Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94894
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡丰喬zh_TW
dc.contributor.advisorFeng-Chiao Tsaien
dc.contributor.author林冠志zh_TW
dc.contributor.authorKuan-Chih Linen
dc.date.accessioned2024-08-21T16:15:32Z-
dc.date.available2024-08-22-
dc.date.copyright2024-08-21-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation1. Amano, M., M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura and K. Kaibuchi (1996). "Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase)." Journal of Biological Chemistry 271(34): 20246-20249.
2. Chen, Y.-A., C.-Y. Lu, T.-Y. Cheng, S.-H. Pan, H.-F. Chen and N.-S. Chang (2019). "WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance, Tissue Homeostasis, and Tumorigenesis." Frontiers in Oncology 9.
3. Conlon, I. and M. Raff (1999). "Size control in animal development." Cell 96(2): 235-244.
4. Costanzo, M., A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S. Sevier, H. Ding, J. L. Koh, K. Toufighi and S. Mostafavi (2010). "The genetic landscape of a cell." science 327(5964): 425-431.
5. Dong, J., G. Feldmann, J. Huang, S. Wu, N. Zhang, S. A. Comerford, M. F. Gayyed, R. A. Anders, A. Maitra and D. Pan (2007). "Elucidation of a universal size-control mechanism in Drosophila and mammals." Cell 130(6): 1120-1133.
6. Durzynska, I., X. Xu, G. Adelmant, S. B. Ficarro, J. A. Marto, P. Sliz, S. Uljon and S. C. Blacklow (2017). "STK40 Is a Pseudokinase that Binds the E3 Ubiquitin Ligase COP1." Structure 25(2): 287-294.
7. Ernkvist, M., K. Aase, C. Ukomadu, J. Wohlschlegel, R. Blackman, N. Veitonmäki, A. Bratt, A. Dutta and L. Holmgren (2006). "p130‐Angiomotin associates to actin and controls endothelial cell shape." The FEBS journal 273(9): 2000-2011.
8. García-García, M., S. Sánchez-Perales, P. Jarabo, E. Calvo, T. Huyton, L. Fu, S. C. Ng, L. Sotodosos-Alonso, J. Vázquez, S. Casas-Tintó, D. Görlich, A. Echarri and M. A. Del Pozo (2022). "Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP." Nature Communications 13(1): 1174.
9. Hoon, J. L., M. H. Tan and C.-G. Koh (2016). "The regulation of cellular responses to mechanical cues by Rho GTPases." Cells 5(2): 17.
10. Huang, J., L. Teng, T. Liu, L. Li, D. Chen, F. Li, L.-G. Xu, Z. Zhai and H.-B. Shu (2003). "Identification of a novel serine/threonine kinase that inhibits TNF-induced NF-κB activation and p53-induced transcription." Biochemical and biophysical research communications 309(4): 774-778.
11. Hwang, S.-M., M. Jin, Y. H. Shin, S. Ki Choi, E. Namkoong, M. Kim, M.-Y. Park and K. Park (2014). "Role of LPA and the Hippo pathway on apoptosis in salivary gland epithelial cells." Experimental & Molecular Medicine 46(12): e125-e125.
12. Julian, L. and M. F. Olson (2014). "Rho-associated coiled-coil containing kinases (ROCK) structure, regulation, and functions." Small GTPases 5(2): e29846.
13. Kaszak, I., O. Witkowska-Piłaszewicz, Z. Niewiadomska, B. Dworecka-Kaszak, F. Ngosa Toka and P. Jurka (2020). "Role of Cadherins in Cancer-A Review." Int J Mol Sci 21(20).
14. Kim, J., H. Kwon, Y. K. Shin, G. Song, T. Lee, Y. Kim, W. Jeong, U. Lee, X. Zhang, G. Nam, H.-C. Jeung, W. Kim and E.-h. Jho (2020). "MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis." Proceedings of the National Academy of Sciences 117(24): 13529-13540.
15. Kim, N.-G., E. Koh, X. Chen and B. M. Gumbiner (2011). "E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components." Proceedings of the National Academy of Sciences 108(29): 11930-11935.
