., Ruck, C., Larsson, K. J., Leckman, J. F., Serlachius, E., Larsson, H., & Lichtenstein, P. (2015). Familial Risks of Tourette Syndrome and Chronic Tic Disorders. A Population-Based Cohort Study. JAMA Psychiatry, 72(8), 787-793. https://doi.org/10.1001/jamapsychiatry.2015.0627
McCairn, K. W., Bronfeld, M., Belelovsky, K., & Bar-Gad, I. (2009). The neurophysiological correlates of motor tics following focal striatal disinhibition. Brain, 132(Pt 8), 2125-2138. https://doi.org/10.1093/brain/awp142
Miranda, D. M., Wigg, K., Kabia, E. M., Feng, Y., Sandor, P., & Barr, C. L. (2009). Association of SLITRK1 to Gilles de la Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet, 150b(4), 483-486. https://doi.org/10.1002/ajmg.b.30840
Mogwitz, S., Buse, J., Ehrlich, S., & Roessner, V. (2013). Clinical pharmacology of dopamine-modulating agents in Tourette's syndrome. Int Rev Neurobiol, 112, 281-349. https://doi.org/10.1016/B978-0-12-411546-0.00010-X
Moore, H., & Grace, A. A. (2002). A Role for Electrotonic Coupling in the Striatum in the Expression of Dopamine Receptor-mediated Stereotypies. Neuropsychopharmacology, 27(6), 980-992. https://doi.org/10.1016/S0893-133X(02)00383-4
Muellner, J., Delmaire, C., Valabregue, R., Schupbach, M., Mangin, J. F., Vidailhet, M., Lehericy, S., Hartmann, A., & Worbe, Y. (2015). Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development. Mov Disord, 30(5), 655-661. https://doi.org/10.1002/mds.26207
Muller-Vahl, K. R., Grosskreutz, J., Prell, T., Kaufmann, J., Bodammer, N., & Peschel, T. (2014). Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms. BMC Neurosci, 15, 6. https://doi.org/10.1186/1471-2202-15-6
Muller-Vahl, K. R., Loeber, G., Kotsiari, A., Muller-Engling, L., & Frieling, H. (2017). Gilles de la Tourette syndrome is associated with hypermethylation of the dopamine D2 receptor gene. J Psychiatr Res, 86, 1-8. https://doi.org/10.1016/j.jpsychires.2016.11.004
Nakajima, H., Kubo, T., Semi, Y., Itakura, M., Kuwamura, M., Izawa, T., Azuma, Y. T., & Takeuchi, T. (2012). A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain. J Biotechnol, 157(2), 326-333. https://doi.org/10.1016/j.jbiotec.2011.10.003
Neuner, I., Arrubla, J., Ehlen, C., Janouschek, H., Nordt, C., Fimm, B., Schneider, F., Shah, N. J., & Kawohl, W. (2012). Fine motor skills in adult Tourette patients are task-dependent. BMC Neurol, 12, 120. https://doi.org/10.1186/1471-2377-12-120
Nordstrom, E. J., & Burton, F. H. (2002). A transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry, 7(6), 617-625, 524. https://doi.org/10.1038/sj.mp.4001144
O'Roak, B. J., Morgan, T. M., Fishman, D. O., Saus, E., Alonso, P., Gratacòs, M., Estivill, X., Teltsh, O., Kohn, Y., Kidd, K. K., Cho, J., Lifton, R. P., & State, M. W. (2010). Additional support for the association of SLITRK1 var321 and Tourette syndrome. Molecular Psychiatry, 15(5), 447-450. https://doi.org/10.1038/mp.2009.105
Orlovska, S., Vestergaard, C. H., Bech, B. H., Nordentoft, M., Vestergaard, M., & Benros, M. E. (2017). Association of Streptococcal Throat Infection With Mental Disorders: Testing Key Aspects of the PANDAS Hypothesis in a Nationwide Study. JAMA Psychiatry, 74(7), 740-746. https://doi.org/10.1001/jamapsychiatry.2017.0995
Ozomaro, U., Cai, G., Kajiwara, Y., Yoon, S., Makarov, V., Delorme, R., Betancur, C., Ruhrmann, S., Falkai, P., Grabe, H. J., Maier, W., Wagner, M., Lennertz, L., Moessner, R., Murphy, D. L., Buxbaum, J. D., Zuchner, S., & Grice, D. E. (2013). Characterization of SLITRK1 variation in obsessive-compulsive disorder. PLoS One, 8(8), e70376. https://doi.org/10.1371/journal.pone.0070376
Peterson, B. S., Thomas, P., Kane, M. J., Scahill, L., Zhang, H., Bronen, R., King, R. A., Leckman, J. F., & Staib, L. (2003). Basal Ganglia volumes in patients with Gilles de la Tourette syndrome. Arch Gen Psychiatry, 60(4), 415-424. https://doi.org/10.1001/archpsyc.60.4.415
Pogorelov, V., Xu, M., Smith, H. R., Buchanan, G. F., & Pittenger, C. (2015). Corticostriatal interactions in the generation of tic-like behaviors after local striatal disinhibition. Exp Neurol, 265, 122-128. https://doi.org/10.1016/j.expneurol.2015.01.001
Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet, 47(7), 702-709. https://doi.org/10.1038/ng.3285
Poppi, L. A., Ho-Nguyen, K. T., Shi, A., Daut, C. T., & Tischfield, M. A. (2021). Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells, 10(4). https://doi.org/10.3390/cells10040907
Protais, P., Costentin, J., & Schwartz, J. C. (1976). Climbing behavior induced by apomorphine in mice: a simple test for the study of dopamine receptors in striatum. Psychopharmacology (Berl), 50(1), 1-6. https://doi.org/10.1007/bf00634146
Ramteke, A., & Lamture, Y. (2022). Tics and Tourette Syndrome: A Literature Review of Etiological, Clinical, and Pathophysiological Aspects. Cureus, 14(8), e28575. https://doi.org/10.7759/cureus.28575
Richfield, E. K., Penney, J. B., & Young, A. B. (1989). Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience, 30(3), 767-777. https://doi.org/10.1016/0306-4522(89)90168-1
Rickards, H., Woolf, I., & Cavanna, A. E. (2010). "Trousseau's disease:" a description of the Gilles de la Tourette syndrome 12 years before 1885. Mov Disord, 25(14), 2285-2289. https://doi.org/10.1002/mds.23202
Robertson, M. M., Eapen, V., & Cavanna, A. E. (2009). The international prevalence, epidemiology, and clinical phenomenology of Tourette syndrome: a cross-cultural perspective. J Psychosom Res, 67(6), 475-483. https://doi.org/10.1016/j.jpsychores.2009.07.010
Rossi, J., Balthasar, N., Olson, D., Scott, M., Berglund, E., Lee, C. E., Choi, M. J., Lauzon, D., Lowell, B. B., & Elmquist, J. K. (2011). Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab, 13(2), 195-204. https://doi.org/10.1016/j.cmet.2011.01.010
Rusheen, A. E., Rojas-Cabrera, J., Goyal, A., Shin, H., Yuen, J., Jang, D. P., Bennet, K. E., Blaha, C. D., Lee, K. H., & Oh, Y. (2023). Deep brain stimulation alleviates tics in Tourette syndrome via striatal dopamine transmission. Brain, 146(10), 4174-4190. https://doi.org/10.1093/brain/awad142
Samuels, M. A. (2022). Tik Tok Tics. Am J Med, 135(8), 933-934. https://doi.org/10.1016/j.amjmed.2022.02.040
Sandyk, R. (1995). Cholinergic mechanisms in Gilles de la Tourette's syndrome. Int J Neurosci, 81(1-2), 95-100. https://doi.org/10.3109/00207459509015301
Sava, V., Fihurka, O., Khvorova, A., & Sanchez-Ramos, J. (2020). Enriched chitosan nanoparticles loaded with siRNA are effective in lowering Huntington's disease gene expression following intranasal administration. Nanomedicine, 24, 102119. https://doi.org/10.1016/j.nano.2019.102119
Scharf, J. M., Miller, L. L., Gauvin, C. A., Alabiso, J., Mathews, C. A., & Ben-Shlomo, Y. (2015). Population prevalence of Tourette syndrome: a systematic review and meta-analysis. Mov Disord, 30(2), 221-228. https://doi.org/10.1002/mds.26089
Shaikh, N., Leonard, E., & Martin, J. M. (2010). Prevalence of streptococcal pharyngitis and streptococcal carriage in children: a meta-analysis. Pediatrics, 126(3), e557-564. https://doi.org/10.1542/peds.2009-2648
Soeda, S., Ito, D., Ogushi, T., Sano, Y., Negoro, R., Fujita, T., Saito, R., & Taniura, H. (2023). Defects in early synaptic formation and neuronal function in Prader-Willi syndrome. Sci Rep, 13(1), 12053. https://doi.org/10.1038/s41598-023-39065-x
Sorimachi, M., & Kataoka, K. (1975). High affinity choline uptake: an early index of cholinergic innervation in rat brain. Brain Res, 94(2), 325-336. https://doi.org/10.1016/0006-8993(75)90065-7
Spencer, B., Trinh, I., Rockenstein, E., Mante, M., Florio, J., Adame, A., El-Agnaf, O. M. A., Kim, C., Masliah, E., & Rissman, R. A. (2019). Systemic peptide mediated delivery of an siRNA targeting alpha-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease. Neurobiol Dis, 127, 163-177. https://doi.org/10.1016/j.nbd.2019.03.001
Stillman, A. A., Krsnik, Z., Sun, J., Rasin, M. R., State, M. W., Sestan, N., & Louvi, A. (2009). Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol, 513(1), 21-37. https://doi.org/10.1002/cne.21919
Surmeier, D. J., Mercer, J. N., & Chan, C. S. (2005). Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr Opin Neurobiol, 15(3), 312-318. https://doi.org/10.1016/j.conb.2005.05.007
Swerdlow, N. R., Karban, B., Ploum, Y., Sharp, R., Geyer, M. A., & Eastvold, A. (2001). Tactile prepuff inhibition of startle in children with Tourette's syndrome: in search of an "fMRI-friendly" startle paradigm. Biol Psychiatry, 50(8), 578-585. https://doi.org/10.1016/s0006-3223(01)01164-7
Taniguchi, T., Endo, K. I., Tanioka, H., Sasaoka, M., Tashiro, K., Kinoshita, S., & Kageyama, M. (2020). Novel use of a chemically modified siRNA for robust and sustainable in vivo gene silencing in the retina. Sci Rep, 10(1), 22343. https://doi.org/10.1038/s41598-020-79242-w
Threlfell, S., Lalic, T., Platt, N. J., Jennings, K. A., Deisseroth, K., & Cragg, S. J. (2012). Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron, 75(1), 58-64. https://doi.org/10.1016/j.neuron.2012.04.038
Ting, J. T., Lee, B. R., Chong, P., Soler-Llavina, G., Cobbs, C., Koch, C., Zeng, H., & Lein, E. (2018). Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J Vis Exp(132). https://doi.org/10.3791/53825
Tomar, R. S., Matta, H., & Chaudhary, P. M. (2003). Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene, 22(36), 5712-5715. https://doi.org/10.1038/sj.onc.1206733
Tung, L. W., Lu, G. L., Lee, Y. H., Yu, L., Lee, H. J., Leishman, E., Bradshaw, H., Hwang, L. L., Hung, M. S., Mackie, K., Zimmer, A., & Chiou, L. C. (2016). Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun, 7, 12199. https://doi.org/10.1038/ncomms12199
Vaughan, R. A., & Foster, J. D. (2013). Mechanisms of dopamine transporter regulation in normal and disease states. Trends in pharmacological sciences, 34(9), 489-496. https://doi.org/10.1016/j.tips.2013.07.005
Vinner, E., Israelashvili, M., & Bar-Gad, I. (2017). Prolonged striatal disinhibition as a chronic animal model of tic disorders. J Neurosci Methods, 292, 20-29. https://doi.org/10.1016/j.jneumeth.2017.03.003
Wang, S. E., Xiong, Y., Jang, M. A., Park, K. S., Donahue, M., Velez, J., Jin, J., & Jiang, Y. H. (2024). Newly developed oral bioavailable EHMT2 inhibitor as a potential epigenetic therapy for Prader-Willi syndrome. Mol Ther. https://doi.org/10.1016/j.ymthe.2024.05.034
Willner, P. (1984). The validity of animal models of depression. Psychopharmacology (Berl), 83(1), 1-16. https://doi.org/10.1007/BF00427414
Wilson, C. J., Chang, H. T., & Kitai, S. T. (1990). Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci, 10(2), 508-519. https://doi.org/10.1523/JNEUROSCI.10-02-00508.1990
Wong, D. F., Brasic, J. R., Singer, H. S., Schretlen, D. J., Kuwabara, H., Zhou, Y., Nandi, A., Maris, M. A., Alexander, M., Ye, W., Rousset, O., Kumar, A., Szabo, Z., Gjedde, A., & Grace, A. A. (2008). Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET. Neuropsychopharmacology, 33(6), 1239-1251. https://doi.org/10.1038/sj.npp.1301528
Xu, J., Liu, R. J., Fahey, S., Frick, L., Leckman, J., Vaccarino, F., Duman, R. S., Williams, K., Swedo, S., & Pittenger, C. (2021). Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity. Am J Psychiatry, 178(1), 48-64. https://doi.org/10.1176/appi.ajp.2020.19070698
Xu, M., Kobets, A., Du, J. C., Lennington, J., Li, L., Banasr, M., Duman, R. S., Vaccarino, F. M., DiLeone, R. J., & Pittenger, C. (2015). Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc Natl Acad Sci U S A, 112(3), 893-898. https://doi.org/10.1073/pnas.1419533112
Youssef, A. E. H., Dief, A. E., El Azhary, N. M., Abdelmonsif, D. A., & El-Fetiany, O. S. (2019). LINGO-1 siRNA nanoparticles promote central remyelination in ethidium bromide-induced demyelination in rats. J Physiol Biochem, 75(1), 89-99. https://doi.org/10.1007/s13105-018-00660-6
Zuchner, S., Cuccaro, M. L., Tran-Viet, K. N., Cope, H., Krishnan, R. R., Pericak-Vance, M. A., Wright, H. H., & Ashley-Koch, A. (2006). SLITRK1 mutations in trichotillomania. Mol Psychiatry, 11(10), 887-889. https://doi.org/10.1038/sj.mp.4001898
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94922-
dc.description.abstract妥瑞症(Tourette Syndrome, TS),是一種常發生於兒童時期以非自主的運動和聲音抽動為特徵的神經發展疾患。根據精神疾病診斷與統計手冊第五版修訂版(DSM-5-TR)的診斷標準,妥瑞症的診斷符合下列幾項症狀: (1)需要出現多種運動型抽動症狀和至少一個聲語型抽動症狀, (2)這些抽動症狀需要反覆出現持續超過一年, (3) 抽動症狀須於18歲之前就出現, (4)這些症狀不能歸因於藥物或其他病毒感染的因素。妥瑞症患者所表現的抽動症狀可區分為簡單型抽動症狀, 如快速、孤立的動作,例如眨眼或清喉嚨; 和複雜型抽動症狀, 像是涉及一連串的動作或聲音,例如模仿他人的行為或是咒罵等等。妥瑞症患者常見的共病症包括注意力不足過動症(ADHD)和強迫症(OCD)。從病因學角度看,妥瑞症的成因涉及遺傳、環境和免疫因素的共同影響,尤其是許多研究都指出妥瑞症具有高度的遺傳性。從神經生物學角度看,妥瑞症與基底核功能失調有關,造成那些抑制不必要動作的腦內迴路受到影響,例如許多功能性影像學研究已指出連接大腦皮質-紋狀體-視丘-大腦皮質的迴路功能失常是妥瑞症患者主要的致病原因。
最近的研究則聚焦於紋狀體內膽鹼能中間神經元(Cholinergic interneurons, ChIs)的作用,這些膽鹼能中間神經元能調節多巴胺的釋放,並在運動控制和行為調節中發揮關鍵作用。紋狀體內的膽鹼能中間神經元的數量只佔所有紋狀體神經元的1-2%左右,但它們在腦中是最豐富的乙醯膽鹼區域,而且在紋狀體中投射出密集的纖維樹突,以調控下游的中型多棘神經元(Medium spiny neurons, MSNs)及其他γ-氨基丁酸中間神經元(GABAergic interneurons) 的功能,近一步影響個體的動作或行為。紋狀體膽鹼能中間神經元特殊的電生理特性使其不需要接受外來刺激便可以自行產生動作電位,所以又稱為紋狀體節律器。病理研究指出妥瑞症患者紋狀體中的膽鹼能中間神經元數量比一般人減少了將近50~60%左右,這是首次發現紋狀體膽鹼能中間神經元在妥瑞症病理成因的重要性。
臨床研究發現位於13q31.1染色體上的SLIT和NTRK-like 1(SLITRK1)基因變異與妥瑞症可能有相關性。SLITRK1/Slitrk1蛋白質對於神經樹突發育與突觸形成至關重要,這對神經連接和功能的發展是必需的。SLITRK1/Slitrk1在紋狀體神經元中的表現受到發育性的調控,以小鼠為例,在胚胎和青春期早期階段達到高峰,不過在成年期幾乎消失。但值得注意的是在成年階段Slitrk1的表現僅限於特定的膽鹼能中間神經元,這代表Slitrk1與維持成年階段ChIs的正常功能可能有關,因此我們提出的假設是降低成年小鼠紋狀體內Slitrk1的表現會讓小鼠的紋狀體膽鹼能中間神經元功能失常,進一步導致出現類似抽動的行為。
本研究將Slitrk1或Scramble小干擾RNA(small interfere RNA, siRNA)注射於成年的C57BL/6J雄性小鼠的背側紋狀體內,產生了Slitrk1基因敲落(Slitrk1-KD)小鼠與Scramble對照組,並分別比較兩者的刻板動作及類似抽動症狀的行為、感覺動作門閾過濾反應、Slitrk1 蛋白質表現量、紋狀體膽鹼中間神經元的數量與活性及電生理特性、神經傳導物質的濃度、與小鼠刻板行為對藥物的反應等等。我們發現Slitrk1-KD小鼠表現出更頻繁且持續時間更長的簡單和複雜的刻板行為,高峰期為注射後3天,但10天後逐漸恢復至基線。這些小鼠還出現顯著的前脈衝抑制缺陷和去除左前掌膠帶的延遲期增加,代表它們的感覺運動門控功能受損。電生理研究顯示,相較於Slitrk1陽性的膽鹼能中間神經元,Slitrk1陰性的膽鹼能中間神經元的膜電阻較高且神經興奮性較低。Slitrk1-KD小鼠表現出誘發性乙醯膽鹼和誘發性多巴胺釋放明顯降低的情況,但是基礎性多巴胺釋放量則被增強,顯示出神經傳導物質會有動態性的變化。儘管自發性活動量相近,但Slitrk1-KD小鼠對甲基安非他命誘導的高運動性反應較低,這指向多巴胺受體功能改變,尤其是多巴胺D2受體,進一步由對小鼠施與多巴胺D2拮抗劑以及對阿朴吗啡(apomorphine)的增強反應證實成年小鼠的多巴胺D2受體反應性增加了。
本研究發現Slitrk1對於維持紋狀體膽鹼能中間神經元的活動和隨後的多巴胺傳遞至關重要,Slitrk1-KD小鼠在某些方面模擬了妥瑞症的特徵,特別是在神經傳導系統失調和受體敏感性變化方面,提供了對該疾病神經生物學基礎的洞察。與其他需要壓力才能表現抽動行為的妥瑞症小鼠模型不同的是,Slitrk1-KD小鼠可自發性地出現這些症狀,突顯出潛在的紋狀體功能障礙主要涉及膽鹼能中間神經元功能改變與乙醯膽鹼和多巴胺等神經傳導物質的濃度變化有關。本研究的結論顯示出Slitrk1對於維持小鼠成年期紋狀體膽鹼中間神經元的功能具有其關鍵角色,對正常的神經遞質動態至關重要,且紋狀體膽鹼能中間神經元可能成為發展治療妥瑞症抽動症狀的潛在目標,尤其是對傳統治療反應不佳的病人。
zh_TW
dc.description.abstractTourette Syndrome (TS), also known as Gilles de la Tourette Syndrome, is a common neurodevelopmental disorder in children, characterized by involuntary motor and vocal tics. According to DSM-5-TR criteria, the diagnosis of TS requires multiple motor tics and at least one vocal tic that persist for over a year, start before age 18, and are not attributable to medications or other medical conditions. Tics in TS are classified as either simple—such as quick, isolated movements like eye blinking or throat clearing—or complex, involving sequences of movements or sounds such as echopraxia and coprolalia, respectively. Common comorbidities in TS patients include ADHD and OCD. From an etiological perspective, TS involves genetic, environmental, and immunological factors, with recent research highlighting genetic predispositions. Neurobiologically, TS is associated with dysfunction in the basal ganglia, which affects brain circuits that suppress unwanted actions. Research also focuses on the role of striatal cholinergic interneurons (ChIs), which modulate dopamine and play crucial roles in motor control and behavior regulation. ChIs, constituting only 1-2% of total neurons, project dense arbors of fibers across the stratum, making it the most acetylcholine-rich brain region. Disruptions in ChI function are linked with TS, underlining the importance of these neurons in the disorder's pathology.
The SLIT and NTRK-like 1 (SLITRK1) gene, located on chromosome 13q31.1, has been implicated in TS, though its association varies. SLITRK1 is critical for neurite development and synaptic formation, essential for neuronal connectivity and function. Its expression in striatal neurons is developmentally regulated, peaking during embryonic and adolescent stages but nearly vanishing in adulthood. Notably, in adult stages, its expression is restricted to specific cholinergic interneurons (ChIs), indicating its role in maintaining ChI functions and potentially influencing cortico-striatal circuits involved in TS.
The study investigated Slitrk1 knockdown (Slitrk1-KD) mice in comparison to Scramble control groups, treated respectively with Slitrk1 and Scramble siRNA. The Slitrk1-KD group exhibited significantly more frequent and prolonged bouts of both simple and complex stereotypic behaviors, peaking 3 days post-siRNA injection and returning to baseline after 10 days. These mice also displayed significant deficits in prepulse inhibition (PPI) and increased latency in removing adhesive tape, suggesting impaired sensorimotor gating and function. A reduction in the number of active striatal ChIs, identified by decreased phospho-S6 ribosomal protein (pS6RP) staining, correlated with reduced Slitrk1 expression. Electrophysiological studies showed that Slitrk1-negative (Slitrk1(-)) ChIs had higher membrane resistance and lower excitability than Slitrk1-positive (Slitrk1(+))ChIs. Slitrk1-KD mice exhibited reduced evoked acetylcholine (ACh) and dopamine release, but increased tonic dopamine release, indicating altered neurotransmitter dynamics. Despite similar levels of spontaneous activity, these mice were less responsive to methamphetamine-induced hyperlocomotion, pointing to altered dopamine receptor function, particularly in D2 receptors, further evidenced by their increased response to apomorphine.
These findings suggest that Slitrk1 is essential for maintaining the activity of striatal ChIs and subsequent dopaminergic transmission for normal motor function. The study concludes that Slitrk1-KD mice model certain aspects of TS, particularly regarding neurotransmitter system dysregulation and receptor sensitivity changes, offering insights into the neurobiological underpinnings of the disorder. Unlike other TS models that require stress to manifest tic behaviors, Slitrk1-KD mice spontaneously exhibited these symptoms, highlighting potential intrinsic striatal dysfunction, primarily involving ChIs and dopamine signaling. These conclusions emphasize the crucial role of Slitrk1 in striatal ChIs for normal neurotransmitter dynamics and its potential as a therapeutic target in TS, especially for those TS patients with symptoms resistant to standard treatments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:36:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:36:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝----------------------------------------------------------------------i
摘要--------------------------------------------------------------------iii
ABSTRACT-----------------------------------------------------------------vi
ABBREVIATIONS----------------------------------------------------------viii
INTRODUCTION--------------------------------------------------------------1
Tourette syndrome-----------------------------------------------------1
The definition and classification of tics in Tourette syndrome--------1
  The diagnosis and comorbidities of Tourette syndrome------------------2
The etiologies of Tourette syndrome-----------------------------------3
The neurobiology of Tourette syndrome---------------------------------4
  The implications of striatal cholinergic interneurons in Tourette
syndrome--------------------------------------------------------------5
Striatal dopaminergic transmission and TS-----------------------------8
  The association of SLITK1/Slitrk1 and Tourette syndrome---------------9
  The manifestations of Slitrk1 knockout mice--------------------------10
  The hypothesis-------------------------------------------------------11
MATERIAL AND METHODS-----------------------------------------------------12
Animals--------------------------------------------------------------12
Intra-striatum (i.str.) siRNA direct microinjection------------------12
Stereotypic behaviors------------------------------------------------13
Prepulse inhibition test---------------------------------------------13
Adhesive removal test------------------------------------------------14
Open field test------------------------------------------------------14
Apomorphine-induced climbing behaviors-------------------------------14
Western blot analysis------------------------------------------------15
Immunofluorescence---------------------------------------------------16
Electrophysiology----------------------------------------------------16
Intra-striatum (i.str.) cannulation----------------------------------18
Intra-striatum (i.str.) microinjection via cannulation--------------18
Microdialysis--------------------------------------------------------19
Drugs----------------------------------------------------------------20
Statistical analysis-------------------------------------------------21
RESULTS------------------------------------------------------------------22
Slitrk1-KD mice exhibited significant stereotypic behaviors, disrupted
prepulse inhibition (PPI),and impaired sensorimotor function---------22
Temporal correlation between behavioral manifestations and striatal
Slitrk1 expression in Slitrk1-KD mice--------------------------------23
Slitrk1-KD mice had fewer Slitrk1-containing striatal ChIs and fewer
activated striatal ChIs----------------------------------------------23
Slitrk1-negative ChIs were less excitable than Slitrk1-positive ChIs-24
Striatal evoked ACh levels were decreased in Slitrk1-KD mice---------25
Slitrk1-KD mice had lower evoked dopamine levels and was refractory to
methamphetamine induced hyperlocomotion------------------------------25
D2, but not D1, dopamine receptors are involved in stereotypic
behaviors of Slitrk1-KD mice-----------------------------------------27
Apomorphine-induced climbing behaviors were significantly increased in
Slitrk1-KD mice------------------------------------------------------27
DISCUSSION---------------------------------------------------------------29
The Characteristics of Slitrk1-KD mice model--------------------------29
Impact of Slitrk1 siRNA on striatal ChIs activity and dopaminergic
regulation-----------------------------------------------------------30
The role of Slitrk1 in striatal ChIs function and striatal
neurodynamics--------------------------------------------------------31
The role of striatal ChIs in TS pathophysiology----------------------32
Comparative analysis of D1CT-7 and Slitrk1-KD mice models------------32
Comparative analysis of CIN-d and Slitrk1-KD mice models-------------33
Novel use of a chemically modified siRNA for in vivo gene silencing in
developing a mouse model of neurodevelopmental disorder--------------34
Challenges and rationale for using adult mice for development of TS
animal model---------------------------------------------------------35
Evaluating the validity of Slitrk1-KD mice as a model for TS---------36
The association of Slitrk1 gene and other neurodevelopmental disorders
(NDDs) and neuropsychiatric disorders (NSDs) in preclinical research-37
Conclusions-------------------------------------------------------------38
REFERENCES--------------------------------------------------------------39
FIGURES AND TABLES------------------------------------------------------59
Figure 1. Slitrk1-KD mice exhibited tic-like stereotypic behaviors, prepulse inhibition and impaired sensorimotor function------------------59
Figure 2. Temporal correlation between behavioral manifestations and striatal Slitrk1 expression in Slitrk1-KD mice--------------------------61
Figure 3. Slitrk1-KD mice had fewer Slitrk1-containing striatal cholinergic interneurons (ChIs) and fewer activated ChIs----------------------------63
Figure 4. Slitrk1(-) ChIs were less excitable than Slitrk1(+) ChIs in the striatum of naïve mice--------------------------------------------------66
Figure 5.Slitrk1-KD mice displayed impaired ACh release upon stimulation-70
Figure 6.Slitrk1-KD mice displayed lower evoked dopamine levels, higher tonic dopamine levels and down-regulated dopamine transporter in the striatum and impaired methamphetamine hyperlocomotion--------------------72
Figure 7. Slitrk1-KD mice exhibited D2, but not D1, dopamine receptor-mediated stereotypic behaviors and enhanced apomorphine-induced climbing behaviors---------------------------------------------------------------77
Figure 8. Schematic diagrams illustrating the striatal neurotransmission and proposed changes in Slitrk1-KD mice---------------------------------78
Table 1. Electrophysiological properties of striatal Slitrk1(-) and Slitrk1(+) cholinergic interneurons-------------------------------------80
BIBLIOGRAPHY------------------------------------------------------------82
-
dc.language.isoen-
dc.subject妥瑞症zh_TW
dc.subject紋狀體zh_TW
dc.subject膽鹼能神經元zh_TW
dc.subjectStriatumen
dc.subjectCholinergic neuronen
dc.subjectTourette syndromeen
dc.subjectSlitrk1en
dc.titleSlitrk1在成年小鼠紋狀體膽鹼能神經元中的關鍵作用: 對妥瑞症的啟示zh_TW
dc.titlePivotal role of Slitrk1 in adult striatal cholinergic neurons in mice: Implication in Tourette syndromeen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林慶波;周宜卿;葉啓斌;陳儀莊;劉福清zh_TW
dc.contributor.oralexamcommitteeChing-Po Lin;I-Ching Chou;Chin-Bin Yeh;Yi-juang Chern;Fu-Chin Liuen
dc.subject.keyword妥瑞症,紋狀體,膽鹼能神經元,zh_TW
dc.subject.keywordTourette syndrome,Striatum,Cholinergic neuron,Slitrk1,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202403465-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥理學研究所-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved