請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭年真 | zh_TW |
| dc.contributor.advisor | NIEN-CHEN KUO | en |
| dc.contributor.author | 詹乃竹 | zh_TW |
| dc.contributor.author | Nai-Chu Chan | en |
| dc.date.accessioned | 2024-08-21T16:26:12Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 內政部統計處(2023)。內政部統計通報-112年第16週。載於:https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDAwL3JlbGZpbGUvOTAwOS8yNzkwMjEvNzM1MTM2M2EtN2FhNC00ZTA3LTg1MmQtYWE2MDk4MjNkYjFiLnBkZg%3D%3D&n=MTEy56ysMTbpgLHlhafmlL%2FntbHoqIjpgJrloLFf5pWZ6IKy56iL5bqmLnBkZg%3D%3D(最後瀏覽日:2024.06.25)。
石崇良 (2021)。遠距醫療與智慧照護服務。載於:https://s.itho.me/ccms_slides/2021/11/12/46e4d6a6-baba-4f75-a821-9eec28bdff61.pdf(最後瀏覽日:2023.09.03)。 台大醫院(無日期)。中心介紹。台大遠距照護中心。載於: https://www.ntuh.gov.tw/telehealth/Fpage.action?muid=1&fid=1530(擷取日期:2024/7/30) 法務部(2018)。通訊診察治療辦法。全國法規資料庫。載於:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0020197 (最後瀏覽日:2023.09.03)。 法務部(2022)。醫師法沿革。全國法規資料庫。載於:https://law.moj.gov.tw/LawClass/LawHistory.aspx?pcode=L0020001(最後瀏覽日:2023.09.03)。 林妍溱(2023)。Amazon Clinic遠距醫療服務推向全美。iThome。載於:https://www.ithome.com.tw/news/158067 馬偕紀念醫院(無日期)。遠距醫療-遠距視訊門診。馬偕紀念醫院官方網站。載於:https://www.mmh.org.tw/departmain.php?id=88(擷取日期:2024/7/30) 郭年真、賴飛羆、李鎮宜、陳宛琪、俞志欣、古乙岑、歐陽良孟、張婷(2017)。智慧醫療關鍵議題與對策之研究(NDC105006-1)。國家發展委員會。 許桂芬(2022)。ICT大廠推動醫療照護產業變革。財團法人資訊工業策進會。載於:https://www.iii.org.tw/Focus/FocusDtl.aspx?fm_sqno=12&f_sqno=k7hNTLd3QMFnZN0yt4XRUQ__# 國家發展委員會(2024)。主要年齡別人口數。人口推估查詢系統。載於:https://popproj.ndc.gov.tw/Custom_Detail_Statistics_Search.aspx?n=39&_Query=dac53971-0ef3-4fee-92f4-465538ca86bc&page=2&PageSize=10&ToggleType=(最後瀏覽日:2024.06.25)。 廖培珊、江振東、林定香、李隆安、翁宏明、左宗光,2011,〈葛特曼量表之拒答處理:簡易、多重與最鄰近插補法的比較〉,臺灣社會學刊,47:143-178. 劉正山、莊文忠(2013)。項目無反應資料的多重插補分析。載於黃紀(主編)。台灣選舉與民主化調查(TEDS)方法論之回顧與前瞻(頁276-305)。五南圖書。 鄧桂芬(2022)。「疫情催出視訊診療,擁3大優點,為何國人抱怨頻傳?」。載於:https://www.commonhealth.com.tw/article/86363 (最後瀏覽日:2023.09.03)。 衛生福利部(2021)。因應國內疫情進入社區流行階段 保全醫療量能指揮中心宣布四大醫療應變策略。載於:https://www.mohw.gov.tw/cp-5016-60688-1.html (最後瀏覽日:2023.09.03)。 衛生福利部(2022)。防疫最前線「視訊診療」〜民眾宅在家,也能安心看 病。載於:https://www.mohw.gov.tw/cp-5266-67524-1.html (最後瀏覽日:2023.09.03)。 衛生福利部(2023)。「科技心溫暖情-遠距照護零距離、親情傳遞更貼心」-衛福部遠距照護生活圈全台佈點已達970處。載於https://www.mohw.gov.tw/cp-2647-20220-1.html (最後瀏覽日: 2023.09.03)。 蘇建豪、黃士勳、李浩銓、王郁青(2017). 改善老年糖尿病人照護品質與用藥配合度 [Quality of Diabetic Care and Medication Adherence Improvement in Elderly Diabetic Mellitus]. 臺灣臨床藥學雜誌, 25(4), 282-287. https://doi.org/10.6168/fjcp.2017.2504.02 Antonicelli, R., Testarmata, P., Spazzafumo, L., Gagliardi, C., Bilo, G., Valentini, M., Olivieri, F., & Parati, G. (2008). Impact of telemonitoring at home on the management of elderly patients with congestive heart failure. J Telemed Telecare, 14(6), 300-305. https://doi.org/10.1258/jtt.2008.071213 Arain, A.A., Hussain, Z., Rizvi, W.H. et al. Extending UTAUT2 toward acceptance of mobile learning in the context of higher education. Univ Access Inf Soc 18, 659–673 (2019). https://doi.org/10.1007/s10209-019-00685-8 Aronson, S. H. (1977). The Lancet on the telephone 1876-1975. Med Hist, 21(1), 69-87. https://doi.org/10.1017/s0025727300037182 Bellazzi, R., Larizza, C., Montani, S., Riva, A., Stefanelli, M., d'Annunzio, G., Lorini, R., Gomez, E. J., Hernando, E., Brugues, E., Cermeno, J., Corcoy, R., de Leiva, A., Cobelli, C., Nucci, G., Del Prato, S., Maran, A., Kilkki, E., & Tuominen, J. (2002). A telemedicine support for diabetes management: the T-IDDM project. Comput Methods Programs Biomed, 69(2), 147-161. https://doi.org/10.1016/s0169-2607(02)00038-x Boontarig, W., Chutimaskul, W., Chongsuphajaisiddhi, V., & Papasratorn, B. (2012). Factors influencing the Thai elderly intention to use smartphone for e-Health services. 2012 IEEE Symposium on Humanities, Science and Engineering Research, 479-483. Board on Health Care Services; Institute of Medicine [IOM]. The Role of Telehealth in an Evolving Health Care Environment: Workshop Summary. Washington (DC): National Academies Press (US); 2012 Nov 20. Available from: https://www.ncbi.nlm.nih.gov/books/NBK207145/ Cambre, M. A., & Cook, D. L. (1985). Computer Anxiety: Definition, Measurement, and Correlates. Journal of Educational Computing Research, 1(1), 37-54. https://doi.org/10.2190/FK5L-092H-T6YB-PYBA Chan, D. S., Callahan, C. W., Sheets, S. J., Moreno, C. N., & Malone, F. J. (2003). An Internet-based store-and-forward video home telehealth system for improving asthma outcomes in children. American Journal of Health-System Pharmacy, 60(19), 1976-1981. https://doi.org/10.1093/ajhp/60.19.1976 Cimperman, M., Makovec Brenčič, M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior—applying an Extended UTAUT model. International Journal of Medical Informatics, 90, 22-31. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2016.03.002 Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.).Routledge. https://doi.org/10.4324/9780203771587 Cornelis, T. M. v. H., Ettema, R. G. A., Antonietti, M. G. E. F., & Kort, H. S. M. (2018). Understanding Older People’s Readiness for Receiving Telehealth: Mixed-Method Study. Journal of Medical Internet Research, 20(4). https://doi.org/https://doi.org/10.2196/jmir.8407 Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 Davis, R. M., Hitch, A. D., Salaam, M. M., Herman, W. H., Zimmer-Galler, I. E., & Mayer-Davis, E. J. (2010). TeleHealth improves diabetes self-management in an underserved community: diabetes TeleCare. Diabetes Care, 33(8), 1712-1717. https://doi.org/10.2337/dc09-1919 F. Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106-121. https://doi.org/10.1108/EBR-10-2013-0128 Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312 Grand View Research (n.d.). Telemedicine Market Size, Share & Trends Analysis Report By Component (Products, Services), By Modality, By Application (Teleradiology, Telepsychiatry), By Delivery Mode, By Facility, By End User, By Region, And Segment Forecasts, 2024 – 2030. Retrieved February 26, 2024 , from: https://www.grandviewresearch.com/industry-analysis/telemedicine-industry Hair, J., Anderson, R., & Tatham, R. (1992). Multivariate Data Analysis, third addition. In: Prentice-Hall, Englewood Cliffs, NJ. Health Resources and Services Administration[HRSA](n.d.). What is telehealth? Retrieved February 26, 2024 , from: https://www.hrsa.gov/telehealth/what-is-telehealth Herrero, Á., San Martín, H., & Garcia-De los Salmones, M. d. M. (2017). Explaining the adoption of social networks sites for sharing user-generated content: A revision of the UTAUT2. Computers in Human Behavior, 71, 209-217. https://doi.org/https://doi.org/10.1016/j.chb.2017.02.007 Hoque, R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International Journal of Medical Informatics, 101, 75-84. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2017.02.002 Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60, 101212. https://doi.org/https://doi.org/10.1016/j.techsoc.2019.101212 Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand's community health centers: Applying the UTAUT model. International Journal of Medical Informatics, 78(6), 404-416. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2008.12.005 Kohnke, A., Cole, M. L., & Bush, R. (2014). Incorporating UTAUT Predictors for Understanding Home Care Patients' and Clinician's Acceptance of Healthcare Telemedicine Equipment. Journal of technology management & innovation, 9, 29-41. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-27242014000200003&nrm=iso Lee, j.-h., & Song, C.-H. (2013). Effects of trust and perceived risk on user acceptance of a new technology service. Social Behavior and Personality: an international journal, 41. https://doi.org/10.2224/sbp.2013.41.4.587 Macedo, I. M. (2017). Predicting the acceptance and use of information and communication technology by older adults: An empirical examination of the revised UTAUT2. Computers in Human Behavior, 75, 935-948. https://doi.org/https://doi.org/10.1016/j.chb.2017.06.013 Napitupulu, D., & Yacub, R. (2021). Factor Influencing of Telehealth Acceptance During COVID-19 Outbreak: Extending UTAUT Model. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 14, 2021. https://doi.org/10.22266/ijies2021.0630.23 Palas, J. U., Sorwar, G., Hoque, M. R., & Sivabalan, A. (2022). Factors influencing the elderly’s adoption of mHealth: an empirical study using extended UTAUT2 model. BMC Medical Informatics and Decision Making, 22(1), 191. https://doi.org/10.1186/s12911-022-01917-3 Park, H. S., Kim, K. I., Soh, J. Y., Hyun, Y. H., Jang, S. K., Lee, S., Hwang, G. Y., & Kim, H. S. (2020). Factors influencing acceptance of personal health record apps for workplace health promotion: cross-sectional questionnaire study. JMIR mHealth and uHealth, 8(6), e16723. Persaud, D. D., Jreige, S., Skedgel, C., Finley, J., Sargeant, J., & Hanlon, N. (2005). An incremental cost analysis of telehealth in Nova Scotia from a societal perspective. J Telemed Telecare, 11(2), 77-84. https://doi.org/10.1258/1357633053499877 Quaosar, G. M. A. A., Hoque, M. R., & Bao, Y. (2017). Investigating Factors Affecting Elderly's Intention to Use m-Health Services: An Empirical Study. Telemedicine and e-Health, 24(4), 309-314. https://doi.org/10.1089/tmj.2017.0111 Queenie Fernandes, Varghese Philipose Inchakalody, Maysaloun Merhi, Sarra Mestiri, Nassiba Taib, Dina Moustafa Abo El-Ella, Takwa Bedhiafi, Afsheen Raza, Lobna Al-Zaidan, Mona O. Mohsen, Mariam Ali Yousuf Al-Nesf, Ali Ait Hssain, Hadi Mohamad Yassine, Martin F. Bachmann, Shahab Uddin & Said Dermime (2022) Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines, Annals of Medicine, 54:1, 524-540, DOI: 10.1080/07853890.2022.2031274 Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Factors influencing the adoption of telemedicine health services during COVID-19 pandemic crisis: an integrative research model. Enterprise Information Systems, 15(6), 769-793. https://doi.org/10.1080/17517575.2020.1850872 Rho, M. J., Kim, H. S., Chung, K., & Choi, I. Y. (2015). Factors influencing the acceptance of telemedicine for diabetes management. Cluster Computing, 18(1), 321-331. https://doi.org/10.1007/s10586-014-0356-1 Rubin, D. B. (1976). Inference and Missing Data. Biometrika, 63(3), 581–592. https://doi.org/10.2307/2335739 Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons Inc., New York. http://dx.doi.org/10.1002/9780470316696 Serrano, K. M., Mendes, G. H. S., Lizarelli, F. L., & Ganga, G. M. D. (2021). Assessing the telemedicine acceptance for adults in Brazil. International Journal of Health Care Quality Assurance, 34(1), 35-51. https://doi.org/10.1108/ijhcqa-06-2020-0098 Shiferaw, K. B., Mengiste, S. A., Gullslett, M. K., Zeleke, A. A., Tilahun, B., Tebeje, T., Wondimu, R., Desalegn, S., & Mehari, E. A. (2021). Healthcare providers' acceptance of telemedicine and preference of modalities during COVID-19 pandemics in a low-resource setting: An extended UTAUT model. PLoS One, 16(4), e0250220. https://doi.org/10.1371/journal.pone.0250220 Suvarna, K. C., Kumar, P., Singh, K., Kumar, J., & Goyal, J. P. (2024). Comparison of Telemedicine versus In-Person Visit for Control of Asthma in Children aged 7-17 years: A Randomized Controlled Trial. Indian J Pediatr. https://doi.org/10.1007/s12098-024-05028-x Tavares, J., Goulão, A., & Oliveira, T. (2017). Electronic Health Record Portals adoption: Empirical model based on UTAUT2. Informatics for Health and Social Care, 43(2), 109–125. https://doi.org/10.1080/17538157.2017.1363759 The American Telemedicine Association (ATA)(May,2006). Telemedicine, Telehealth, and Health Information Technology: An ATA Issue Paper., from https://cdn.who.int/media/docs/default-source/digital-health-documents/global-observatory-on-digital-health/usa_support_tele.pdf?sfvrsn=1c0a523b_3 Ursavaş, Ö.F. (2022). Motivational Model (MM). In: Conducting Technology Acceptance Research in Education . Springer Texts in Education. Springer, Cham. https://doi.org/10.1007/978-3-031-10846-4_5 Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. http://www.jstor.org/stable/2634758 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540 Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412 Viana Pereira, F., Tavares, J., & Oliveira, T. (2023). Adoption of video consultations during the COVID-19 pandemic. Internet Interv, 31, 100602. https://doi.org/10.1016/j.invent.2023.100602 Yuan, S., Ma, W., Kanthawala, S., & Peng, W. (2015). Keep Using My Health Apps: Discover Users' Perception of Health and Fitness Apps with the UTAUT2 Model. Telemedicine and e-Health, 21(9), 735-741. https://doi.org/10.1089/tmj.2014.0148 Zhu, Y., Zhao, Z., Guo, J., Wang, Y., Zhang, C., Zheng, J., Zou, Z., & Liu, W. (2023). Understanding Use Intention of mHealth Applications Based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT-2) Model in China. Int J Environ Res Public Health, 20(4). https://doi.org/10.3390/ijerph20043139 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94910 | - |
| dc.description.abstract | 研究背景:遠距照護服務在國際間快速發展,尤其是COVID-19疫情的影響功不可沒,除需求人口的增加及國際趨勢外,台灣政府也看見了通訊診療發展的必要性,逐步在法規上放寬通訊診療適用的情境,然過往針對通訊診療受限於法規限制,民眾對於通訊診療的認知不足,或是僅提供一個對於通訊診療服務的概述供民眾想像,因此無法合適地測量整影響民眾使用通訊診療之因素,然而經歷Covid-19過後,透過政府大量的文宣傳播,台灣國人普遍對於通訊診療有初步認識,部分民眾甚至具有使用經驗,提供研究者切入的時機點,以更全面的探討影響使用者使用通訊診療意圖的影響因素。
研究目的: 以整合型科技接受 (unified theory of acceptance and use of technology, UTAUT) 模式為研究架構,探討影響民眾使用通訊診療的預測因子,提供台灣未來發展通訊診療服務之初探,並驗證以簡化後的UTAUT問卷題項施測之模型解釋力。 研究方法: 本研究為次級資料分析,資料來自郭年真老師國科會研究計畫(MOST110-2410-H002-115-SS3 )之問卷回收數據,研究對象為2022年12月台灣年滿20歲以上之成年民眾,總收樣之樣本數為1,494。統計分析部分使用單變項分析呈現樣本社會人口學結構及研究變項的次數分配。雙變相分析使用卡方檢定列聯表方式,呈現社會人口學變項與使用意願的關係。最後,多變相分析的部分,先利用多重插補法方式,使用社會人口學變項及就醫選擇等變項作為預測變項,並對「績效預期」、「努力預期」、「社會影響」、「便利條件」、「焦慮」變項之題項進行遺漏值插補,採用偏最小平方法的結構方程模型(PLS-SEM)進行影響因素的路徑係數分析,驗證研究架構中各變項與台灣成年民眾使用通訊診療意圖之間的關係與模型解釋力,並檢驗性別、年齡及經驗對「績效預期」、「努力預期」、「社會影響」、「便利條件」、「焦慮」變項間的調節作用。 研究結果:本研究的描述性統計結果顯示,樣本中的女性多於男性,且樣本年齡偏高。超過半數的受訪者教育程度在「高中、職」以上,自覺身體健康狀態良好並有全職工作。超過九成的受訪者平時有使用手機的習慣,但僅有三成曾經使用過通訊診療服務。在雙變項分析中,結果顯示「男性」、「65歲至69歲」、「國小以下教育程度」、「有兼職工作或具學生身分」、「月收入未滿2萬元」、以及自評健康狀態為「非常差」的組別中,擁有最高的使用通訊診療意願。多變項分析結果顯示,以簡化問卷題目施測之模型解釋力為0.38,「績效預期」、「努力預期」和「便利條件」這三個變項分數對台灣成年民眾使用通訊診療的意圖具有顯著正相關。而「焦慮」分數則與「使用意圖」分數呈顯著負相關。此外,研究結果發現,這些變項之間的關係不受年齡、性別和使用經驗影響,顯示調節效果不具統計顯著性。 結論:本研究顯示,「績效預期」、「努力預期」和「便利條件」是推動台灣民眾使用通訊診療服務的重要因素,而減少民眾使用「焦慮」則有助於提高其使用意圖。未來的政策制定和系統設計應著重於提升這些關鍵因素,以促進通訊診療服務的普及和使用。而使用簡化過的問卷驗證UTAUT模型,模型的解釋力為0.38,符合Cohen (1988) 對行為科學解釋力的標準,且與其他遠距醫療與通訊診療相關研究的解釋力相當,顯示本研究使用的問卷題項在驗證UTAUT模型方面具有一定的有效性。 | zh_TW |
| dc.description.abstract | Background: The international growth of telehealth services, significantly accelerated by the COVID-19 pandemic, is remarkable. Beyond the rising demand and global trends, the Taiwanese government has recognized the importance of advancing telemedicine and has gradually eased regulations to support its implementation. Historically, public awareness of telemedicine in Taiwan has been limited due to regulatory constraints, providing only a broad overview rather than a detailed assessment of factors influencing its use. However, the extensive promotion during the COVID-19 pandemic has led to a general understanding of telemedicine among the Taiwanese public, with some individuals even gaining practical experience. This creates an ideal opportunity for researchers to explore the factors that influence users' intentions to adopt telemedicine.
Objective: This study aims to explore the predictive factors influencing the intention to use telemedicine in Taiwan, using the Unified Theory of Acceptance and Use of Technology (UTAUT) model as the research framework. Additionally, the study seeks to verify the explanatory power of a simplified UTAUT questionnaire. Methods: This secondary data analysis utilized questionnaire data from Professor Nien-Chen Kuo’s National Science and Technology Council project (MOST110-2410-H002-115-SS3). The study population comprised Taiwanese adults aged 20 and above as of December 2022, with a total sample size of 1,494. Descriptive statistics were used to present the sociodemographic structure and frequency distribution of research variables. Bivariate analysis employed chi-square tests to illustrate the relationship between sociodemographic variables and the intention to use telemedicine. For multivariate analysis, multiple imputation was first used with sociodemographic variables and healthcare choices as predictors to impute missing values for "performance expectancy," "effort expectancy," "social influence," "facilitating conditions," and "anxiety." The study then used Partial Least Squares Structural Equation Modeling (PLS-SEM) to analyze the path coefficients of factors, verifying the relationships between variables and the explanatory power of the model, and examining the moderating effects of gender, age, and experience on these variables. Results: Descriptive statistics revealed that the sample consisted of more females than males, with an older age distribution. Over half of the respondents had an education level above high school, perceived their health status as good, and had full-time jobs. Over 90% of respondents regularly used mobile phones, but only 30% had used telemedicine services. Bivariate analysis indicated that the groups with the highest intention to use telemedicine included "males," "ages 65-69," "education level below elementary school," "part-time workers or students," "monthly income below 20,000 TWD," and those who rated their health status as "very poor." Multivariate analysis showed that the simplified questionnaire's model had an explanatory power of 0.38. The scores for "performance expectancy," "effort expectancy," and "facilitating conditions" were positively correlated with the intention to use telemedicine among Taiwanese adults, while "anxiety" was negatively correlated with usage intention. Furthermore, the relationships between these variables were not significantly moderated by age, gender, or experience, indicating no statistically significant moderation effects. Conclusions: This study demonstrates that "performance expectancy," "effort expectancy," and "facilitating conditions" are crucial factors driving the intention of Taiwanese individuals to use telemedicine services, while reducing "anxiety" can further enhance their intention to use these services. Future policy formulation and system design should focus on enhancing these key factors to promote the widespread use of telemedicine services. The explanatory power of the simplified UTAUT questionnaire was 0.38, meeting Cohen's (1988) behavioral science standards and aligning with the explanatory power of related studies on telehealth and telemedicine. This indicates that the questionnaire used in this study is valid for verifying the UTAUT model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:26:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:26:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II 英文摘要 IV 目次 VI 圖次 VIII 表次 IX 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第貳章 文獻回顧 4 第一節 遠距照護(TELEHEALTH)與通訊診療(TELEMEDICINE) 4 第二節 台灣通訊診療法規沿革 6 第三節 通訊診療與遠距照護相關臨床研究 7 第四節 民眾對遠距醫療使用意圖 9 第五節 文獻探討小結 20 第參章 研究設計與方法 21 第一節 研究設計與架構 21 第二節 研究假說 23 第三節 資料來源與處理流程 24 第四節 研究變項與操作型定義 27 第五節 統計分析方法 31 第肆章 研究結果 32 第一節 描述性統計 32 第二節 雙變項分析 42 第三節 偏最小平方法之結構方程式分析(PLS-SEM) 47 第伍章 討論 53 第一節 研究假說驗證 53 第二節 研究結果討論 55 第三節 研究限制 59 第陸章 結論與建議 60 第一節 結論 60 第二節 建議 61 參考文獻 63 附 錄 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | UTAUT模型 | zh_TW |
| dc.subject | 整合型科技接受模式 | zh_TW |
| dc.subject | 新冠肺炎 | zh_TW |
| dc.subject | 行為意圖 | zh_TW |
| dc.subject | 通訊診療 | zh_TW |
| dc.subject | Telemedicine | en |
| dc.subject | Behavioral Intention | en |
| dc.subject | Covid-19 | en |
| dc.subject | UTAUT Model | en |
| dc.subject | Unified Theory of Acceptance and Use of Technology | en |
| dc.title | Covid-19疫情期間民眾使用通訊診療行為意圖的影響因素 | zh_TW |
| dc.title | The Factors Associated with the Inclination to Use Online Doctor Consultation Amid the Covid-19 Pandemic | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林青青;陳楚杰 | zh_TW |
| dc.contributor.oralexamcommittee | CHING-CHING CLAIRE LIN;CHU-CHIEH CHEN | en |
| dc.subject.keyword | 整合型科技接受模式,UTAUT模型,通訊診療,行為意圖,新冠肺炎, | zh_TW |
| dc.subject.keyword | Unified Theory of Acceptance and Use of Technology,UTAUT Model,Telemedicine,Behavioral Intention,Covid-19, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202403900 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 健康政策與管理研究所 | - |
| 顯示於系所單位: | 健康政策與管理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
