請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94901完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘建源 | zh_TW |
| dc.contributor.advisor | Chien-Yuan Pan | en |
| dc.contributor.author | 翁甯陽 | zh_TW |
| dc.contributor.author | Ning-Yang Weng | en |
| dc.date.accessioned | 2024-08-21T16:22:26Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Abe, S., Ohnishi, H., Tsuchiya, K., Ishizawa, K., Torii, M., Kanematsu, Y., Kawazoe, K., Minakuchi, K., Yoshizumi, M., & Tamaki, T. (2006). Calcium and reactive oxygen species mediated Zn2+ -induced apoptosis in PC12 cells. Journal of Pharmacological Sciences, 102(1), 103–111. https://doi.org/10.1254/jphs.fp0060342
Ambrus, G., Gál, P., Kojima, M., Szilágyi, K., Balczer, J., Antal, J., Gráf, L., Laich, A., Moffatt, B. E., Schwaeble, W., Sim, R. B., & Závodszky, P. (2003). Natural substrates and inhibitors of mannan-binding lectin-associated serine protease-1 and -2: a study on recombinant catalytic fragments. Journal of Immunology, 170(3), 1374–1382. https://doi.org/10.4049/jimmunol.170.3.1374 Andrews, G. K., Wang, H., Dey, S. K., Palmiter R. D. (2004) Mouse zinc transporter 1 gene provides an essential function during early embryonic development. The Journal of Genetics and Development, 40(2), 74-81. https://doi.org/10.1002/gene.20067 Anand, A., Chi, C. H., Banerjee, S., Chou, M. Y., Tseng, F. G., Pan, C. Y., & Chen, Y. T. (2018). The Extracellular Zn2+ Concentration Surrounding Excited Neurons Is High Enough to Bind Amyloid-β Revealed by a Nanowire Transistor. Small (Weinheim an der Bergstrasse, Germany), 14(24), e1704439. https://doi.org/10.1002/smll.201704439 Assaf, S. Y., & Chung, S. H. (1984). Release of endogenous Zn2+ from brain tissue during activity. Nature, 308(5961), 734–736. https://doi.org/10.1038/308734a0 Audano, M., Pedretti, S., Cermenati, G., Brioschi, E., Diaferia, G. R., Ghisletti, S., Cuomo, A., Bonaldi, T., Salerno, F., Mora, M., Grigore, L., Garlaschelli, K., Baragetti, A., Bonacina, F., Catapano, A. L., Norata, G. D., Crestani, M., Caruso, D., Saez, E., De Fabiani, E., … Mitro, N. (2018). Zc3h10 is a novel mitochondrial regulator. EMBO Reports, 19(4), https://doi.org/10.15252/embr.201745531 Auld, D. S. (2001). Zinc coordination sphere in biochemical zinc sites. BioMetals, 14, 271–313. https://doi.org/10.1023/a:1012976615056 Baltaci, A. K., Mogulkoc, R., & Baltaci, S. B. (2019). Review: The role of zinc in the endocrine system. Pakistan Journal of Pharmaceutical Sciences, 32(1), 231–239. Baltaci, A.K., Yuce, K. & Mogulkoc, R. (2018). Zinc Metabolism and Metallothioneins. Biolo-gical Trace Element Research 183, 22–31. https://doi.org/10.1007/s12011-017-1119-7 Belloni-Olivi, L., Marshall, C., Laal, B., Andrews, G. K., & Bressler, J. (2009). Localization of zip1 and zip4 mRNA in the adult rat brain. Journal of Neuroscience Research, 87(14), 3221–3230. https://doi.org/10.1002/jnr.22144 Bonnet, J. J., Benmansour, S., Amejdki-Chab, N., & Costentin, J. (1994). Effect of CH3HgCl and several transition metals on the dopamine neuronal carrier; peculiar behaviour of Zn2+. European Journal of Pharmacology, 266(1), 87–97. https://doi.org/10.1016/0922-4106(94)90213-5 Bozym, R. A., Chimienti, F., Giblin, L. J., Gross, G. W., Korichneva, I., Li, Y., Libert, S., Maret, W., Parviz, M., Frederickson, C. J., & Thompson, R. B. (2010). Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Experimental Biology and Medicine (Maywood, N.J.), 235(6), 741–750. https://doi.org/10.1258/ebm.2010.009258 Bui H. B., Inaba K. (2024). Structures, Mechanisms, and Physiological Functions of Zinc Transporters in Different Biological Kingdoms. International Journal of Molecular Sciences. 25(5), 3045. https://doi.org/10.3390/ijms25053045 Chen, B., Yu, P., Chan, W.N., Xie, F., Zhang, Y., Liang, L., Leung, K. T., Lo, K. W., Yu, J., Tse, G. M. K., Kang, W., & To, K. F. (2024). Cellular zinc metabolism. and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduction and Targeted Therapy, 9, 6. https://doi.org/10.1038/s41392-023-01679-y Choi, D. W., & Koh, J. Y. (1998). Zinc and brain injury. Annual review of neuroscience, 21, 347–375. https://doi.org/10.1146/annurev.neuro.21.1.347 Choi, D. W., Yokoyama, M., & Koh, J. (1988). Zinc neurotoxicity in cortical cell culture. Neuroscience, 24(1), 67–79. https://doi.org/10.1016/0306-4522(88)90312-0 Costa, M. I., Sarmento-Ribeiro, A. B., & Gonçalves, A. C. (2023). Zinc: From Biological Functions to Therapeutic Potential. International journal of molecular sciences, 24(5), 4822. https://doi.org/10.3390/ijms24054822 Döhrmann, S., Cole, J. N., Nizet, V. (2016). Conquering Neutrophils. PLoS Pathog. 12(7). https://doi.org/10.1371/journal.ppat.1005682 Drozd, A., Wojewska, D., Peris-Díaz, M. D., Jakimowicz, P., & Krężel, A. (2018). Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics, 10(595-613). https://doi.org/10.1039/C7MT00332C Förstermann, U., & Sessa, W.C. (2012). Nitric oxide synthases: regulation and function. European Heart Journal, 33(7), 829-837. https://doi.org/10.1093/eurheartj/ehr304 Fan, Y. G., Wu, T. Y., Zhao, L. X., Jia, R. J., Ren, H., Hou, W. J., & Wang, Z. Y. (2024). From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacological Research, 199, 107039. https://doi.org/10.1016/j.phrs.2023.107039 Franco, R., Reyes-Resina, I., & Navarro, G. (2021). Dopamine in Health and Disease: Much More Than a Neurotransmitter. Biomedicines, 9(2), 109. https://doi.org/10.3390/biomedicines9020109 Franklin, R. B., & Costello, L. C. (2009). The important role of the apoptotic effects of zinc in the development of cancers. Journal of Cellular Biochemistry, 106(5), 750–757. https://doi.org/10.1002/jcb.22049 Gammoh, N. Z., & Rink, L. (2017). Zinc in Infection and Inflammation. Nutrients, 9(6), 624. https://doi.org/10.3390/nu9060624 Gottesman, N., Asraf, H., Bogdanovic, M., Sekler, I., Tzounopoulos, T., Aizenman, E., & Hershfinkel, M. (2022). ZnT1 is a neuronal Zn2+/Ca2+ exchanger. Cell Calcium, 101. https://doi.org/10.1016/j.ceca.2021.102505 Guerra D. D., Bok, R., Lorca, R. A., & Hurt, K., J. (2020). Protein kinase A facilitates relaxation of mouse ileum via phosphorylation of neuronal nitric oxide synthase. British Journal of Pharmacology, 177(12), 2765-2778. Hara, T., Takeda, Ta., Takagishi, T. Fukue K., Kambe T., & Fukada T. (2017). Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. The Journal of Physiological Sciences 67, 283–301 . https://doi.org/10.1007/s12576-017-0521-4 Hara, T., Yoshigai, E., Ohashi T., & Fukada T. (2022). Zinc transporters as potential therapeutictargets: As updated review. Journal of Pharmacological Sciences, 148(2), 221-228. https://doi.org/10.1016/j.jphs.2021.11.007 Haase, H., & Rink, L. (2009). Annual Review of Nutrition, 29, 133-152. https://doi.org/10.1146/annurev-nutr-080508-141119 Haase, H., & Rink, L. (2009). Functional significance of zinc-related signaling pathways in immune cells. Annual Review of Nutrition, 29, 133-152. https://doi.org/10.1146/annurev-nutr-080508-141119 Helge, I. K., & Lothar, R. (2003). Zinc-Altered Immune function. The Journal of Nutrition, 133(5). 1452S-1456S. https://doi.org/10.1093/jn/133.5.1452S Higashi, Y., Segawa, S., Matsuo, T., Nakamura, S., Kikkawa, Y., Nishida, K., & Nagasawa, K. (2011). Microglial zinc uptake via zinc transporters induces ATP release and the activation of microglia. Glia, 59(12), 1933–1945. https://doi.org/10.1002/glia.21235 Ho, E., & Ames, B. N. (2002). Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA. repair in a rat glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 16770–16775. https://doi.org/10.1073/pnas.222679399 Huang, L., & Tepaamorndech, S. (2013). The SLC30 family of zinc transporters. — A review of current understanding of their biological and pathophysiological roles. Molecular Aspects of Medicine, 34(2-3), 548–560. https://doi.org/10.1016/j.mam.2012.05.008 Huiliang, Z., Mengzhe, Y., Xiaochuan, W., Hui, W., Min, D., Mengqi, W., Jianzhi, W., Zhongshan, C., Caixia, P., & Rong, L. (2021). Zinc induces reactive astrogliosis through ERK-dependent activation of Stat3 and promotes synaptic degeneration. Journal of Neurochemistry, 159(6), 1016–1027. https://doi.org/10.1111/jnc.15531 Hung, H. H., Huang, W. P., & Pan, C.Y. (2013). Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell Biology and Toxicology, 29, 415–429. https://doi.org/10.1007/s10565-013-9261-2 Ireland, S. M., & Martin, A. C. R. (2021). Zincbindpredict-Prediction of Zinc Binding Sites in Proteins. Molecules, 26(4), 966. https://doi.org/10.3390/molecules26040966 Jana, S., Sinha, M., Chanda, D., Roy, T., Banerjee, K., Munshi, S., Patro, B. S., & Chakrabarti, S. (2011). Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochimica et biophysica acta, 1812(6), 663–673. https://doi.org/10.1016/j.bbadis.2011.02.013 Jin, D., Wei, X., He, Y., Zhong, L., Lu, H., Lan, J., Wei, Y., Liu, Z., & Liu, H. (2024). The nutritional roles of zinc for immune system and COVID-19 patients. Frontiers Nutrition, 11. doi: 10.3389/fnut.2024.1385591 Jones-Tabah J., Mohammad, H., Paulus, E. G., Clarke, P. B. S, & Hébert, T. E. (2021). The Signaling and Pharmacology of the Dopamine D1 Receptor. Cellular Neurophysiology. 15. https://doi.org/10.3389/fncel.2021.806618 Kauppinen, T. M., Higashi, Y., Suh, S. W., Escartin, C., Nagasawa, K., & Swanson, R. A. (2008). Zinc triggers microglial activation. The Journal of Neuroscience, 28(22), 5827–5835. https://doi.org/10.1523/JNEUROSCI.1236-08.2008 Khatai L., Goessler, W., Lorencova, H., Zangger, K. (2004), Modulation of nitric oxide-mediated metal release from metallothionein by the redox state of glutathione in vitro. European Journal of Biochemistry, 271(12), 2408-2416. https://doi.org/10.1111/j.1432-1033.2004.04160x Kimura, T., & Kambe, T. (2016). The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. International Journal of molecular sciences, 17(3), 336. https://doi.org/10.3390/ijms17030336 Kimura, T., & Tsuji, T., Hashimoto, A., & Itsumura, N. (2015). The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiological Reviews, 95(3), 749-784. https://doi.org/10.1152/physrev.00035.2014 Krall, R. F., Tzounopoulos, T., & Aizenman, E. (2021). The Function and Regulation of Zinc in the Brain. Neuroscience, 457, 235–258. https://doi.org/10.1016/j.neuroscience.2021.01.010 Krall, R. F., Moutal, A., Phillips, M. B., Asraf, H., Johnson, J. W., Khanna, R., Hershfinkel, M., Aizenman, E., & Tzounopoulos, T. (2020). Synaptic zinc inhibition of NMDA receptors depends on the association of GluN2A with the zinc transporter ZnT1. Science Advances, 6(27), 1515. https://doi.org/10.1126/sciadv.abb1515 Krężel, A., & Maret, W. (2016). The biological inorganic chemistry of zinc ions. Archives of Biochemistry and Biophysics, 611, 3–19. https://doi.org/10.1016/j.abb.2016.04.010 Krȩżel, A., & Maret, W. (2007). Dual Nanomolar and Picomolar Zn (II) Binding Properties of Metallothionein. Journal of the American Chemical Society, 129(35), 10911-10921. https://doi.org/10.1021/ja071979s Lazo, J. S., Kondo, Y., Dellapiazza, D., Michalska, A. E., Choo, K. H., & Pitt, B. R. (1995). Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes. The Journal of Biological Chemistry, 270(10), 5506–5510. https://doi.org/10.1074/jbc.270.10.5506 Lee, M. C., Yu, W. C., Shih, Y. H., Chen, C. Y., Guo, Z. H., Huang, S. J., Chan, J. C. C., & Chen, Y. R. (2018). Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer's disease. Scientific Reports, 8(1), 4772. https://doi.org/10.1038/s41598-018-23122-x Lehvy, A.I., Horev, G., Golan, Y., Glaser, F., Shammai, Y., & Assaraf, Y. G. (2019). Alterations in ZnT1 expression and function lead to impaired. intracellular zinc homeostasis in cancer. Cell Death Discovery. 5, 144. https://doi.org/10.1038/s41420-019-0224-0 Li, T., Jiao, R., Ma, J., Zang, J., Zhao, G., & Zhang, T. (2022). Zinc binding strength of proteins dominants zinc uptake in Caco-2 cells. Royal Society of Chemistry. Advances, 12(33), 21122–21128. https://doi.org/10.1039/d2ra03565k Li, Y. V., & Frederickson, C. J. (2013). Zinc-Secreting Neurons, Gluzincergic and Zincergic Neurons. Encyclopedia of Metalloproteins. 2565-2571. https://doi.org/10.1007/978-1-4614-1533-6_210 Li, Y., Hasenhuetl, P. S., Schicker, K., Sitte, H. H., Freissmuth, M., & Sandtner, W. (2015). Dual Action of Zn2+ on the Transport Cycle of the Dopamine Transporter. The Journal of Biological Chemistry, 290(52), 31069–31076. https://doi.org/10.1074/jbc.M115.688275 Li, Z., Liu, Y., Wei, R., Yong, V., Xue, M. (2023). The Important Role of Zinc Neurological Diseases. Biomolecules, 13(1), 28. https://doi.org/10.3390/biom13010028 Liu, Y., Li. Z., Khan, S., Zhang, R., Wei, R., Zhang, Y., Zue, M., & Yong, V. W. (2021). Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in. mice. Neuroscience Letters, 764. https://doi.org/10.1016/j.neulet.2021.136297 Liu, H. Y., Gale, J. R., Reynolds, I. J., Weiss, J. H., & Aizenman, E. (2021). The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines, 9(5), 489. https://doi.org/10.3390/biomedicines9050489 Lovell, M., Xiong, J. L. S., & Markesbery, W. R. (2005). Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer's disease. Neurotoxicity research, 7(4), 265–271. https://doi.org/10.1007/BF03033884 Lyubartseva, G., Smith, J.L., Markesbery, W.R. and Lovell, M.A. (2010), Alterations of Zinc Transporter Proteins ZnT-1, ZnT-4 and ZnT-6 in Preclinical Alzheimer's Disease Brain. Brain Pathology, 20(2), 343-350. https://doi.org/10.1111/j.1750-3639.2009.00283.x Ma, T., Zhao, L., Zhang, J., Tang, R., Wang, X., Liu, N., Zhang, Q., Wang, F., Li, M., Shan, Q., Yang, Y., Yin, Q., Yang, L., Gan, Q., & Yang, C. (2022). A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis. Protein & cell, 13(3), 180–202. https://doi.org/10.1007/s13238-021-00881-4 Martorana, A., Mori, F., Esposito, Z., Kusayanagi, H., Monteleone, F., Codecà, C., Sancesario, G., Bernardi, G., & Koch, G. (2009). Dopamine Modulates Cholinergic Cortical Excitability in Alzheimer's Disease Patients. Neuropsychopharmacology, 34(10), 2323–2328. https://doi.org/10.1038/npp.2009.60 McAllister B. B., & Dyck R. H. (2017). Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neuroscience & Behavioral Reviews. 80, 329-350. https://doi.org/10.1016/j.neubiorev.2017.06.006 Mellone, M., Pelucchi, S., Alberti, L., Genazzani, A. A., Luca, M. D., Gardoni, F. (2015). Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density. Journal of Neurochemistry, 132(2), 155-262. https://doi.org/10.1111/jnc.12968 Minami, A., Takeda, A., Yamaide, R., & Oku, N. (2002). Relationship between zinc and neurotransmitters released into the amygdalar extracellular space. Brain Research, 936(1-2), 91–94. https://doi.org/10.1016/s0006-8993(02)02499-x Mishra, A., Singh, S., & Shukla, S. (2018).Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. Journal of Experimental neuroscience, 12. https://doi.org/10.1177/1179069518779829 Mocchegiani, E., Costarelli, L., Giacconi, R., Cipriano, C., Muti, E., & Malavolta, M. (2006). Zinc-binding proteins (metallothionein and α-2 macroglobulin) and immunosenescence. Experimenral Gerontology, 41(11), 1094-1107. https://doi.org/10.1016/j.exger.2006.08.010 Mosna, K., Jurczak, K., & Krężel, A. (2023). Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn. Metallomics, 15(10), mfad061. https://doi.org/10.1093/mtomcs/mfad061 Nardone, R., Höller, Y., Thomschewski, A., Kunz, A. B., Lochner, P., Golaszewski, S., Trinka, E., & Brigo, F. (2014). Dopamine differently modulates central cholinergic circuits in patients with Alzheimer disease and CADASIL. Journal of Neural Transmission, 121(10), 1313–1320. https://doi.org/10.1007/s00702-014-1195-1 Narzi, D., Keulen S. C. v., & Röthlisberger, U. (2021). Gαi1inhibition mechanism of ATP-bound adenylyl cyclase type 5. PLoS One, 16(1). https://doi.org/10.1371/journal.pone.0245197 Nedić, O., Šunderić, M., Robajac, D., Miljuš, G., Četić, D., & Penezić, A. (2022). Major trace elements and their binding proteins in the early phase of Covid-19 infection. Journal of Biological Inorganic Chemistry, 27, 261–269. https://doi.org/10.1007/s00775-022-01931-w Noh, S., Lee, S. R., Jeong, Y. J., Ko, K. S., Rhee, B. D., Kim, N., & Han, J. (2015). The direct modulatory activity of zinc toward ion channels. Integrative Medicine Research, 4(3), 142–146. https://doi.org/10.1016/j.imr.2015.07.004 Norouzi, S., Adulcikas, J., Sohal, S. S., & Myers, S. (2017). Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease. Journal of Biomedical Science, 24, 87. https://doi.org/10.1186/s12929-017-0394-0 Norregaard, L., Frederiksen, D., Nielsen, E. O., & Gether, U. (1998). Delineation of an endogenous zinc-binding site in the human dopamine transporter. The EMBO Journal, 17(15), 4266–4273. https://doi.org/10.1093/emboj/17.15.4266 Nuttall, J.R., & Oteiza, P.I. (2014). Zinc and the aging brain. Genes & Nutrition, 9, 379. https://doi.org/10.1007/s12263-013-0379-x Pan, X., Kaminga, A. C., Wen, S. W., Wu, X., Acheampong, K., & Liu, A. (2019). Dopamine and Dopamine Receptors in Alzheimer's Disease: A Systematic Review and Network Meta-Analysis. Frontiers in Aging Neuroscience, 11, 175. https://doi.org/10.3389/fnagi.2019.00175 Patel, K., Kumar, A., & Durani, S. (2007). Analysis of the structural consensus of. the zinc coordination centers of metalloprotein structures. Biochimica et Biophysica acta, 1774(10), 1247–1253. https://doi.org/10.1016/j.bbapap.2007.07.010 Pifl, C., Wolf, A., Rebernik, P., Reither, H., & Berger, M. L. (2009). Zinc regulates the dopamine transporter in a membrane potential and chloride dependent manner. Neuropharmacology, 56(2), 531–540. https://doi.org/10.1016/j.neuropharm.2008.10.009 Ramesh, S., & Arachchige, A. S. P. M. (2023). Depletion of dopamine in Parkinson's disease and relevant therapeutic options: A review of the literature. AIMS Neuroscience, 10(3), 200–231. https://doi.org/10.3934/Neuroscience.2023017 Rangel-Barajas, C., Coronel, I., & Florán, B. (2015). Dopamine Receptors and Neurodegeneration. Aging and Disease, 6(5), 349–368. https://doi.org/10.14336/AD.2015.0330 Rege, J., Bandulik, S., Nanba, K., Kosmann, C., Blinder, A. R., Plain, A., Vats, P., Kumar-Sinha, C., Lerario, A. M., Else, T., Yamazaki, Y., Satoh, F., Sasano, H., Giordano, T. J., Williams, T. A., Reincke, M., Turcu, A. F., Udager, A. M., Warth, R., & Rainey, W., E. (2023). Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nature Genetics, 55, 1623–1631. https://doi.org/10.1038/s41588-023-01498-5 Richfield E. K. (1993). Zinc modulation of drug binding, cocaine affinity states, and dopamine uptake on the dopamine uptake complex. Molecular Pharmacology, 43(1), 100–108. Schweigel-Röntgen, M. (2014). Chapter Nine - The Families of Zinc (SLC30 and SLC39) and. Copper (SLC31) Transporters. Current Topics in Membranes, 73, 321-355. https://doi.org/10.1016/B978-0-12-800223-0.00009-8 Segawa, S., Tatsumi, N., Ohishi, A., Nishida, K., & Nagasawa, K. (2015). Characterization of zinc uptake by mouse primary cultured astrocytes and microglia. Metallomics, 7(7), 1067–1077. https://doi.org/10.1039/c5mt00085h Sharma, A. K., Pavlova, S. T., Kim, J., Kim, J., & Mirica, L. M. (2013). The effect of Cu2+ and Zn2+ on the Aβ42 peptide aggregation and cellular toxicity. Metallomics, 5(11), 1529–1536. https://doi.org/10.1039/c3mt00161j Shen, C., James, S. A., Jonge, M. D., Turney, T. W., Wright, P. F. A., Feltis, B. N. (2013). Relating Cytotoxicity, Zinc Ions, and Reactive Oxygen in ZnO Nanoparticle–Exposed Human Immune Cells. Toxicological Sciences, 136(1), 120–130. https://doi.org/10.1093/toxsci/kft187 Shusterman, E., Beharier, O., Shiri, L., Zarivach, R., Etzion, Y., Campbell, C. R., Lee, I. H., Okabayashi, K., Dinudom, A., Cook, D., Katz, A., & Moran, A. (2014). ZnT-1 extrudes zinc from mammalian cells functioning as a Zn2+/H+ exchanger. Metallomics, 6(9), 1656–1663. https://doi.org/10.1039/c4mt00108g Sindreu, C., Bayés, À., Altafaj, X., & Clausell, J. P. (2014). Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses. Molecular Brain 7, 16. https://doi.org/10.1186/1756-6606-7-16 Sobczuk, P., Łomiak, M., & Cudnoch-Jędrzejewska, A. (2020). Dopamine D1 Receptor in Cancer. Cancers, 12(11), 3232. https://doi.org/10.3390/cancers12113232 Subramanian Vignesh, K., & Deepe, G. S., Jr. (2017). Metallothioneins: Emerging. Modulators in Immunity and Infection. International Journal of Molecular Sciences, 18(10), 2197. https://doi.org/10.3390/ijms18102197 Sun, C., He, B., Gao, Y., Wang, X., Liu, X., Sun, L. (2024) Structural insights into the calcium-coupled zinc export of human ZnT1. Science Advances, 10(17). https://doi.org/10.1126/sciadv.adk5128 Takeda A. (2010). Insight into glutamate excitotoxicity from synaptic zinc homeostasis. International journal of Alzheimer's Disease, 2011, 491597. https://doi.org/10.4061/2011/491597 Thambiayya, K., Kaynar, A. M., St Croix, C. M., & Pitt, B. R. (2012). Functional role of intracellular labile zinc in pulmonary endothelium. Pulmonary circulation, 2(4), 443–451. https://doi.org/10.4103/2045-8932.105032 Thiers, R. E., & Vallee, B. L. (1957). Distribution of metals in subcellular fractions of rat liver. The Journal of Biological Chemistry, 226(2), 911–920. Valencia, D. W., Meléndez, A. B., Melendrez, I. A., & Yukl, E. T. (2022). Structure and Function of the Zinc Binding Protein ZrgA from Vibrio cholerae. International journal of molecular sciences, 24(1), 548. https://doi.org/10.3390/ijms24010548 Vandooren, J., & Itoh, Y. (2021). Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Frontiers in Immunology, 12, 803244. https://doi.org/10.3389/fimmu.2021.803244 Vogt, K., Mellor, J., Tong, G., & Nicoll, R. (2000). The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron, 26(1), 187–196. https://doi.org/10.1016/s0896-6273(00)81149-6 Wang, C., Vernon, R., Lange, O., Tyka, M., & Baker, D. (2010). Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Protein Science, 19(3), 494–506. https://doi.org/10.1002/pro.327 Wessels, I., Haase, H., Engelhardt, G., Rink, L., & Uciechowski, P. (2013). Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. The Journal of Nutritional Biochemistry, 24(1), 289–297. https://doi.org/10.1016/j.jnutbio.2012.06.007 Wessels, I., Pupke, J. T., von Trotha, K., Gombert, A., Himmelsbatch, A., Fischer, H. J., Jacobs, M. J., Rink, L., Grommes, J.(2020). Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity. Thorax, 75(3), 253-261. https://thorax.bmj.com/content/75/3/253 Whitfield, D. R., Vallortigara, j., Alghamdi, A., Howlett, D., Hortobágyi, T., Johnson, M., Johannes A., Newhouse, S., Ballard, C., Thomas, A. J., O’Brien, J. T., Aarsland D., & Francis, P. T. (2014). Assessment of ZnT3 and PSD95 protein and Alzheimer’s disease: association with cognitive impairment. Neurobiology of Aging, 35(12), 2836-2844. https://doi.org/10.106/j.neurobiolaging.2014.06.015 Wijesekara, N., Dai, F. F., Hardy, A. B., Giglou, P. R., Bhattacharjee, A., Koshkin, V., Chimienti, F., Gaisano, H. Y., Rutter, G. A., & Wheeler, M. B. (2010). Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia, 53(8), 1656–1668. https://doi.org/10.1007/s00125-010-1733-9 Wolfgang, M. (2000). The Function of Zinc Metallothionein: A Link between Cellular and Redox State 1, 2. The Journal of Nutrition, 130(5), 14555-14585. https://doi.org/10.1093/jn/130.5.1455S Xu, Y., Xiao, G., Liu, L., & Lang, M. (2019). Zinc transporters in Alzheimer's disease. Molecular Brain, 12, 106. https://doi.org/10.1186/s13041-019-0528-2 Xue, N., & Yong, V. W. (2020). Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. The Lancet Neurology, 19(12), 1023-1032. https://doi.org/10.1016/S1474-4422(20)30364-1 Yin, J., Chen, K. Y. M., Clark, M. J. Hijazi M., Kumari, P., Bai, X. C. B., Sunahara, R. K., Barth, P., & Rosenbaum, D. M. (2020). Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature 584, 125–129. https://doi.org/10.1038/s41586-020-2379-5 Zhang, G., Buchler, I. P., DePasquale, M., Wormald, M., Liao, G., Wei, H., Barrow, J. C., & Carr, G. V. (2019). Development of a PC12 Cell Based Assay for Screening Catechol-O-methyltransferase Inhibitors. ACS Chemical Neuroscience, 10(10), 4221-4226. https://doi.org/10.1021/acschemneuro.9b00395 Zhang, H. L., Wang, X. C., Liu, R. (2022). Zinc in Regulating Protein Kinases and Phosphatase-s in Neurodegenerative Diseases. Biomolecules. 12(6), 785. https://doi.org/10.3390/biom12060785 Zheng, C., Qiu, J., Zhai, Y., Wei, M., Zhou, X., & Jiao, X. (2023). ZrgA contributes to zinc acquisition in Vibrio parahaemolyticus. Virulence, 14(1). https://doi.org/10.1080/21505594.2022.2156196 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94901 | - |
| dc.description.abstract | Zn2+與多種蛋白質交互作用,調節多樣生理活性,其在不同亞細胞區域的濃度決定相關蛋白質的活性。多項研究表明,細胞質 Zn2+ 濃度 ([Zn2+]i) 的失調與神經退化性疾病的進展息息相關。細胞膜和細胞器上的轉運蛋白透過促進 Zn2+ 跨膜通量,對於維持 Zn2+ 恆定極為重要。 Zn2+ 轉運蛋白 1 (ZnT1) 主要位於細胞膜上,對於將 Zn2+ 輸出到細胞外以降低 [Zn2+]i 至關重要。我們先前的報告表明,多巴胺透過 cAMP-NO 訊號通路升高 [Zn2+]i,激活 PC12 細胞和培養神經元的自噬和發炎。為了表徵 ZnT1 在調節 Zn2+ 恆定和細胞活動中的影響,此研究在 PC12 細胞中過度表現 ZnT1 並檢查多巴胺處理下的代謝活動。以多巴胺和ZnCl2 處理PC12 細胞可升高 [Zn2+]i,降低透過Zn2+ 敏感螢光染料(FluoZin-3)和MTT [3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴化物] 監測的代謝活性測定。ZnT1 過度表現下調了多巴胺處理的 PC12 細胞中 Zn2+ 反應並增強了代謝活性。此外,ZnT1 過度表現略微升高了用多巴胺處理的 PC12 細胞中的粒線體電位。這些發現強調了 ZnT1 在維持 Zn2+ 恆定以保護粒線體代謝活性方面的重要影響。因此,了解 ZnT1 和其他 Zn2+ 轉運蛋白如何調節神經系統中 Zn2+ 恆定對於闡明其在病理條件下神經退化性疾病進展中的作用至關重要。 | zh_TW |
| dc.description.abstract | Zn2+ interacts with numerous proteins to regulate diverse physiological activities and its concentration at different subcellular regions determine the activities of associated proteins. Deficits in regulating cytosolic Zn2+ concentration ([Zn2+]i) has been associated with the progression of neurodegenerative diseases in various studies. Transporter proteins at the cell membrane and organelles can maintain Zn2+ homeostasis by facilitating Zn2+ flux across membranes. Zn2+ transporter 1 (ZnT1), mainly located at the cell membrane to export Zn2+ out of cells to lower [Zn2+]i. Our previous report has shown that dopamine can elevates [Zn2+]i via activating the cAMP-NO signaling pathway, activating autophagy and inflammation in PC12 cells and cultured neurons. To investigate the effects of ZnT1 in regulating the Zn2+ homeostasis and cellular activities, we overexpressed ZnT1 in PC12 cells and examined the metabolic activities under dopamine treatment. Treating PC12 cells with dopamine and ZnCl2 elevated the [Zn2+]i and decreased the metabolic activities monitored by a Zn2+ sensitive fluorescence dye, FluoZin-3, and MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, respectively. ZnT1 overexpression down-regulated the Zn2+ response and enhanced metabolic activity in PC12 cells treated with dopamine. In addition, ZnT1 overexpression slightly elevated the mitochondria potential in PC12 cells under dopamine treatment. These findings underscore ZnT1's critical role in maintaining Zn2+ homeostasis to preserve mitochondrial metabolic activity. Henceforth, understanding how ZnT1 and other Zn2+ transporters regulate Zn2+ homeostasis in the nervous system is crucial for elucidating their roles in the progression of neurodegenerative diseases under pathological conditions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:22:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:22:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝詞…………………………………………………………………………………………………………………………………………………… i
摘要………………………………………………………………………………………………………………………………………………… ii Abstract………………………………………………………………………………………………………………………………… iii 1. Introduction………………………………………………………………………………………………………………… 1 1.1 Distribution of Zn2+ body………………………………………………………………………… 1 1.2 Zn2+ homeostasis in the nervous system……………………………………… 1 1.3 Zn2+ homeostasis in the immune system………………………………………… 2 1.4 Zn2+ homeostasis in the endocrine system………………………………… 3 1.5 Distribution of Zn2+ in cells……………………………………………………………… 4 1.6 Zn2+ binding proteins…………………………………………………………………………………… 4 1.7 Metallothioneins………………………………………………………………………………………………… 5 1.8 Zn2+ transporters……………………………………………………………………………………………… 6 1.9 The role of dopamine in neurological diseases…………………… 7 1.10 Zn2+ Transporter 11.10 Zn2+ Transporter 1…………………………… 8 1.11 The role of dopamine in neurological diseases………………… 10 1.12 The function of Dopamine receptors (DARs)…………………………… 10 1.13 Dopamine receptor 1 (D1R) and signaling pathway…………… 11 1.14 Interaction between Zn2+ and DA……………………………………………………… 11 1.15 Aims……………………………………………………………………………………………………………………………… 12 2. Materials and methods ……………………………………………………………………………………… 14 2.1 Materials………………………………………………………………………………………………………………… 14 2.2 Cell culture………………………………………………………………………………………………………… 14 2.3 MTT assay………………………………………………………………………………………………………………… 14 2.4 Plasmid preparation and cell transfection ………………………… 15 2.5 Fluorescence imaging…………………………………………………………………………………… 15 2.6 Drug treatments………………………………………………………………………………………………… 16 2.7 Data analysis and graph…………………………………………………………………………… 16 3. Results……………………………………………………………………………………………………………………………… 17 3.1 Zn2+ treatment reduces metabolic activity in PC12 cells…………………………………………………………………………………………………………………………………………… 17 3.2 DA treatment reduces metabolic activity in PC12 cells…………………………………………………………………………………………………………………………………………… 17 3.3 DA treatment maintains the [Zn2+]i at a high level in PC12 cells……………………………………………………………………………………………………………………………………………… 18 3.4 Transfection efficiency of ZnT1 in PC12 cells…………………… 19 3.5 ZnT1 overexpression rescues the metabolic activity in 24 hours DA treated PC12 cells………………………………………………………………………………………………………………………………… 19 3.6 ZnT1 overexpression reduces [Zn2+]i in PC12 cells with 18 hours ZnCl2 treatment…………………………………………………………………………………………………………………………………… 20 3.7 ZnT1 overexpression reduces [Zn2+]i in 24 hours DA treated PC12 cells……………………………………………………………………………………………………………………………………………… 21 3.8 ZnT1 overexpression has no significant effect on mitochondrial membrane potential in 24 hours DA treated PC12 cells……………………………………………………………………………………………………………………………………………… 22 4. Discussion………………………………………………………………………………………………………………………… 24 5. References………………………………………………………………………………………………………………………… 27 6. Figures………………………………………………………………………………………………………………………………… 43 Fig. 1. ZnCl2 treatment reduces metabolic activity in PC12 cells……………………………………………………………………………………………………………………………………………… 43 Fig. 2. DA treatment reduces the metabolic activity in PC12 cells……………………………………………………………………………………………………………………………………………… 45 Fig. 3. DA treatment elevates [Zn2+]i in PC12 cells……………………………………………………………………………………………………………………………………………… 47 Fig. 4. Transfection efficiency in PC12 cells……………………… 48 Fig. 5. ZnT1 overexpression rescues the metabolic activity in 24 hours DA treated PC12 cells…………………………………………………………………………………………………………… 49 Fig. 6. ZnT1 overexpression reduces the elevation of [Zn2+]i in PC12 cells treated with ZnCl2…………………………………………………………………………………………………………… 50 Fig. 7. ZnT1 overexpression suppresses DA-induced elevation of [Zn2+]i in PC12 cells………………………………………………………………………………………………………………………………… 51 Fig. 8. ZnT1 overexpression has no significant effect on mitochondrial membrane potential in DA-treated PC12 cells…………………………………………………………………………………………………………………………………………… 52 Fig. 9. Illustration of the impact of cellular systems by ZnT1……………………………………………………………………………………………………………………………………………… 54 | - |
| dc.language.iso | en | - |
| dc.subject | 鋅離子轉運蛋白1 | zh_TW |
| dc.subject | Zn2+ Transporter 1 | en |
| dc.title | 研究鋅離子轉運蛋白1 在 PC12 細胞中調節鋅離子恆定和代謝活性的功能 | zh_TW |
| dc.title | Study the Effects of Zn2+ Transporter 1 in Modulating the Zn2+ Homeostasis and Metabolic Activity in PC12 Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王培育 | zh_TW |
| dc.contributor.coadvisor | Pei-Yu Wang | en |
| dc.contributor.oralexamcommittee | 林崇智;周銘翊 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Chih Lin;Ming-Yi Chou | en |
| dc.subject.keyword | 鋅離子轉運蛋白1, | zh_TW |
| dc.subject.keyword | Zn2+ Transporter 1, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202403716 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 腦與心智科學研究所 | - |
| dc.date.embargo-lift | 2029-08-06 | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
