請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94906
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方偉宏 | zh_TW |
dc.contributor.advisor | Woei-horng Fang | en |
dc.contributor.author | 莊詠筑 | zh_TW |
dc.contributor.author | Yung-Chu Chuang | en |
dc.date.accessioned | 2024-08-21T16:24:37Z | - |
dc.date.available | 2024-08-22 | - |
dc.date.copyright | 2024-08-21 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-06 | - |
dc.identifier.citation | 方羿凱. (2023). 大腸桿菌第一型DNA聚合酶校對活性活體試驗分析 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/d88a3v
徐屾玨. (2023). 第一型 DNA 聚合酶校正機制之研究分析 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/qva6g2 Afek, A., Shi, H., Rangadurai, A., Sahay, H., Senitzki, A., Xhani, S., Fang, M., Salinas, R., Mielko, Z., Pufall, M. A., Poon, G. M. K., Haran, T. E., Schumacher, M. A., Al-Hashimi, H. M., & Gordân, R. (2020). DNA mismatches reveal conformational penalties in protein-DNA recognition. Nature, 587(7833), 291-296. https://doi.org/10.1038/s41586-020-2843-2 Albertson, T. M., & Preston, B. D. (2006). DNA replication fidelity: proofreading in trans. Curr Biol, 16(6), R209-211. https://doi.org/10.1016/j.cub.2006.02.031 Alexander, J. L., & Orr-Weaver, T. L. (2016). Replication fork instability and the consequences of fork collisions from rereplication. Genes Dev, 30(20), 2241-2252. https://doi.org/10.1101/gad.288142.116 Astatke, M., Grindley, N. D., & Joyce, C. M. (1998). How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. J Mol Biol, 278(1), 147-165. https://doi.org/10.1006/jmbi.1998.1672 Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol, 58(1), 61-70. https://doi.org/10.1111/j.1365-2958.2005.04805.x Beattie, T. R., Kapadia, N., Nicolas, E., Uphoff, S., Wollman, A. J., Leake, M. C., & Reyes-Lamothe, R. (2017). Frequent exchange of the DNA polymerase during bacterial chromosome replication. Elife, 6. https://doi.org/10.7554/eLife.21763 Bębenek, A., & Ziuzia-Graczyk, I. (2018). Fidelity of DNA replication-a matter of proofreading. Curr Genet, 64(5), 985-996. https://doi.org/10.1007/s00294-018-0820-1 Bebenek, K., Joyce, C. M., Fitzgerald, M. P., & Kunkel, T. A. (1990). The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem, 265(23), 13878-13887. Berardini, M., Foster, P. L., & Loechler, E. L. (1999). DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli. J Bacteriol, 181(9), 2878-2882. https://doi.org/10.1128/jb.181.9.2878-2882.1999 Bonner, C. A., Hays, S., McEntee, K., & Goodman, M. F. (1990). DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc Natl Acad Sci U S A, 87(19), 7663-7667. https://doi.org/10.1073/pnas.87.19.7663 Brutlag, D., & Kornberg, A. (1972). Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem, 247(1), 241-248. Buchel, G., Nayak, A. R., Herbine, K., Sarfallah, A., Sokolova, V. O., Zamudio-Ochoa, A., & Temiakov, D. (2023). Structural basis for DNA proofreading. Nat Commun, 14(1), 8501. https://doi.org/10.1038/s41467-023-44198-8 Cafarelli, T. M., Rands, T. J., & Godoy, V. G. (2014). The DinB•RecA complex of Escherichia coli mediates an efficient and high-fidelity response to ubiquitous alkylation lesions. Environ Mol Mutagen, 55(2), 92-102. https://doi.org/10.1002/em.21826 Çağlayan, M. (2020). Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair (Amst), 95, 102945. https://doi.org/10.1016/j.dnarep.2020.102945 Cai, H., Yu, H., McEntee, K., Kunkel, T. A., & Goodman, M. F. (1995). Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J Biol Chem, 270(25), 15327-15335. https://doi.org/10.1074/jbc.270.25.15327 Caldecott, K. W. (2008). Single-strand break repair and genetic disease. Nat Rev Genet, 9(8), 619-631. https://doi.org/10.1038/nrg2380 Chang, H. L., Su, K. Y., Goodman, S. D., Chou, N. A., Lin, K. C., Cheng, W. C., Lin, L. I., Chang, S. Y., & Fang, W. H. (2020). Proofreading of single nucleotide insertion/deletion replication errors analyzed by MALDI-TOF mass spectrometry assay. DNA Repair (Amst), 88, 102810. https://doi.org/10.1016/j.dnarep.2020.102810 Chim, N., Jackson, L. N., Trinh, A. M., & Chaput, J. C. (2018). Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. Elife, 7. https://doi.org/10.7554/eLife.40444 Cortez, D. (2015). Preventing replication fork collapse to maintain genome integrity. DNA Repair (Amst), 32, 149-157. https://doi.org/10.1016/j.dnarep.2015.04.026 Dangerfield, T. L., Kirmizialtin, S., & Johnson, K. A. (2022). Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase. J Biol Chem, 298(3), 101627. https://doi.org/10.1016/j.jbc.2022.101627 Davis, L., & Maizels, N. (2014). Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A, 111(10), E924-932. https://doi.org/10.1073/pnas.1400236111 Davis, L., Zhang, Y., & Maizels, N. (2018). Assaying Repair at DNA Nicks. Methods Enzymol, 601, 71-89. https://doi.org/10.1016/bs.mie.2017.12.001 Debyser, Z., Tabor, S., & Richardson, C. C. (1994). Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7. Cell, 77(1), 157-166. https://doi.org/10.1016/0092-8674(94)90243-7 Derbyshire, V., Freemont, P. S., Sanderson, M. R., Beese, L., Friedman, J. M., Joyce, C. M., & Steitz, T. A. (1988). Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science, 240(4849), 199-201. https://doi.org/10.1126/science.2832946 Donlin, M. J., Patel, S. S., & Johnson, K. A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry, 30(2), 538-546. https://doi.org/10.1021/bi00216a031 Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2012). DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev, 36(6), 1105-1121. https://doi.org/10.1111/j.1574-6976.2012.00338.x Goodman, M. F. (2002). Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem, 71, 17-50. https://doi.org/10.1146/annurev.biochem.71.083101.124707 Green, M. R., & Sambrook, J. (2020). E. coli DNA Polymerase I and the Klenow Fragment. Cold Spring Harb Protoc, 2020(5), 100743. https://doi.org/10.1101/pdb.top100743 Hastings, P. J., Hersh, M. N., Thornton, P. C., Fonville, N. C., Slack, A., Frisch, R. L., Ray, M. P., Harris, R. S., Leal, S. M., & Rosenberg, S. M. (2010). Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells. PLoS One, 5(5), e10862. https://doi.org/10.1371/journal.pone.0010862 Huang, Y. M., Chen, S. U., Goodman, S. D., Wu, S. H., Kao, J. T., Lee, C. N., Cheng, W. C., Tsai, K. S., & Fang, W. H. (2004). Interaction of nick-directed DNA mismatch repair and loop repair in human cells. J Biol Chem, 279(29), 30228-30235. https://doi.org/10.1074/jbc.M401675200 Ikeda, M., Furukohri, A., Philippin, G., Loechler, E., Akiyama, M. T., Katayama, T., Fuchs, R. P., & Maki, H. (2014). DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts. Nucleic Acids Res, 42(13), 8461-8472. https://doi.org/10.1093/nar/gku547 Joyce, C. M., Kelley, W. S., & Grindley, N. D. (1982). Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I. J Biol Chem, 257(4), 1958-1964. Joyce, C. M., Potapova, O., Delucia, A. M., Huang, X., Basu, V. P., & Grindley, N. D. (2008). Fingers-closing and other rapid conformational changes in DNA polymerase I (Klenow fragment) and their role in nucleotide selectivity. Biochemistry, 47(23), 6103-6116. https://doi.org/10.1021/bi7021848 Karimi-Busheri, F., Lee, J., Tomkinson, A. E., & Weinfeld, M. (1998). Repair of DNA strand gaps and nicks containing 3'-phosphate and 5'-hydroxyl termini by purified mammalian enzymes. Nucleic Acids Res, 26(19), 4395-4400. https://doi.org/10.1093/nar/26.19.4395 Kim, S. R., Matsui, K., Yamada, M., Gruz, P., & Nohmi, T. (2001). Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics, 266(2), 207-215. https://doi.org/10.1007/s004380100541 Kornberg, A., & Baker, T. A. (1992). DNA Replication. W.H. Freeman. https://books.google.com.tw/books?id=TI2gHAAACAAJ Kukreti, P., Singh, K., Ketkar, A., & Modak, M. J. (2008). Identification of a new motif required for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex. J Biol Chem, 283(26), 17979-17990. https://doi.org/10.1074/jbc.M801053200 Lam, W. C., Thompson, E. H., Potapova, O., Sun, X. C., Joyce, C. M., & Millar, D. P. (2002). 3'-5' exonuclease of Klenow fragment: role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting. Biochemistry, 41(12), 3943-3951. https://doi.org/10.1021/bi0120603 Lee, C. C., Yang, Y. C., Goodman, S. D., Lin, C. J., Chen, Y. A., Wang, Y. T., Cheng, W. C., Lin, L. I., & Fang, W. H. (2013). The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. DNA Repair (Amst), 12(11), 899-911. https://doi.org/10.1016/j.dnarep.2013.08.003 Lee, C. C., Yang, Y. C., Goodman, S. D., Yu, Y. H., Lin, S. B., Kao, J. T., Tsai, K. S., & Fang, W. H. (2010). Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair (Amst), 9(10), 1073-1079. https://doi.org/10.1016/j.dnarep.2010.07.007 Li, Y., Korolev, S., & Waksman, G. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. Embo j, 17(24), 7514-7525. https://doi.org/10.1093/emboj/17.24.7514 Lovett, S. T. (2011). The DNA Exonucleases of Escherichia coli. EcoSal Plus, 4(2). https://doi.org/10.1128/ecosalplus.4.4.7 Masker, W., Hanawalt, P., & Shizuya, H. (1973). Role of DNA Polymerase II in Repair Replication in Escherichia coli. Nature New Biology, 244(138), 242-243. https://doi.org/10.1038/newbio244242a0 Modrich, P. (1987). DNA mismatch correction. Annu Rev Biochem, 56, 435-466. https://doi.org/10.1146/annurev.bi.56.070187.002251 Morrison, A., & Sugino, A. (1994). The 3'-->5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet, 242(3), 289-296. https://doi.org/10.1007/bf00280418 Okazaki, R., Arisawa, M., & Sugino, A. (1971). Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc Natl Acad Sci U S A, 68(12), 2954-2957. https://doi.org/10.1073/pnas.68.12.2954 Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., & Steitz, T. A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature, 313(6005), 762-766. https://doi.org/10.1038/313762a0 Patel, S. S., Wong, I., & Johnson, K. A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry, 30(2), 511-525. https://doi.org/10.1021/bi00216a029 Pavlov, Y. I., Frahm, C., Nick McElhinny, S. A., Niimi, A., Suzuki, M., & Kunkel, T. A. (2006). Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol, 16(2), 202-207. https://doi.org/10.1016/j.cub.2005.12.002 Podlesek, Z., & Žgur Bertok, D. (2020). The DNA Damage Inducible SOS Response Is a Key Player in the Generation of Bacterial Persister Cells and Population Wide Tolerance. Front Microbiol, 11, 1785. https://doi.org/10.3389/fmicb.2020.01785 Rossetti, G., Dans, P. D., Gomez-Pinto, I., Ivani, I., Gonzalez, C., & Orozco, M. (2015). The structural impact of DNA mismatches. Nucleic Acids Res, 43(8), 4309-4321. https://doi.org/10.1093/nar/gkv254 Sale, J. E., Ross, A. L., & Simpson, L. J. (2006). Analysis of DNA replication damage bypass and its role in immunoglobulin repertoire development. Subcell Biochem, 40, 271-294. https://doi.org/10.1007/978-1-4020-4896-8_16 Schaaper, R. M. (1993). Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem, 268(32), 23762-23765. Singh, M., Yadav, A., Ma, X., & Amoah, E. (2010). Plasmid DNA transformation in Escherichia coli: effect of heat shock temperature, duration, and cold incubation of CaCl2 treated cells. International Journal of Biotechnology and Biochemistry, 6(4), 561-568. Su, K. Y., Lai, H. M., Goodman, S. D., Hu, W. Y., Cheng, W. C., Lin, L. I., Yang, Y. C., & Fang, W. H. (2018). Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair (Amst), 61, 63-75. https://doi.org/10.1016/j.dnarep.2017.11.011 Su, K. Y., Lin, L. I., Goodman, S. D., Yen, R. S., Wu, C. Y., Chang, W. C., Yang, Y. C., Cheng, W. C., & Fang, W. H. (2018). DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo. DNA Repair (Amst), 64, 59-67. https://doi.org/10.1016/j.dnarep.2018.02.005 Takano, K., Nakabeppu, Y., Maki, H., Horiuchi, T., & Sekiguchi, M. (1986). Structure and function of dnaQ and mutD mutators of Escherichia coli. Mol Gen Genet, 205(1), 9-13. https://doi.org/10.1007/bf02428026 Tikhomirova, A., Beletskaya, I. V., & Chalikian, T. V. (2006). Stability of DNA duplexes containing GG, CC, AA, and TT mismatches. Biochemistry, 45(35), 10563-10571. https://doi.org/10.1021/bi060304j Vashishtha, A. K., Wang, J., & Konigsberg, W. H. (2016). Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. J Biol Chem, 291(40), 20869-20875. https://doi.org/10.1074/jbc.R116.742494 Wong, I., Patel, S. S., & Johnson, K. A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry, 30(2), 526-537. https://doi.org/10.1021/bi00216a030 Xu, L., Halma, M. T. J., & Wuite, G. J. L. (2024). Mapping fast DNA polymerase exchange during replication. Nat Commun, 15(1), 5328. https://doi.org/10.1038/s41467-024-49612-3 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94906 | - |
dc.description.abstract | DNA的複製被嚴格的調控,以確保遺傳訊息具有高度保真性。在細胞中,可以透過鹼基選擇(base selection)、聚合酶3’ 端往5’ 端外切酶的校對活性(proofreading)及核酸錯配修復(mismatch repair),將DNA錯誤率降至10-10。本實驗室先前透過大腸桿菌的細胞萃取物,發現第一型DNA聚合酶能夠校對十二種位於引子末端倒數第二個位置的錯誤配對。後續利用MALDI-TOF MS建立了第一型DNA聚合酶的校對活性分析方法,顯示位於引子末端倒數1至4個錯誤配對能被有效校對。以上的發現是基於試管中進行的研究,而細菌體中第一型DNA聚合酶是否具有相似的校對傾向,目前仍不清楚。本研究旨在建立大腸桿菌活體內第一型DNA聚合酶校對活性分析模型。我們使用phagemid製備含C:C錯誤配對的受質,錯誤配對分別位在引子股距離去磷酸根之nick處3’端1至7個核苷酸,依序命名為NCC1至NCC7,且在上游距離16個核苷酸處帶有C:C標誌。將受質轉型到大腸桿菌NM522(WT)中,挑取至少50個菌落抽取DNA後再透過限制酶水解分析校對活性。在NCC5結果中發現背景值上升的現象,推測與細菌的SOS反應有關,後續發現重新合成nick 5’端具磷酸根的受質能夠有效降低背景值,命名NCC1-P至NCC7-P。結果顯示NCC1-P至NCC7-P在NM522中校對活性分別為74.4 %、68 %、69.3 %、0 %、7.3 %、4.7 %及1.3 %。因此距離3’端超過3個核苷酸時,校對活性會顯著下降。此外,NCC3-P的受質轉型至大腸桿菌KA796(polA+)及KA796 D424A (polA exo-)中,校對比例分別為65.3 %及25.3 %。接下來,設計引子股距離nick處同時有2個C:C錯配的受質,命名為NCC47-P、NCC48-P、NCC37-P以及NCC38-P,以了解校對活性的範圍。實驗結果為NCC47上兩個C:C錯誤配對都可被同時校對,比例為18 %;NCC48-P共同校對的比例為14.7 %,只校對倒數第四個錯配的比例為14.7 %;NCC37-P共同校對的比例為20.7 %,只校對倒數第三個錯配的比例為22.7 %;NCC38-P共同校對的比例為8 %,只校對倒數第三個錯配的比例為46 %。本研究探討第一型DNA聚合酶於活體內的校對活性,驗證先前試管中模型之結果,並進一步確認其在細菌體內的實際應用效果,為DNA修復機制提供更全面的見解。 | zh_TW |
dc.description.abstract | DNA replication is strictly regulated to ensure high fidelity of genome stability. Several mechanisms can reduce DNA replication error rates down to 10-10 in cells, such as base selection, 3' to 5' exonuclease proofreading activity of DNA polymerases, and mismatch repair. Our laboratory’s previous research demonstrated that Escherichia coli DNA polymerase I can proofread twelve mismatches at the penultimate position of primer 3’ terminus by using purified E. coli DNA polymerase I. Subsequently, a MALDI-TOF MS-based assay was developed to analyze the proofreading activity of DNA polymerase I, and the result showed that DNA polymerase I can efficiently proofread mismatches located at the 1 to 4 positions from the primer 3’ terminus. However, these findings were based on in vitro studies, and whether DNA polymerase I exhibits similar proofreading activities in vivo remains unclear. This study aims to establish an in vivo model for analyzing the proofreading activity of DNA polymerase I in E. coli. Since C:C mismatch cannot be processed by any known system in vivo, this study utilizes phagemid substrates containing C:C mismatches at various positions (1 to 7 nucleotides from the 3' end of a dephosphated nick), named NCC1 to NCC7, with additional C:C mismatch as strand markers located at 16 nucleotides upstream to analyze the proofreading activity of pol I. The substrates were transformed into E. coli NM522 (wildtype), and at least 50 colonies were picked for DNA extraction, and C:C mismatch correction activity was scored by restriction enzyme digestion. An increase in background levels of strand loss was observed in NCC5, presumably attributed to the bacterial SOS response. Later, we found that substrates with a 5' phosphate at the nick, NCC1-P to NCC7-P, could effectively reduce background levels of strand loss. The results showed proofreading activities for NCC1-P to NCC7-P in NM522 were 74.4 %, 68 %, 69.3 %, 0 %, 7.3 %, 4.7 %, and 1.3 % respectively, revealing that the C:C mismatches at 1, 2, and 3-nt to the 3’ primer end were well proofread. Additionally, to confirm whether the observed proofreading activity was attributable to DNA polymerase I, NCC3-P was transformed into E. coli KA796 (polA+) and KA796D424A (polA exo-), resulting in proofreading rates of 65.3 % and 25.3 % respectively. The result implied that over half of the C:C proofread observed in vivo was processed by DNA polymerase I.
To further explore the range of proofreading activity, we designed substrates with two C:C mismatches at varying distances from the nick (NCC47-P, NCC48-P, NCC37-P, and NCC38-P). The results indicated that NCC47-P could be simultaneously proofread both mismatches at a level of 18%; NCC48-P showed a co-proofreading level of 14.7 %, and 14.7 % for proofreading of the first mismatch only; NCC37-P showed a co-proofreading level of 20.7 %, and 22.7 % for proofreading of the first mismatch only; NCC38-P showed a co-proofreading level of 8 %, and 46 % for proofreading of the first mismatch only. Given these findings, this study suggested a backtracking mechanism for internal mismatch proofreading. In conclusion, this study established an in vivo assay for measuring DNA polymerase I proofreading activity and provided a biological significance for previous in vitro proofreading studies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:24:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-21T16:24:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌 謝 i
摘 要 ii Abstract iv 圖 次ix 表 次x 附錄目次 xi 縮寫對照表 xii 第一章 緒論 1 1.1. DNA之高保真性 1 1.2. 大腸桿菌中的聚合酶 1 1.3. 大腸桿菌第一型DNA聚合酶的結構 3 1.4. 大腸桿菌第一型DNA聚合酶的校對機制 4 1.5. 研究動機 5 第二章 材料與方法 8 2.1. 菌株 8 2.2. 載體 8 2.3. 酵素 8 2.4. 試劑 9 2.5. 人工合成寡核苷酸 9 2.6. 具錯誤配對異股核酸質體之建構 11 2.7. 勝任細胞製備與DNA轉型作用 12 2.8. 大量製備引子股雙股核酸 13 2.9. 大量製備模板股單股核酸 14 2.10. 具C:C錯誤配對之異股DNA之製備 15 2.11. 細菌體內第一型DNA聚合酶校對活性試驗與分析 16 2.11.1. Alkaline lysis小量質體製備 17 2.11.2. 限制酶雙重水解分析 17 2.11.2. 結果計算 18 2.12 統計分析 18 第三章 結果 19 3.1 單一C:C錯誤配對受質之建構 19 3.2 細菌體內第一型DNA聚合酶校對活性試驗 19 3.3 SOS反應對細菌體內校正活性試驗的影響 21 3.4 NCC系列受質之校對活性試驗結果 22 3.5 雙C:C錯誤配對受質細菌體內校對活性試驗 23 第四章 討論 25 4.1. 細菌體內活性校對試驗 25 4.2. 單一C:C錯誤配對受質細菌體內校對活性試驗 26 4.3. 雙C:C錯誤配對受質細菌體內校對活性試驗 28 4.4. 結論 30 參考文獻 52 | - |
dc.language.iso | zh_TW | - |
dc.title | 大腸桿菌第一型DNA聚合酶對C:C配對錯誤之活體內校對 | zh_TW |
dc.title | Proofreading of Terminal and Internal C:C Mismatches by Escherichia coli DNA Polymerase I In Vivo | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 許濤;蔡芷季;蘇剛毅;郭靜穎 | zh_TW |
dc.contributor.oralexamcommittee | Todd Hsu;Jyy-Jih Tsai-Wu;Kang-Yi Su;Ching-Ying Kuo | en |
dc.subject.keyword | 第一型DNA聚合酶,校對活性,3’ 端往5’ 端外切酶,C:C錯誤配對,細菌體內試驗,DNA修復, | zh_TW |
dc.subject.keyword | DNA polymerase I,proofreading activity,3’ to 5’ exonuclease,C:C mismatch,in vivo assay,DNA repair, | en |
dc.relation.page | 56 | - |
dc.identifier.doi | 10.6342/NTU202403150 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。