16. Lee, Y., N. H. Kim, E. S. Cho, J. H. Yang, Y. H. Cha, H. E. Kang, J. S. Yun, S. B. Cho, S.-H. Lee, P. Paclikova, T. W. Radaszkiewicz, V. Bryja, C. G. Kang, Y. S. Yuk, S. Y. Cha, S.-Y. Kim, H. S. Kim and J. I. Yook (2018). "Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner." Nature Communications 9(1): 2301.
17. Li, L., L. Sun, F. Gao, J. Jiang, Y. Yang, C. Li, J. Gu, Z. Wei, A. Yang and R. Lu (2010). "Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation." Proceedings of the National Academy of Sciences 107(4): 1402-1407.
18. Lodish, H. F. (2008). Molecular cell biology, Macmillan.
19. Maekawa, M., T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. Mizuno and S. Narumiya (1999). "Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase." Science 285(5429): 895-898.
20. Mana-Capelli, S. and D. McCollum (2018). "Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling." J Biol Chem 293(47): 18230-18241.
21. Mana-Capelli, S., M. Paramasivam, S. Dutta and D. McCollum (2014). "Angiomotins link F-actin architecture to Hippo pathway signaling." Molecular biology of the cell 25(10): 1676-1685.
22. Martz, C. A., K. A. Ottina, K. R. Singleton, J. S. Jasper, S. E. Wardell, A. Peraza-Penton, G. R. Anderson, P. S. Winter, T. Wang, H. M. Alley, L. N. Kwong, Z. A. Cooper, M. Tetzlaff, P. L. Chen, J. C. Rathmell, K. T. Flaherty, J. A. Wargo, D. P. McDonnell, D. M. Sabatini and K. C. Wood (2014). "Systematic identification of signaling pathways with potential to confer anticancer drug resistance." Sci Signal 7(357): ra121.
23. Maubant, S., T. Tahtouh, A. Brisson, V. Maire, F. Némati, B. Tesson, M. Ye, G. Rigaill, M. Noizet and A. Dumont (2018). "LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers." Oncotarget 9(32): 22586.
24. Moon, S., W. Kim, S. Kim, Y. Kim, Y. Song, O. Bilousov, J. Kim, T. Lee, B. Cha, M. Kim, H. Kim, V. L. Katanaev and E. H. Jho (2017). "Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization." EMBO Rep 18(1): 61-71.
25. Nair, A., P. Chauhan, B. Saha and K. F. Kubatzky (2019). "Conceptual evolution of cell signaling." International journal of molecular sciences 20(13): 3292.
26. Ohashi, K., K. Nagata, M. Maekawa, T. Ishizaki, S. Narumiya and K. Mizuno (2000). "Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop." Journal of Biological Chemistry 275(5): 3577-3582.
27. Okada, N., Y. Ishigami, T. Suzuki, A. Kaneko, K. Yasui, R. Fukutomi and M. Isemura (2008). "Importins and exportins in cellular differentiation." J Cell Mol Med 12(5b): 1863-1871.
28. Pan, D. (2007). "Hippo signaling in organ size control." Genes & development 21(8): 886-897.
29. Pan, H., Q. Liu, F. Zhang, X. Wang, S. Wang and X. Shi (2021). "High STK40 Expression as an Independent Prognostic Biomarker and Correlated with Immune Infiltrates in Low-Grade Gliomas." Int J Gen Med 14: 6389-6400.
30. Pavel, M., M. Renna, S. J. Park, F. M. Menzies, T. Ricketts, J. Füllgrabe, A. Ashkenazi, R. A. Frake, A. C. Lombarte, C. F. Bento, K. Franze and D. C. Rubinsztein (2018). "Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis." Nature Communications 9(1): 2961.
31. Riento, K. and A. J. Ridley (2003). "Rocks: multifunctional kinases in cell behaviour." Nature reviews Molecular cell biology 4(6): 446-456.
32. Rosenbluh, J., D. Nijhawan, A. G. Cox, X. Li, J. T. Neal, E. J. Schafer, T. I. Zack, X. Wang, A. Tsherniak and A. C. Schinzel (2012). "β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis." Cell 151(7): 1457-1473.
33. Sudol, M., D. C. Shields and A. Farooq (2012). "Structures of YAP protein domains reveal promising targets for development of new cancer drugs." Semin Cell Dev Biol 23(7): 827-833.
34. Sun, C., B. He, M. Sun, X. Lv, F. Wang, J. Chen, J. Zhang, Z. Ye, J. Wen and P. Liu (2021). "Yes-Associated Protein in Atherosclerosis and Related Complications: A Potential Therapeutic Target That Requires Further Exploration." Frontiers in Cardiovascular Medicine 8.
35. Wang, Y., A. Yu and F. X. Yu (2017). "The Hippo pathway in tissue homeostasis and regeneration." Protein Cell 8(5): 349-359.
36. Yang, S., L. Zhang, M. Liu, R. Chong, S. J. Ding, Y. Chen and J. Dong (2013). "CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation." Cancer Res 73(22): 6722-6733.
37. Yi, C., Z. Shen, A. Stemmer-Rachamimov, N. Dawany, S. Troutman, L. C. Showe, Q. Liu, A. Shimono, M. Sudol, L. Holmgren, B. Z. Stanger and J. L. Kissil (2013). "The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis." Sci Signal 6(291): ra77.
38. Yu, H., K. He, L. Li, L. Sun, F. Tang, R. Li, W. Ning and Y. Jin (2013). "Deletion of STK40 Protein in Mice Causes Respiratory Failure and Death at Birth*[S]." Journal of Biological Chemistry 288(8): 5342-5352.
39. Yu, H., K. He, L. Wang, J. Hu, J. Gu, C. Zhou, R. Lu and Y. Jin (2015). "Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins." Journal of cell science 128(15): 2881-2890.
40. Yu, L. Y., T. J. Tseng, H. C. Lin, C. L. Hsu, T. X. Lu, C. J. Tsai, Y. C. Lin, I. Chu, C. T. Peng, H. J. Chen and F. C. Tsai (2021). "Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration." Sci Adv 7(31).
41. Zhang, J., J. Zhang, C. Zhao, R. Shen, X. Guo, C. Li, X. Ling and C. Liu (2014). "Analysis of transcription factor Stk40 expression and function during mouse pre-implantation embryonic development." Molecular medicine reports 9(2): 535-540.
42. Zhang, W., Y. Zhu, Y. Zhou, J. Wang, P. Jiang and L. Xue (2022). "miRNA‐31 increases radiosensitivity through targeting STK40 in colorectal cancer cells." Asia‐Pacific Journal of Clinical Oncology 18(3): 267-278.
43. Zhao, B., L. Li, Q. Lu, L. H. Wang, C.-Y. Liu, Q. Lei and K.-L. Guan (2011). "Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein." Genes & development 25(1): 51-63.
44. Zhao, B., L. Li, K. Tumaneng, C. Y. Wang and K. L. Guan (2010). "A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)." Genes Dev 24(1): 72-85.
45. Zhao, B., X. Wei, W. Li, R. S. Udan, Q. Yang, J. Kim, J. Xie, T. Ikenoue, J. Yu, L. Li, P. Zheng, K. Ye, A. Chinnaiyan, G. Halder, Z. C. Lai and K. L. Guan (2007). "Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control." Genes Dev 21(21): 2747-2761.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94894-
dc.description.abstract細胞內的運作機制非常複雜,通常需要經過不同pathway的crosstalk分工才能完成。包含常見的cell migration.我們實驗室在2019年透過two-hit screen的方式找到一個組合,可以更好的干擾細胞遷移,並命名為合成阻動(synthetic dysmobility)。同時使用 MEK 抑制劑 Trametinib 抑制 MAPK 信號通路,並敲低絲胺酸/蘇胺酸激酶 40(STK40)。結果顯示,雙重處理後的細胞遷移能力顯著降低。細胞遷移受 Yes相關蛋白 (YAP)控制,我們也發現在敲低STK40後,YAP會從細胞核移位到細胞質。由於目前關於STK40的研究很少,且STK40如何調控 YAP 的機制尚不清楚。基於此,我們對STK40對YAP的調控方式初步研究。在先前的研究數據顯示,和一般隨著細胞密度增加,而YAP會隨之從細胞核移位至細胞質不同。敲低 STK40後的細胞,即使增加細胞密度,細胞核內 YAP 水平無顯著降低。而當過表達 STK40 時,YAP 似乎與 STK40 共定位,這意味著 STK40 可能影響 YAP 的分布。此外,高細胞密度會將 STK40 和 YAP 轉運到細胞質中。我們進一步假設了幾種 STK40 調控 YAP 的機制。第一個機制涉及 Hippo 通路, Hippo 通路的核心成員 MST1/2 和 LATS1/2 可促進YAP磷酸化,使其轉移到細胞質。我們使用小分子抑制劑抑制它們的活性,並同時使用 shRNA 慢病毒敲低 STK40,結果顯示部分 YAP 仍然轉移到細胞質,這表明可能有其他因子可以影響STK40 調控 YAP 的移位。第二個假設是 STK40 通過核運輸蛋白影響 YAP 分布。蛋白質需要核運輸蛋白來進出細胞核,內輸蛋白和外輸蛋白負責這些任務。內輸蛋白將蛋白質運輸進細胞核,而 外輸蛋白則執行相反的功能。我們使用小分子抑制劑 Leptomycin B(針對外輸蛋白)和 Ivermectin(針對內輸蛋白),並搭配 shRNA 慢病毒同時敲低 STK40,觀察到 Leptomycin B 處理組的結果與 LATS 抑制劑處理組類似,而同時敲低STK40並加 Ivermectin 的組別與單純敲低STK40的組別則沒有在核質分布上有顯著改變。這強烈表明 STK40 可能通過影響內輸蛋白來影響 YAP 的分布。最後,在以添加小分子抑制劑Y27632(ROCK 抑制劑)模擬細胞密度上升時,細胞骨架張力減弱對 STK40 的影響時,結果顯示 YAP 轉移到細胞質。有趣的是,我們發現 ROCK 似乎是調控 YAP 核質轉運的最下游且最關鍵的因子。此外,ROCK 也不受STK40所調控。我們的發現表明了一條新的 STK40 介導的 YAP 調控途徑。目前,我們正在識別 STK40 的主要靶標,希望揭示細胞密度如何控制 YAP 活動以實現接觸抑制的機制力。zh_TW
dc.description.abstractThe cellular mechanisms are highly complex, often requiring crosstalk among different pathways to accomplish tasks such as cell migration. In 2019, our laboratory identified a combination that could more effectively interfere with cell migration through a two-hit screen approach, which we named synthetic dysmobility. This involved using the MEK inhibitor Trametinib to inhibit the MAPK signaling pathway and knocking down Serine/Threonine Kinase 40 (STK40). The results showed that cell migration significantly decreased after the dual treatment. Since cell migration is regulated by Yes- associated protein (YAP), we also found that knocking down STK40 caused YAP to translocate from the nucleus to the cytoplasm. Given the limited research on STK40 and the unclear mechanism of how STK40 regulates YAP, we conducted preliminary studies to explore this regulation.
In our preliminary data, we observed that, unlike typical cells where YAP translocate from the nucleus to the cytoplasm with increasing cell density, STK40-knockdown cells did not show a significant decrease in nuclear YAP levels even with increased cell density. Additionally, when STK40 was overexpressed, YAP appeared to colocalize with STK40, suggesting that STK40 might influence YAP distribution. Furthermore, high cell density facilitated the translocation of both STK40 and YAP to the cytoplasm.
We hypothesized several mechanisms through which STK40 might regulate YAP. The first mechanism involves the Hippo pathway, where core members MST1/2 and LATS1/2 promote YAP phosphorylation, leading to its translocation to the cytoplasm. Using small molecule inhibitors to inhibit their activity and simultaneously knocking down STK40 with shRNA lentivirus, we observed that some YAP still translocated to the cytoplasm, indicating that other factors might influence STK40’s regulation of YAP translocation.
The second hypothesis is that STK40 affects YAP distribution through karyopherins. Proteins require karyopherin to shuttle in and out of the nucleus, with importin and exportin performing these tasks. Importin transports proteins into the nucleus, while exportin handles the reverse function. We used small molecule inhibitors Leptomycin B (targeting exportin) and Ivermectin (targeting importin) in combination with shRNA lentivirus to knock down STK40. The results showed that the Leptomycin B-treated group’s outcome was similar to the LATS inhibitor-treated group, whereas the group with both STK40 knockdown and Ivermectin treatment did not show significant changes in nuclear-cytoplasmic distribution compared to the STK40 knockdown alone group. This strongly suggests that STK40 might influence YAP distribution by affecting importin.
Finally, simulating increased cell density with the addition of the small molecule inhibitor Y27632 (a ROCK inhibitor), we observed weakened cytoskeletal tension's effect on STK40, resulting in YAP translocation to the cytoplasm. Interestingly, we found that ROCK seems to be the most downstream and crucial factor regulating YAP nuclear-cytoplasmic transport, and it is not regulated by STK40.
Our findings indicate a novel STK40-mediated pathway regulating YAP. Currently, we are identifying the primary targets of STK40, aiming to reveal how cell density controls YAP activity to achieve contact inhibition.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:15:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-21T16:15:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 The function of STK40 remains unclear 1
1.2 STK40 may play an important role of cell differentiation in In vivo model 2
1.3 Brief Introduction of YAP 2
1.4 Structure and Domains 3
1.5 Biological Function of YAP: Role in Cell Proliferation and Apoptosis 4
1.6 Hippo pathway is a major regulatory mechanism that controls YAP activity 4
1.7 The Impact of Cell Density on Cytoskeleton and YAP Regulation 7
1.8 Transporting YAP: The Crucial Function of Karyopherin 10
1.9 Quantification of YAP Nuclear - Cytoplasmic Distribution 11
1.10 Aim of these study 12
Chapter 2 Materials and Methods 13
2.1 Cell culture 13
2.2 Knockdown and overexpression plasmid 13
2.3 Immunofluorescence staining (IF) 14
2.4 Real time reverse transcription PCR 14
2.5 Antibodies and Drugs 14
2.6 YAP signal quantification and analysis 15
Chapter 3 Results 16
3.1 STK40 modulates YAP-driven contact inhibition 16
3.2 STK40 regulate YAP activity is independent of LATS 1/2 17
3.3 STK40 regulates YAP activity is independent of MST 1/2 17
3.4 STK40 regulates YAP activity and translocation is independent of exportin 18
3.5 STK40 may regulate YAP activity and translocation via importin 18
3.6 ROCK may be the most important factor to modulate YAP translocation 19
3.7 STK40 is sensitive to alterations in cytoskeletal contraction and may affect YAP stability 20
Chapter 4 Discussion 21
4.1 Recheck if YAP would not affected by STK40 via LATS1/2 21
4.2 The possible mechanism of how STK40 modulate Importin or STK40 import to cell nucleus 22
4.3 STK40 May Serve as an Important Marker in Pathophysiology 23
4.4 Optimizing YAP Signal Quantification and analysis 23
4.5 Relationships between STK40 and the cytoskeleton 24
REFERENCES 25
FIGURES AND TABLES 32
TABLE 41
YAP overexpression construct 42
YAP-S127A-P2A-EYFP construct 43
YAP-S127D-P2A-EYFP construct 44
MATLAB Scripts 45
-
dc.language.isoen-
dc.subject絲胺酸/蘇胺酸激酶 40zh_TW
dc.subject接觸抑制zh_TW
dc.subjectYes相關蛋白zh_TW
dc.subjectcontact inhibitionen
dc.subjectSerine/Threonine kinase 40 (STK40)en
dc.subjectYes-associated protein (YAP)en
dc.title探討STK40如何調控YAP的活性與其在細胞核質的移動zh_TW
dc.titleTo investigate how STK40 regulates YAP translocation and YAP activityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃韻如;郭津岑;賴峻毅zh_TW
dc.contributor.oralexamcommitteeYun-Ju Huang;Jean-Cheng Kuo;Jiun-I Laien
dc.subject.keyword絲胺酸/蘇胺酸激酶 40,Yes相關蛋白,接觸抑制,zh_TW
dc.subject.keywordSerine/Threonine kinase 40 (STK40),Yes-associated protein (YAP),contact inhibition,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202403520-
dc.rights.note未授權-
dc.date.accepted2024-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥理學研究所-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved