Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張美惠zh_TW
dc.contributor.advisorMei-Hwei Changen
dc.contributor.author李致任zh_TW
dc.contributor.authorChee-Seng Leeen
dc.date.accessioned2024-08-21T16:26:57Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] Bezerra J A, Wells R G, Mack C L, et al. Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology 2018;68:1163-1173.
[2] Schreiber R A & Kleinman R E. Biliary atresia. J Pediatr Gastroenterol Nutr 2002;35 Suppl 1:S11-16.
[3] Arya G & Balistreri W F. Pediatric liver disease in the United States: epidemiology and impact. J Gastroenterol Hepatol 2002;17:521-525.
[4] Schwarz K B, Haber B H, Rosenthal P, et al. Extrahepatic anomalies in infants with biliary atresia: results of a large prospective North American multicenter study. Hepatology 2013;58:1724-1731.
[5] Davenport M, Tizzard S A, Underhill J, et al. The biliary atresia splenic malformation syndrome: a 28-year single-center retrospective study. J Pediatr 2006;149:393-400.
[6] Davenport M, Savage M, Mowat A P, et al. Biliary atresia splenic malformation syndrome: an etiologic and prognostic subgroup. Surgery 1993;113:662-668.
[7] Davenport M, Muntean A & Hadzic N. Biliary Atresia: Clinical Phenotypes and Aetiological Heterogeneity. J Clin Med 2021;10.
[8] Asai A, Miethke A & Bezerra J A. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol 2015;12:342-352.
[9] Hinds R, Davenport M, Mieli-Vergani G, et al. Antenatal presentation of biliary atresia. J Pediatr 2004;144:43-46.
[10] Sundaram S S, Bove K E, Lovell M A, et al. Mechanisms of disease: Inborn errors of bile acid synthesis. Nat Clin Pract Gastroenterol Hepatol 2008;5:456-468.
[11] McKiernan P J. The infant with prolonged jaundice: investigation and management. Current Paediatrics 2001;11:83-89.
[12] Chen H L, Wu S H, Hsu S H, et al. Jaundice revisited: recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. J Biomed Sci 2018;25:75.
[13] Feldman A G & Sokol R J. Recent developments in diagnostics and treatment of neonatal cholestasis. Semin Pediatr Surg 2020;29:150945.
[14] Chen J Y, Wu J F, Kimura A, et al. AKR1D1 and CYP7B1 mutations in patients with inborn errors of bile acid metabolism: Possibly underdiagnosed diseases. Pediatr Neonatol 2020;61:75-83.
[15] Mizuochi T, Takei H, Nittono H, et al. Inborn errors of bile acid metabolism in Japan. Pediatr Int 2023;65:e15490.
[16] Schreiber R A, Harpavat S, Hulscher J B F, et al. Biliary Atresia in 2021: Epidemiology, Screening and Public Policy. J Clin Med 2022;11.
[17] Lin Y C, Chang M H, Liao S F, et al. Decreasing rate of biliary atresia in Taiwan: a survey, 2004-2009. Pediatrics 2011;128:e530-536.
[18] Wada H, Muraji T, Yokoi A, et al. Insignificant seasonal and geographical variation in incidence of biliary atresia in Japan: a regional survey of over 20 years. J Pediatr Surg 2007;42:2090-2092.
[19] Lee K J, Kim J W, Moon J S, et al. Epidemiology of Biliary Atresia in Korea. J Korean Med Sci 2017;32:656-660.
[20] Chardot C. Biliary atresia. Orphanet J Rare Dis 2006;1:28.
[21] Hopkins P C, Yazigi N & Nylund C M. Incidence of Biliary Atresia and Timing of Hepatoportoenterostomy in the United States. J Pediatr 2017;187:253-257.
[22] Shim W K, Kasai M & Spence M A. Racial influence on the incidence of biliary atresia. Prog Pediatr Surg 1974;6:53-62.
[23] Chardot C, Carton M, Spire-Bendelac N, et al. Epidemiology of biliary atresia in France: a national study 1986-96. J Hepatol 1999;31:1006-1013.
[24] Livesey E, Cortina Borja M, Sharif K, et al. Epidemiology of biliary atresia in England and Wales (1999-2006). Arch Dis Child Fetal Neonatal Ed 2009;94:F451-455.
[25] Wildhaber B E, Majno P, Mayr J, et al. Biliary atresia: Swiss national study, 1994-2004. J Pediatr Gastroenterol Nutr 2008;46:299-307.
[26] Danks D M, Campbell P E, Jack I, et al. Studies of the aetiology of neonatal hepatitis and biliary atresia. Arch Dis Child 1977;52:360-367.
[27] Evans H M, Asher M I, Cameron-Christie S, et al. Ethnic Disparity in the Incidence and Outcome of Biliary Atresia in New Zealand. J Pediatr Gastroenterol Nutr 2018;66:218-221.
[28] Yoon P W, Bresee J S, Olney R S, et al. Epidemiology of biliary atresia: a population-based study. Pediatrics 1997;99:376-382.
[29] Fischler B, Haglund B & Hjern A. A population-based study on the incidence and possible pre- and perinatal etiologic risk factors of biliary atresia. J Pediatr 2002;141:217-222.
[30] Smith B M, Laberge J M, Schreiber R, et al. Familial biliary atresia in three siblings including twins. J Pediatr Surg 1991;26:1331-1333.
[31] Xu X & Zhan J. Biliary atresia in twins: a systematic review and meta-analysis. Pediatr Surg Int 2020;36:953-958.
[32] Durkin N, Deheragoda M & Davenport M. Prematurity and biliary atresia: a 30-year observational study. Pediatr Surg Int 2017;33:1355-1361.
[33] Strickland A D & Shannon K. Studies in the etiology of extrahepatic biliary atresia: time-space clustering. J Pediatr 1982;100:749-753.
[34] Arshad A, Sutcliffe A, Jain V, et al. Reduced Presentation of Biliary Atresia During the COVID-19 Lockdown: A Population Based Observational Study. J Pediatr Gastroenterol Nutr 2023;76:424-427.
[35] Nomden M, Alizai N K, Betalli P, et al. Incidence of Isolated Biliary Atresia during the COVID Lockdown in Europe: Results from a Collaborative Project by RARE-Liver. J Clin Med 2023;12.
[36] Caton A R, Druschel C M & McNutt L A. The epidemiology of extrahepatic biliary atresia in New York State, 1983-98. Paediatr Perinat Epidemiol 2004;18:97-105.
[37] Tiao M M, Tsai S S, Kuo H W, et al. Epidemiological features of biliary atresia in Taiwan, a national study 1996-2003. J Gastroenterol Hepatol 2008;23:62-66.
[38] Riepenhoff-Talty M, Gouvea V, Evans M J, et al. Detection of group C rotavirus in infants with extrahepatic biliary atresia. J Infect Dis 1996;174:8-15.
[39] Averbukh L D & Wu G Y. Evidence for Viral Induction of Biliary Atresia: A Review. J Clin Transl Hepatol 2018;6:410-419.
[40] Zani A, Quaglia A, Hadzic N, et al. Cytomegalovirus-associated biliary atresia: An aetiological and prognostic subgroup. J Pediatr Surg 2015;50:1739-1745.
[41] Chang M H, Huang H H, Huang E S, et al. Polymerase chain reaction to detect human cytomegalovirus in livers of infants with neonatal hepatitis. Gastroenterology 1992;103:1022-1025.
[42] Davit-Spraul A, Baussan C, Hermeziu B, et al. CFC1 gene involvement in biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr 2008;46:111-112.
[43] Berauer J P, Mezina A I, Okou D T, et al. Identification of Polycystic Kidney Disease 1 Like 1 Gene Variants in Children With Biliary Atresia Splenic Malformation Syndrome. Hepatology 2019;70:899-910.
[44] Tsai E A, Grochowski C M, Falsey A M, et al. Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia. Hum Mutat 2015;36:631-637.
[45] Ware S M, Peng J, Zhu L, et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 2004;74:93-105.
[46] Kotalova R, Dusatkova P, Cinek O, et al. Hepatic phenotypes of HNF1B gene mutations: a case of neonatal cholestasis requiring portoenterostomy and literature review. World J Gastroenterol 2015;21:2550-2557.
[47] Garcia-Barcelo M M, Yeung M Y, Miao X P, et al. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet 2010;19:2917-2925.
[48] Cheng G, Tang C S, Wong E H, et al. Common genetic variants regulating ADD3 gene expression alter biliary atresia risk. J Hepatol 2013;59:1285-1291.
[49] Tsai E A, Grochowski C M, Loomes K M, et al. Replication of a GWAS signal in a Caucasian population implicates ADD3 in susceptibility to biliary atresia. Hum Genet 2014;133:235-243.
[50] Chen Y, Gilbert M A, Grochowski C M, et al. A genome-wide association study identifies a susceptibility locus for biliary atresia on 2p16.1 within the gene EFEMP1. PLoS Genet 2018;14:e1007532.
[51] Ningappa M, So J, Glessner J, et al. The Role of ARF6 in Biliary Atresia. PLoS One 2015;10:e0138381.
[52] Glessner J T, Ningappa M B, Ngo K A, et al. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J Hepatol 2023;79:1385-1395.
[53] Krupczak-Hollis K, Wang X, Kalinichenko V V, et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 2004;276:74-88.
[54] Shimadera S, Iwai N, Deguchi E, et al. The inv mouse as an experimental model of biliary atresia. J Pediatr Surg 2007;42:1555-1560.
[55] Clotman F, Lannoy V J, Reber M, et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002;129:1819-1828.
[56] Matthews R P, Eauclaire S F, Mugnier M, et al. DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia. Hepatology 2011;53:905-914.
[57] Girard M & Panasyuk G. Genetics in biliary atresia. Curr Opin Gastroenterol 2019;35:73-81.
[58] Harper P, Plant J W & Unger D B. Congenital biliary atresia and jaundice in lambs and calves. Aust Vet J 1990;67:18-22.
[59] Lorent K, Gong W, Koo K A, et al. Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 2015;7:286ra267.
[60] Fried S, Gilboa D, Har-Zahav A, et al. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020;10:7599.
[61] Lu B R, Brindley S M, Tucker R M, et al. alpha-enolase autoantibodies cross-reactive to viral proteins in a mouse model of biliary atresia. Gastroenterology 2010;139:1753-1761.
[62] Mack C L. What Causes Biliary Atresia? Unique Aspects of the Neonatal Immune System Provide Clues to Disease Pathogenesis. Cell Mol Gastroenterol Hepatol 2015;1:267-274.
[63] Mack C L. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis 2007;27:233-242.
[64] Tucker R M, Hendrickson R J, Mukaida N, et al. Progressive biliary destruction is independent of a functional tumor necrosis factor-alpha pathway in a rhesus rotavirus-induced murine model of biliary atresia. Viral Immunol 2007;20:34-43.
[65] Mack C L, Tucker R M, Sokol R J, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res 2004;56:79-87.
[66] Lages C S, Simmons J, Maddox A, et al. The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 2017;65:174-188.
[67] Association T P. Management of Prolong Jaundice in Neonate, <http://tsn-neonatology.com/health/content.php?type=&id=11&pageNo=1&continue=Y> (2018).
[68] Fawaz R, Baumann U, Ekong U, et al. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2017;64:154-168.
[69] Mittal V, Saxena A K, Sodhi K S, et al. Role of abdominal sonography in the preoperative diagnosis of extrahepatic biliary atresia in infants younger than 90 days. AJR Am J Roentgenol 2011;196:W438-445.
[70] Lee H J, Lee S M, Park W H, et al. Objective criteria of triangular cord sign in biliary atresia on US scans. Radiology 2003;229:395-400.
[71] Kanegawa K, Akasaka Y, Kitamura E, et al. Sonographic diagnosis of biliary atresia in pediatric patients using the "triangular cord" sign versus gallbladder length and contraction. AJR Am J Roentgenol 2003;181:1387-1390.
[72] Kim J, Yoon H, Lee M J, et al. Clinical utility of mono-exponential model diffusion weighted imaging using two b-values compared to the bi- or stretched exponential model for the diagnosis of biliary atresia in infant liver MRI. PLoS One 2019;14:e0226627.
[73] Chen W C, Lo H Y, Tsai Y S, et al. The accuracy of magnetic resonance cholangiopancreatography in the diagnosis of biliary atresia in preterm infants with cholestasis. Pediatr Neonatol 2023;64:12-18.
[74] Norton K I, Glass R B, Kogan D, et al. MR cholangiography in the evaluation of neonatal cholestasis: initial results. Radiology 2002;222:687-691.
[75] Jaw T S, Kuo Y T, Liu G C, et al. MR cholangiography in the evaluation of neonatal cholestasis. Radiology 1999;212:249-256.
[76] Kim Y H, Kim M J, Shin H J, et al. MRI-based decision tree model for diagnosis of biliary atresia. Eur Radiol 2018;28:3422-3431.
[77] Napolitano M, Franchi-Abella S, Damasio M B, et al. Practical approach to imaging diagnosis of biliary atresia, Part 1: prenatal ultrasound and magnetic resonance imaging, and postnatal ultrasound. Pediatr Radiol 2021;51:314-331.
[78] Napolitano M, Franchi-Abella S, Damasio B M, et al. Practical approach for the diagnosis of biliary atresia on imaging, part 2: magnetic resonance cholecystopancreatography, hepatobiliary scintigraphy, percutaneous cholecysto-cholangiography, endoscopic retrograde cholangiopancreatography, percutaneous liver biopsy, risk scores and decisional flowchart. Pediatr Radiol 2021;51:1545-1554.
[79] Wu J F, Lee C S, Lin W H, et al. Transient elastography is useful in diagnosing biliary atresia and predicting prognosis after hepatoportoenterostomy. Hepatology 2018;68:616-624.
[80] Hays D M, Woolley M M, Snyder W H, Jr., et al. Diagnosis of biliary atresia: relative accuracy of percutaneous liver biopsy, open liver biopsy, and operative cholangiography. J Pediatr 1967;71:598-607.
[81] Park W H, Choi S O, Lee H J, et al. A new diagnostic approach to biliary atresia with emphasis on the ultrasonographic triangular cord sign: comparison of ultrasonography, hepatobiliary scintigraphy, and liver needle biopsy in the evaluation of infantile cholestasis. J Pediatr Surg 1997;32:1555-1559.
[82] Lee J Y, Sullivan K, El Demellawy D, et al. The value of preoperative liver biopsy in the diagnosis of extrahepatic biliary atresia: A systematic review and meta-analysis. J Pediatr Surg 2016;51:753-761.
[83] Kasai M. A proposal of new classification of biliary atresia. J Jpn Soc Pediatr Surg 1976;12:327-331.
[84] Sundaram S S, Mack C L, Feldman A G, et al. Biliary atresia: Indications and timing of liver transplantation and optimization of pretransplant care. Liver Transpl 2017;23:96-109.
[85] Yanchar N L, Shapiro A M & Sigalet D L. Is early response to portoenterostomy predictive of long-term outcome for patients with biliary atresia? J Pediatr Surg 1996;31:774-778.
[86] Davenport M, Makin E, Ong E G, et al. The Outcome of A Centralization Program in Biliary atresia: 20 years and beyond. Ann Surg 2024.
[87] Shneider B L, Brown M B, Haber B, et al. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J Pediatr 2006;148:467-474.
[88] Kleinman R E, Goulet O J, Mieli-Vergani G, et al. in Walker's Pediatric Gastrointestinal Disease: Physiology, Diagnosis, Management (ed L.H. Mehta)Ch. 29, People's Medical Publishing House 2018;1222-1223.
[89] Kelly D. in Zakim and Boyer's Hepatology (Sixth Edition) (eds Thomas D. Boyer, Michael P. Manns, & Arun J. Sanyal) W.B. Saunders 2012;1223-1256.
[90] Hung P Y, Chen C C, Chen W J, et al. Long-term prognosis of patients with biliary atresia: a 25 year summary. J Pediatr Gastroenterol Nutr 2006;42:190-195.
[91] Schreiber R A, Barker C C, Roberts E A, et al. Biliary atresia: the Canadian experience. J Pediatr 2007;151:659-665, 665 e651.
[92] Serinet M O, Wildhaber B E, Broue P, et al. Impact of age at Kasai operation on its results in late childhood and adolescence: a rational basis for biliary atresia screening. Pediatrics 2009;123:1280-1286.
[93] Nio M, Sasaki H, Wada M, et al. Impact of age at Kasai operation on short- and long-term outcomes of type III biliary atresia at a single institution. J Pediatr Surg 2010;45:2361-2363.
[94] Fanna M, Masson G, Capito C, et al. Management of Biliary Atresia in France 1986 to 2015: Long-term Results. J Pediatr Gastroenterol Nutr 2019;69:416-424.
[95] Andermann A, Blancquaert I, Beauchamp S, et al. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ 2008;86:317-319.
[96] Lien T H, Chang M H, Wu J F, et al. Effects of the infant stool color card screening program on 5-year outcome of biliary atresia in Taiwan. Hepatology 2011;53:202-208.
[97] Gu Y H, Yokoyama K, Mizuta K, et al. Stool color card screening for early detection of biliary atresia and long-term native liver survival: a 19-year cohort study in Japan. J Pediatr 2015;166:897-902 e891.
[98] Hsiao C H, Chang M H, Chen H L, et al. Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology 2008;47:1233-1240.
[99] Harpavat S, Garcia-Prats J A, Anaya C, et al. Diagnostic Yield of Newborn Screening for Biliary Atresia Using Direct or Conjugated Bilirubin Measurements. JAMA 2020;323:1141-1150.
[100] Harpavat S, Finegold M J & Karpen S J. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 2011;128:e1428-1433.
[101] Rabbani T, Guthery S L, Himes R, et al. Newborn Screening for Biliary Atresia: a Review of Current Methods. Curr Gastroenterol Rep 2021;23:28.
[102] Sokol R J, Shepherd R W, Superina R, et al. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology 2007;46:566-581.
[103] Lertudomphonwanit C, Mourya R, Fei L, et al. Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci Transl Med 2017;9.
[104] Wu J F, Jeng Y M, Chen H L, et al. Quantification of Serum Matrix Metallopeptide 7 Levels May Assist in the Diagnosis and Predict the Outcome for Patients with Biliary Atresia. J Pediatr 2019;208:30-37 e31.
[105] Jiang J, Wang J, Shen Z, et al. Serum MMP-7 in the Diagnosis of Biliary Atresia. Pediatrics 2019;144.
[106] Matsui A, Fujimoto T, Takazawa Y, et al. Serum bile acid levels in patients with extrahepatic biliary atresia and neonatal hepatitis during the first 10 days of life. J Pediatr 1985;107:255-257.
[107] Mills K A, Mushtaq I, Johnson A W, et al. A method for the quantitation of conjugated bile acids in dried blood spots using electrospray ionization-mass spectrometry. Pediatr Res 1998;43:361-368.
[108] Mushtaq I, Logan S, Morris M, et al. Screening of newborn infants for cholestatic hepatobiliary disease with tandem mass spectrometry. BMJ 1999;319:471-477.
[109] Ikegawa S, Murai T, Matsui A, et al. Radioimmunoassay of conjugated 1 beta-hydroxycholic acid in dried blood spots for diagnosis of congenital biliary atresia. Biol Pharm Bull 1994;17:5-8.
[110] de Vos W M, Tilg H, Van Hul M, et al. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020-1032.
[111] Jain V, Alexander E C, Burford C, et al. Gut Microbiome: A Potential Modifiable Risk Factor in Biliary Atresia. J Pediatr Gastroenterol Nutr 2021;72:184-193.
[112] Lien T H, Bu L N, Wu J F, et al. Use of Lactobacillus casei rhamnosus to Prevent Cholangitis in Biliary Atresia After Kasai Operation. J Pediatr Gastroenterol Nutr 2015;60:654-658.
[113] Orlowska E, Czubkowski P, Wolochowska K, et al. Assessment of Lactobacillus casei rhamnosus (LGG) therapy in children with biliary atresia - Randomized placebo controlled trial. Clin Res Hepatol Gastroenterol 2021;45:101753.
[114] Jee J J, Yang L, Shivakumar P, et al. Maternal regulation of biliary disease in neonates via gut microbial metabolites. Nat Commun 2022;13:18.
[115] van Wessel D, Nomden M, Bruggink J, et al. Gut Microbiota Composition of Biliary Atresia Patients Before Kasai Portoenterostomy Associates With Long-term Outcome. J Pediatr Gastroenterol Nutr 2021;73:485-490.
[116] Song W, Sun L Y, Zhu Z J, et al. Association of Gut Microbiota and Metabolites With Disease Progression in Children With Biliary Atresia. Front Immunol 2021;12:698900.
[117] Lee C-S, Lin C-R, Chua H-H, et al. Gut Bifidobacterium longum is Associated with Better Native Liver Survival in Patients with Biliary Atresia. JHEP Reports 2024;101090.
[118] QIAGEN. QIAamp PowerFecal Pro DNA Kit Handbook. 24 (2020). <https://www.qiagen.com/us/resources/download.aspx?id=8896817a-253f-4952-b845-0aab796813ce&lang=en>.
[119] Illumina. 16s metagenomic sequencing library preparation. (2013). <https://www.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf>.
[120] Bolyen E, Rideout J R, Dillon M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852-857.
[121] Callahan B J, McMurdie P J, Rosen M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-583.
[122] Yoon S H, Ha S M, Kwon S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613-1617.
[123] DeSantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-5072.
[124] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590-596.
[125] Hoffman C, Siddiqui N Y, Fields I, et al. Species-Level Resolution of Female Bladder Microbiota from 16S rRNA Amplicon Sequencing. mSystems 2021;6:e0051821.
[126] Bokulich N A, Kaehler B D, Rideout J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome 2018;6:90.
[127] Rohart F, Gautier B, Singh A, et al. mixOmics: An R package for 'omics feature selection and multiple data integration. PLoS Comput Biol 2017;13:e1005752.
[128] Chong J, Liu P, Zhou G, et al. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 2020;15:799-821.
[129] Ssekagiri A T, Sloan, W., & Ijaz, U. Z. microbiomeSeq: an R package for analysis of microbial communities in an environmental context. In ISCB Africa ASBCB Conference 2017;Kumasi, Ghana. https://github.com/umerijaz/microbiomeSeq.
[130] Torondel B, Ensink J H, Gundogdu O, et al. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb Biotechnol 2016;9:209-223.
[131] Bolger A M, Lohse M & Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114-2120.
[132] Blanco-Miguez A, Beghini F, Cumbo F, et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023;41:1633-1644.
[133] Beghini F, McIver L J, Blanco-Miguez A, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 2021;10.
[134] Negida A, Fahim N K & Negida Y. Sample Size Calculation Guide - Part 4: How to Calculate the Sample Size for a Diagnostic Test Accuracy Study based on Sensitivity, Specificity, and the Area Under the ROC Curve. Adv J Emerg Med 2019;3:e33.
[135] Mysore K R, Shneider B L & Harpavat S. Biliary Atresia as a Disease Starting In Utero: Implications for Treatment, Diagnosis, and Pathogenesis. J Pediatr Gastroenterol Nutr 2019;69:396-403.
[136] Sontag M K, Yusuf C, Grosse S D, et al. Infants with Congenital Disorders Identified Through Newborn Screening - United States, 2015-2017. MMWR Morb Mortal Wkly Rep 2020;69:1265-1268.
[137] Loeber J G, Platis D, Zetterstrom R H, et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int J Neonatal Screen 2021;7.
[138] Therrell B L, Padilla C D, Loeber J G, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol 2015;39:171-187.
[139] Padilla C D, Therrell B L, Jr. & Working Group of the Asia Pacific Society for Human Genetics on Consolidating Newborn Screening Efforts in the Asia Pacific R. Consolidating newborn screening efforts in the Asia Pacific region : Networking and shared education. J Community Genet 2012;3:35-45.
[140] Lim M D. Dried Blood Spots for Global Health Diagnostics and Surveillance: Opportunities and Challenges. Am J Trop Med Hyg 2018;99:256-265.
[141] Bjorkesten J, Enroth S, Shen Q, et al. Stability of Proteins in Dried Blood Spot Biobanks. Mol Cell Proteomics 2017;16:1286-1296.
[142] Pandurangi S, Mourya R, Nalluri S, et al. Diagnostic accuracy of serum matrix metalloproteinase-7 as a biomarker of biliary atresia in a large North American cohort. Hepatology 2024;80:152-162.
[143] Behairy O G, Elsadek A E, Behiry E G, et al. Clinical Value of Serum Interleukin-33 Biomarker in Infants With Neonatal Cholestasis. J Pediatr Gastroenterol Nutr 2020;70:344-349.
[144] Rendon-Macias M E, Villasis-Keever M A, Castaneda-Mucino G, et al. Improvement in accuracy of gamma-glutamyl transferase for differential diagnosis of biliary atresia by correlation with age. Turk J Pediatr 2008;50:253-259.
[145] Chen X, Dong R, Shen Z, et al. Value of Gamma-Glutamyl Transpeptidase for Diagnosis of Biliary Atresia by Correlation With Age. J Pediatr Gastroenterol Nutr 2016;63:370-373.
[146] Dong R, Jiang J, Zhang S, et al. Development and Validation of Novel Diagnostic Models for Biliary Atresia in a Large Cohort of Chinese Patients. EBioMedicine 2018;34:223-230.
[147] Tang K S, Huang L T, Huang Y H, et al. Gamma-glutamyl transferase in the diagnosis of biliary atresia. Acta Paediatr Taiwan 2007;48:196-200.
[148] Akira Matsui N S, Yoichi Arakawa, Takashi Ishikawa, Takayuki Momoya, Yasuo Kasano, Masayoshi Yanagisawa, Noriko Tsukagoshi, Tadashi Kawai. Neonatal mass screening for biliary atresia: A pilot study in Tochigi Prefecture, Japan. Screening 1993;2:201-209.
[149] Yang L, Zhou Y, Xu P P, et al. Diagnostic Accuracy of Serum Matrix Metalloproteinase-7 for Biliary Atresia. Hepatology 2018;68:2069-2077.
[150] Hogeling S M, Cox M T, Bradshaw R M, et al. Quantification of proteins in whole blood, plasma and DBS, with element-labelled antibody detection by ICP-MS. Anal Biochem 2019;575:10-16.
[151] Sultana R, Bhuiyan T R, Sathi A S, et al. Developing and validating a modified enzyme linked immunosorbent assay method for detecting HEV IgG antibody from dried blood spot (DBS) samples in endemic settings. Microbes Infect 2022;24:104890.
[152] Leeflang M M, Bossuyt P M & Irwig L. Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis. J Clin Epidemiol 2009;62:5-12.
[153] Gottesman L E, Del Vecchio M T & Aronoff S C. Etiologies of conjugated hyperbilirubinemia in infancy: a systematic review of 1692 subjects. BMC Pediatr 2015;15:192.
[154] Jimenez-Rivera C, Jolin-Dahel K S, Fortinsky K J, et al. International incidence and outcomes of biliary atresia. J Pediatr Gastroenterol Nutr 2013;56:344-354.
[155] Kwon C & Farrell P M. The magnitude and challenge of false-positive newborn screening test results. Arch Pediatr Adolesc Med 2000;154:714-718.
[156] Tessier M E M, Cavallo L, Yeh J, et al. The Fecal Microbiome in Infants With Biliary Atresia Associates With Bile Flow After Kasai Portoenterostomy. J Pediatr Gastroenterol Nutr 2020;70:789-795.
[157] Wang J, Qian T, Jiang J, et al. Gut microbial profile in biliary atresia: a case-control study. J Gastroenterol Hepatol 2020;35:334-342.
[158] Kobayashi A, Kawai S, Ohbe Y, et al. Fecal flora of infants with biliary atresia: effects of the absence of bile on fecal flora. Am J Clin Nutr 1988;48:1211-1213.
[159] Shah N P. in Encyclopedia of Dairy Sciences (Second Edition) (ed John W. Fuquay) Academic Press 2011;381-387.
[160] Derrien M, Turroni F, Ventura M, et al. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol 2022;30:940-947.
[161] Celikkaya M E, Akcora B, Hakverdi S, et al. Effects of Probiotic Use on Bacterial Translocation in Created Rat Models with Biliary Obstructions. Eurasian J Med 2019;51:106-111.
[162] Li Y, Guo C, Zhou Q, et al. Dynamic changes of gut microbiota and hepatic functions are different among biliary atresia patients after Kasai portoenterostomy. Clin Transl Med 2022;12:e728.
[163] Wang K, Lv L, Yan R, et al. Bifidobacterium longum R0175 Protects Rats against d-Galactosamine-Induced Acute Liver Failure. mSphere 2020;5.
[164] Mills S, Yang B, Smith G J, et al. Efficacy of Bifidobacterium longum alone or in multi-strain probiotic formulations during early life and beyond. Gut Microbes 2023;15:2186098.
[165] Chen J, Chen X & Ho C L. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2021;9:770248.
[166] De Filippis F, Paparo L, Nocerino R, et al. Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance. Nat Commun 2021;12:5958.
[167] Zheng L, Wu Y, Gong Z, et al. The composition of the gut microbiota is altered in biliary atresia with cholangitis. Front Surg 2022;9:990101.
[168] Vatanen T, Kostic A D, d'Hennezel E, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell 2016;165:1551.
[169] Roger L C, Costabile A, Holland D T, et al. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology (Reading) 2010;156:3329-3341.
[170] Kulkarni S, Mercado V, Rios M, et al. Breast milk is better than formula milk in preventing parenteral nutrition-associated liver disease in infants receiving prolonged parenteral nutrition. J Pediatr Gastroenterol Nutr 2013;57:383-388.
[171] Laursen M F, Sakanaka M, von Burg N, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol 2021;6:1367-1382.
[172] Wu Y, Min J, Ge C, et al. Interleukin 22 in Liver Injury, Inflammation and Cancer. Int J Biol Sci 2020;16:2405-2413.
[173] Henrick B M, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021;184:3884-3898 e3811.
[174] Shimoda M. in Advances in Clinical Chemistry Vol. 88 (ed Gregory S. Makowski) Elsevier 2019;35-66.
[175] Laronha H & Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020;9.
[176] Cui N, Hu M & Khalil R A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci 2017;147:1-73.
[177] Parks W C, Sudbeck B D, Doyle G R, et al. in Matrix Metalloproteinases (eds William C. Parks & Robert P. Mecham) Academic Press 1998;263-297.
[178] Shirafuji Y, Tanabe H, Satchell D P, et al. Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7. J Biol Chem 2003;278:7910-7919.
[179] Ayabe T, Satchell D P, Pesendorfer P, et al. Activation of Paneth cell alpha-defensins in mouse small intestine. J Biol Chem 2002;277:5219-5228.
[180] Wilson C L, Schmidt A P, Pirila E, et al. Differential Processing of alpha- and beta-Defensin Precursors by Matrix Metalloproteinase-7 (MMP-7). J Biol Chem 2009;284:8301-8311.
[181] Ali M F, Dasari H, Van Keulen V P, et al. Microbial Antigens Stimulate Metalloprotease-7 Secretion in Human B-Lymphocytes Using mTOR-Dependent and Independent Pathways. Sci Rep 2017;7:3869.
[182] Wilson C L, Ouellette A J, Satchell D P, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999;286:113-117.
[183] Vandenbroucke R E, Vanlaere I, Van Hauwermeiren F, et al. Pro-inflammatory effects of matrix metalloproteinase 7 in acute inflammation. Mucosal Immunol 2014;7:579-588.
[184] Xiao Y, Lian H, Zhong X S, et al. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein Claudin-7. Front Immunol 2022;13:1020902.
[185] Fu X, Kassim S Y, Parks W C, et al. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 2003;278:28403-28409.
[186] Dunsmore S E, Saarialho-Kere U K, Roby J D, et al. Matrilysin expression and function in airway epithelium. J Clin Invest 1998;102:1321-1331.
[187] Gharib S A, Altemeier W A, Van Winkle L S, et al. Matrix metalloproteinase-7 coordinates airway epithelial injury response and differentiation of ciliated cells. Am J Respir Cell Mol Biol 2013;48:390-396.
[188] Nagpal R, Kurakawa T, Tsuji H, et al. Evolution of gut Bifidobacterium population in healthy Japanese infants over the first three years of life: a quantitative assessment. Sci Rep 2017;7:10097.
[189] Lee H L, Shen H, Hwang I Y, et al. Targeted Approaches for In Situ Gut Microbiome Manipulation. Genes (Basel) 2018;9.
[190] Recharla N, Geesala R & Shi X Z. Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients 2023;15.
[191] Fakharian F, Thirugnanam S, Welsh D A, et al. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023;11.
[192] Meng D, Sommella E, Salviati E, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 2020;88:209-217.
[193] Chichlowski M, Shah N, Wampler J L, et al. Bifidobacterium longum Subspecies infantis (B. infantis) in Pediatric Nutrition: Current State of Knowledge. Nutrients 2020;12.
[194] Bergmann K R, Liu S X, Tian R, et al. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 2013;182:1595-1606.
[195] Kim W G, Kim H I, Kwon E K, et al. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-kappaB activation through restoration of the disturbed gut microbiota. Food Funct 2018;9:4255-4265.
[196] Underwood M A, German J B, Lebrilla C B, et al. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015;77:229-235.
[197] Chen P, Zhong Z, Jiang H, et al. Th17-associated cytokines multiplex testing indicates the potential of macrophage inflammatory protein-3 alpha in the diagnosis of biliary atresia. Cytokine 2019;116:21-26.
[198] Powell J E, Keffler S, Kelly D A, et al. Population screening for neonatal liver disease: potential for a community-based programme. J Med Screen 2003;10:112-116.
[199] Harpavat S, Garcia-Prats J A & Shneider B L. Newborn Bilirubin Screening for Biliary Atresia. N Engl J Med 2016;375:605-606.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94912-
dc.description.abstract膽道閉鎖是嬰兒早期發生的進行性膽道發炎及纖維化,造成肝外膽道阻塞。因膽汁無法順利從肝臟排出到腸道,造成肝內細胞傷害。膽道閉鎖有可能在產前或周產期就已經發生。及時的診斷讓膽道閉鎖嬰兒能夠儘早接受葛西氏肝門空腸吻合術,重建膽汁流通,改善嬰兒長期預後。研究顯示膽酸、蛋白質、細胞激素和miRNA等生物標記物在疾病診斷、治療、與致病機轉中有不同的角色。此研究旨在探索膽道閉鎖疾病早期生物標記物,以發現具有早期診斷及預測預後的指標。
本研究一個重要的里程碑為首次在診斷為膽道閉鎖的新生兒中發現了在出生後三天內基質金屬蛋白酶7(MMP-7)升高的情況。MMP-7可作用於廣泛的基質並透過多重路徑來調節發炎反應、表皮細胞通透性及表皮細胞再生。本研究的主要研究結果展示了血片MMP-7水平作為膽道閉鎖篩檢生物標記的證據。與非膽道閉鎖患者相比, MMP-7數值在膽道閉鎖患者中顯著升高,並且不受黃疸照光治療、血片存儲時間及早產狀況等因素影響。重要的是, MMP-7在區分膽道閉鎖和其他先天性或周產期疾病以及健康對照組方面表現出很高的敏感性和特異性,最佳曲線下面積為93.7%。這些發現突顯了MMP-7於膽道閉鎖疾病初期作為檢測工具的潛力,為臨床醫師提供了一種寶貴的方式,加速診斷並改善患者臨床結果與預後。
腸道微生物特徵可做為許多疾病的生物標記,為了解疾病之病理生理和進展提供了啟示。透過研究膽道閉鎖腸道中的微生物特徵有助於早期診斷、改善預後與治療反應。在此研究中,進一步使用16S rRNA次世代定序分析膽道閉鎖患者腸道菌叢,結果顯示健康對照組和膽道閉鎖患者的糞便微生物組成,在葛西氏肝門空腸吻合術前後均有顯著差異。長雙歧桿菌(B. longum)在膽道閉鎖患者中明顯減少,與葛西氏肝門空腸吻合術後γ-谷氨酰轉肽酶升高相關。在膽道閉鎖疾病早期檢測到B. longum的患者與未檢出患者比較,腸道中具B. longum之膽道閉鎖患者葛西氏肝門空腸吻合術後三個月膽紅素有較顯著的下降,且有較低的肝臟移植比例。此研究結果顯示,顯示B. longum在膽道閉鎖疾病初期的重要性,且與預後有高度相關性。使用散彈槍總體基因體定序技術進一步確認16S rRNA次世代定序分析之發現,進一步證實了B. longum在膽道閉鎖中的重要性。在膽道閉鎖患者中腸道B. longum的早期定植和其豐富度可作為治療膽道閉鎖可能之治療方向。
此研究強調了兩個關鍵生物標記MMP-7和B. longum在膽道閉鎖疾病早期階段的重要性。這兩個生物標記在過去中研究顯示對維持腸道屏障完整性和調節免疫功能扮演著重要的角色。MMP-7和B. longum對在診斷為膽道閉鎖的新生兒中,出生後三天內MMP-7升高突顯了其作為早期篩檢或診斷指標的重要性。此外,膽道閉鎖患者B. longum存在減少的情況進一步突顯了其作為預後生物標記的潛力。這些發現強調了這些生物標記在促進早期檢測和預後評估方面的關鍵作用。透過理解B. longum、MMP-7、腸道屏障完整性和免疫失衡之間的相互作用,可能有助於深入探索先天性膽道閉鎖的致病機轉。
zh_TW
dc.description.abstractBiliary atresia (BA) is characterized by bile duct obstruction, neonatal jaundice, and liver fibrosis, often manifesting prenatally or in early life with prenatal anomalies and early bilirubin elevation. Timely diagnosis of BA enables early Kasai portoenterostomy (KPE) intervention that improves patient outcomes. Current management of BA remain suboptimal due to late diagnosis, and progressive liver fibrosis after KPE. Recent research explores biomarkers, including bile acid, cytokines, and miRNA for diagnostic and therapeutic potential. This study aims to explore early-stage biomarkers for screening and prognosis prediction of BA.
The first part of the study marks a milestone as the first to identify elevated levels of MMP-7 within the first three days of life in newborns diagnosed with BA. MMP-7 has broad substrate specificity which underscores its involvement in modulating non-ECM molecules and signaling pathways crucial for inflammation, epithelial permeability, and epithelial regeneration. The main findings of the research reveal evidence supporting the use of dried blood spot (DBS) matrix metallopeptidase 7 (MMP-7) levels as a biomarker for BA in early life. DBS MMP-7 levels were significantly elevated in BA patients compared to non-BA patients, irrespective of factors such as phototherapy, storage duration of DBS, or preterm birth status. Importantly, DBS MMP-7 demonstrated high sensitivity and specificity in distinguishing BA from other congenital or perinatal disorders and healthy controls, with an area under the curve of 93.7%. These findings underscore the potential of DBS MMP-7 as a reliable tool for early BA detection, offering clinicians a valuable means to expedite diagnosis and optimize patient management strategies for improved clinical outcomes.
The microbiome signature holds immense promise as a biomarker for various diseases, shedding light on their pathophysiology and progression. Investigating the microbiome signature in BA may unveil novel biomarkers for early diagnosis, prognosis, and treatment response, ultimately enhancing clinical management and patient outcomes in this complex pediatric liver disease. In this study, the analysis of fecal microbial composition using 16S rRNA NGS revealed significant differences between healthy controls (HCs) and BA patients, both before and after Kasai portoenterostomy (KPE). Specifically, Bifidobacterium longum (B. longum) was notably diminished in infants with BA, correlating with elevated gamma-glutamyl transferase levels post-KPE. Patients exhibiting early detectable B. longum showed reduced bilirubin levels and a lower rate of liver transplantation, emphasizing its potential as a prognostic indicator. Confirmation of these findings was obtained through shotgun metagenomic sequencing, further highlighting the significance of B. longum in BA management. Early colonization and augmentation of B. longum levels in the gut may serve as a potential therapeutic avenue to enhance the prognosis of individuals affected by BA.
In conclusion, this study underscores the importance of two key biomarkers, MMP-7 and B. longum, in the early stages of BA. Both was known to contribute to maintaining gut barrier integrity and regulating immune function. Elevated levels of MMP-7 within the first three days of life in newborns diagnosed with BA highlight its significance as an early diagnostic indicator. Furthermore, the diminished presence of B. longum in BA patients affirm its potential as a prognostic marker. These findings emphasize the critical role of these biomarkers in facilitating early detection and prognostic assessment, thereby enhancing clinical management and patient outcomes in BA. Understanding the interplay between B. longum, MMP-7, gut barrier integrity, and immune imbalance might provide insights into pathogenesis of BA.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:26:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:26:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCommittee Approval Form i
Acknowledgements iii
中文摘要 v
Abstract vii
Table of Contents x
List of Figures xii
List of Tables xiii
List of Acronyms xiv
Chapter 1. Introduction 1
1.1. Clinical Features and Epidemiology of Biliary Atresia 2
1.2. The Pathogenesis of Biliary Atresia 5
1.3. Diagnosis, Managements and Long-term Survival of Biliary Atresia 7
1.4. Screening Method for Biliary Atresia 10
1.5. Advancements in Biomarkers Associated with Biliary Atresia 13
1.6. The Potential of the Microbiome as Biomarkers for Biliary Atresia 14
1.7. Hypotheses and Aims 15
Chapter 2. Methods and Materials 17
2.1. Recruitment of Patients for Biomarker Exploration Using Dried Blood Spots 18
2.2. Quantification of Biomarkers in Stored Dried Blood Spots 19
2.3. Stool Specimen Collection for Microbial Biomarkers Investigation 20
2.4. Stool DNA Extraction and 16S rRNA Sequencing 21
2.5. Analyzing 16S rRNA Bioinformatic Data for Disease Markers 23
2.6. Shotgun Metagenomic Sequencing for Microbiome Biomarker Discovery 25
2.7. Statistical analysis 26
Chapter 3. Results 27
3.1. Unveiling Disease Markers Through Newborn Screening Blood Spots 28
3.2. Matrix Metalloproteinase 7 Elevation at Early Stage of Biliary Atresia 29
3.3. Stability of Biomarkers on Dried Blood Spot 29
3.4. Performance of MMP-7 as a Marker for Predicting Biliary Atresia 30
3.5. Microbial Diversity in Infants with Biliary Atresia Compared to Controls 31
3.6. Exploring Microbiome Signatures in the Course of Biliary Atresia 32
3.7. Microbiome Variation in BA Patients with Differing Outcomes 34
3.8. Early Life Gut B. longum Correlates with Improve Outcomes 36
3.9. Validating Gut Dysbiosis: Shotgun Metagenomic Sequencing 37
Chapter 4. Discussion 38
4.1. Potential of MMP-7 as a Biomarker for Screening Biliary Atresia 39
4.2. Comparison of MMP-7 with Currently Proposed Biomarkers 40
4.3. Limitation of Dried Blood Spot MMP-7 as a Biomarker 42
4.4. Microbial Signature as Biliary Atresia Disease Markers 43
4.5. Roles of Bifidobacterium longum in Early Life of Patients with Biliary Atresia 44
4.6. The Interplay Between MMP-7 and Gut Dysbiosis 48
Chapter 5. Conclusions and Future Work 52
References 56
Published works 79
Appendix: Figures 81
Appendix: Tables 99
-
dc.language.isoen-
dc.title探索膽道閉鎖初期之疾病標記及腸道微生態失調zh_TW
dc.titleExploring Early Disease Markers and Gut Dysbiosis of Biliary Atresiaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor倪衍玄;陳慧玲zh_TW
dc.contributor.coadvisorYen-Hsuan Ni;Huey-Ling Chenen
dc.contributor.oralexamcommittee楊燿榮;簡穎秀;賴明瑋;陳祈玲zh_TW
dc.contributor.oralexamcommitteeYao-Jong Yang;Yin-Hsiu Chien;Ming-Wei Lai;Chi-Ling Chenen
dc.subject.keyword膽道閉鎖症,微生物群,腸道菌叢,膽汁淤積,益生菌,新生兒,黃疸,膽紅素,肝門空腸吻合術,篩檢,葛西氏,zh_TW
dc.subject.keywordbiliary atresia,microbiota,microbiome,cholestasis,probiotics,newborn,jaundice,bilirubin,portoenterostomy,screening,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202404137-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
6.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved