請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94885完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立涵 | zh_TW |
| dc.contributor.advisor | Li-Han Chen | en |
| dc.contributor.author | 陳益鴻 | zh_TW |
| dc.contributor.author | I-Hung Chen | en |
| dc.date.accessioned | 2024-08-21T16:09:44Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 張致銜.黃建智.賴繼昌.黃星翰.翁進興(2019).台灣沿近海烏魚漁業資源變動現況. 水產試驗所海洋漁業組,沿近海資源研究中心, 科技研究73
Abdel‐Mageid, A. D., et al. (2020). "Modulatory effect of lipopolysaccharide on immune‐related gene expression and serum protein fractionation in grey mullet, Mugil cephalus." Aquaculture research 51(4): 1643-1652. Adorian, T. J., et al. (2019). "Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch)." Probiotics and antimicrobial proteins 11: 248-255. Aly, S. M., et al. (2008). "Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections." Fish & shellfish immunology 25(1-2): 128-136. Aly, S. M., et al. (2008). "Effect of probiotics on the survival, growth and challenge infection in Tilapia nilotica (Oreochromis niloticus)." Aquaculture Research 39(6): 647-656. Amin, M., et al. (2015). "Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties." Avicenna Journal of Clinical Microbiology and Infection 2(1). Anyanwu, N. and C. Ariole (2019). "Probiotic potential of an indigenous marine Bacillus thuringiensis on shrimp (Penaeus monodon) culture infected with Vibrio mimicus." Journal of Applied Sciences 19(3): 173-179. Araya, M., et al. (2002). "Guidelines for the evaluation of probiotics in food." Joint FAO/WHO Working Group Report on drafting guidelines for the evaluation of probiotics in food: 1-11. Bairagi, A., et al. (2002). "Enzyme producing bacterial flora isolated from fish digestive tracts." Aquaculture international 10: 109-121. Balcázar, J. L., et al. (2008). "Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish." Aquaculture 278(1-4): 188-191. Bandyopadhyay, P. and P. K. Das Mohapatra (2009). "Effect of a probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catla catla (Ham.)." Fish physiology and biochemistry 35: 467-478. Banna, G. L., et al. (2017). "Lactobacillus rhamnosus GG: an overview to explore the rationale of its use in cancer." Frontiers in pharmacology 8: 603. Bao, Y., et al. (2010). "Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products." Food control 21(5): 695-701. Baruah, K., et al. (2007). "Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of Labeo rohita (Hamilton) juveniles at sub‐optimal protein level." Aquaculture Research 38(2): 109-120. Beck, B. R., et al. (2015). "The effects of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on innate immunity and disease resistance in olive flounder (Paralichthys olivaceus)." Fish & shellfish immunology 42(1): 177-183. Bedmar, E., et al. (2005). The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum, Portland Press Ltd. Bentzon‐Tilia, M., et al. (2016). "Monitoring and managing microbes in aquaculture–Towards a sustainable industry." Microbial biotechnology 9(5): 576-584. Bernardet, J.-F., et al. (2002). "Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family." International Journal of Systematic and Evolutionary Microbiology 52(3): 1049-1070. Bolasina, S., et al. (2006). "Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus." Aquaculture 252(2-4): 503-515. Brammell, B. F., et al. (2010). "CYP1A expression in caged rainbow trout discriminates among sites with various degrees of polychlorinated biphenyl contamination." Archives of environmental contamination and toxicology 58: 772-782. Bridges, C. M. and D. J. Gage (2021). "Development and application of aerobic, chemically defined media for Dysgonomonas." Anaerobe 67: 102302. Brooke, C. J. and T. V. Riley (1999). "Erysipelothrix rhusiopathiae: bacteriology, epidemiology and clinical manifestations of an occupational pathogen." Journal of medical microbiology 48(9): 789-799. Burgos, F. A., et al. (2018). "Bacterial diversity and community structure of the intestinal microbiome of Channel Catfish (Ictalurus punctatus) during ontogenesis." Systematic and applied microbiology 41(5): 494-505. Campbell, A. G., et al. (2014). "Diversity and genomic insights into the uncultured C hloroflexi from the human microbiota." Environmental microbiology 16(9): 2635-2643. Çanak, Ö. and G. Timur (2020). "An initial survey on the occurrence of staphylococcal infections in Turkish marine aquaculture (2013–1014)." Journal of Applied Ichthyology 36(6): 932-941. Carson, J., et al. (1993). "Cytophaga johnsonae: a putative skin pathogen of juvenile farmed barramundi, Lates calcarifer Bloch." Journal of Fish Diseases 16(3): 209-218. Caspary, W. F. (1992). "Physiology and pathophysiology of intestinal absorption." The American journal of clinical nutrition 55(1): 299S-308S. Chapman, C., et al. (2012). "In vitro evaluation of single-and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens." Anaerobe 18(4): 405-413. Charteris, W. P., et al. (1998). "Ingredient selection criteria for probiotic microorganisms in functional dairy foods." International journal of dairy technology 51(4): 123-136. Chaudhary, D. K. and J. Kim (2018). "Sphingobacterium terrae sp. nov., isolated from oil-contaminated soil." International Journal of Systematic and Evolutionary Microbiology 68(2): 609-615. Chen, G., et al. (2022). "Function and characterization of an alanine dehydrogenase homolog from Nocardia seriolae." Frontiers in veterinary science 8: 801990. Chen, S. C., et al. (2000). "Nocardiosis in sea bass, Lateolabrax japonicus, in Taiwan." Journal of Fish Diseases 23(5): 299-307. Chomwong, S., et al. (2018). "Two host gut-derived lactic acid bacteria activate the proPO system and increase resistance to an AHPND-causing strain of Vibrio parahaemolyticus in the shrimp Litopenaeus vannamei." Developmental & Comparative Immunology 89: 54-65. Ciccarelli, F. D., et al. (2006). "Toward automatic reconstruction of a highly resolved tree of life." science 311(5765): 1283-1287. Clore, G. M., et al. (1990). "Three-dimensional structure of interleukin 8 in solution." Biochemistry 29(7): 1689-1696. Conklin, R. H. and J. Steele (1981). "Erysipelothrix infections." Conway, P., et al. (1987). "Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells." Journal of dairy science 70(1): 1-12. Dalsgaard, I. (1993). "Virulence mechanisms in Cytophaga psychrophila and other Cytophaga-like bacteria pathogenic for fish." Annual Review of Fish Diseases 3: 127-144. Davidovich, N., et al. (2022). "An outbreak of crayfish rickettsiosis caused by Coxiella cheraxi in redclaw crayfish (Cherax quadricarinatus) imported to Israel from Australia." Transboundary and Emerging Diseases 69(2): 204-212. De, D., et al. (2015). "Growth performance, nutrient digestibility and digestive enzyme activity in Asian seabass, L ates calcarifer juveniles fed diets supplemented with cellulolytic and amylolytic gut bacteria isolated from brackishwater fish." Aquaculture Research 46(7): 1688-1698. Demay, J., et al. (2019). "Natural products from cyanobacteria: Focus on beneficial activities." Marine drugs 17(6): 320. Egerton, S., et al. (2018). "The gut microbiota of marine fish." Frontiers in microbiology 9: 873. Eichmiller, J., et al. (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome 4 (1): 1–13. Eisenberg, T., et al. (2016). "Oceanivirga salmonicida gen. nov., sp. nov., a member of the Leptotrichiaceae isolated from Atlantic salmon (Salmo salar)." International Journal of Systematic and Evolutionary Microbiology 66(6): 2429-2437. Ericson, D., et al. (2013). "Salivary IgA response to probiotic bacteria and mutans streptococci after the use of chewing gum containing Lactobacillus reuteri." Pathogens and Disease 68(3): 82-87. Etyemez, M. and J. L. Balcázar (2015). "Bacterial community structure in the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss) as revealed by pyrosequencing-based analysis of 16S rRNA genes." Research in veterinary science 100: 8-11. Famularo, G., et al. (1999). "Traditional and high potency probiotic preparations for oral bacteriotherapy." BioDrugs 12(6): 455-470. Farzanfar, A. (2006). "The use of probiotics in shrimp aquaculture." FEMS Immunology & Medical Microbiology 48(2): 149-158. Feldman, M., et al. (1998). Sleisenger and Fordtran's gastrointestinal and liver disease: pathophysiology, diagnosis, management. Sleisenger and Fordtran's gastrointestinal and liver disease: pathophysiology, diagnosis, management: 2 v.(2046 p.)-2042. Feng, Q., et al. (2018). "Gut microbiota: an integral moderator in health and disease." Frontiers in microbiology 9: 151. Fernando, W., et al. (2007). "Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals." Crop protection 26(2): 100-107. Fijan, S. (2016). "Antimicrobial effect of probiotics against common pathogens." Probiotics and prebiotics in human nutrition and health 10: 5772. Furtado, P. S., et al. (2015). "Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT)." Aquaculture international 23: 315-327. García-Fernández, J. M. and J. Diez (2004). "Adaptive mechanisms of nitrogen and carbon assimilatory pathways in the marine cyanobacteria Prochlorococcus." Research in microbiology 155(10): 795-802. Ghosh, S., et al. (2009). "Sphingobacterium sp. strain PM2‐P1‐29 harbours a functional tet (X) gene encoding for the degradation of tetracycline." Journal of applied microbiology 106(4): 1336-1342. Gibbons, S. M. and J. A. Gilbert (2015). "Microbial diversity—exploration of natural ecosystems and microbiomes." Current opinion in genetics & development 35: 66-72. Gilliland, S., et al. (1984). "Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct." Journal of dairy science 67(12): 3045-3051. Giri, S. S., et al. (2018). "Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio." Frontiers in Immunology 9: 1824. Glass, A. M., et al. (2015). "Connexins and pannexins in the immune system and lymphatic organs." Cellular and molecular life sciences 72: 2899-2910. Gobi, N., et al. (2018). "Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus." Fish & shellfish immunology 74: 501-508. Gordon, R., et al. (1973). "The genus bacillus. us Department of Agriculture Handbook, 427." Washington dc., usda: 109-126. Guandalini, S. (2011). "Probiotics for prevention and treatment of diarrhea." Journal of clinical gastroenterology 45: S149-S153. Gursoy, U. K., et al. (2008). "Stimulation of epithelial cell matrix metalloproteinase (MMP‐2,‐9,‐13) and interleukin‐8 secretion by fusobacteria." Oral microbiology and immunology 23(5): 432-434. Hai, N. (2015). "The use of probiotics in aquaculture." Journal of applied microbiology 119(4): 917-935. Hamlin, H., et al. (2008). "Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture." Aquacultural engineering 38(2): 79-92. Hassan, M. U., et al. (2020). "Probiotic properties of Lactobacillus helveticus and Lactobacillus plantarum isolated from traditional Pakistani yoghurt." BioMed Research International 2020(1): 8889198. Hernández, A. J., et al. (2012). "Supplementation of citric acid and amino acid chelated trace elements in low‐fish meal diet for rainbow trout affect growth and phosphorus utilization." Journal of the World Aquaculture Society 43(5): 688-696. Higgins, D. and J. Dworkin (2012). "Recent progress in Bacillus subtilis sporulation." FEMS microbiology reviews 36(1): 131-148. Holzapfel, W. H., et al. (1998). "Overview of gut flora and probiotics." International journal of food microbiology 41(2): 85-101. Hong, H. A., et al. (2005). "The use of bacterial spore formers as probiotics." FEMS microbiology reviews 29(4): 813-835. Hossain, M. A., et al. (2007). "Effects of organic acids on growth and phosphorus utilization in red sea bream Pagrus major." Fisheries Science 73: 1309-1317. Imran, S., et al. "Effect of Probiotic (Lactobacillus rhamnosus) Supplemented Feed on Growth Performance, Proximate Analysis, and Enzyme Activity of Grass Carp." Indrio, F., et al. (2008). "The effects of probiotics on feeding tolerance, bowel habits, and gastrointestinal motility in preterm newborns." The Journal of pediatrics 152(6): 801-806. Irianto, A. and B. Austin (2002). "Probiotics in aquaculture." Journal of Fish Diseases 25(11): 633-642. Irvine, R. F. (2016). "A short history of inositol lipids." Journal of lipid research 57(11): 1987-1994. Itano, T., et al. (2006). "Live vaccine trials against nocardiosis in yellowtail Seriola quinqueradiata." Aquaculture 261(4): 1175-1180. Jiang, C., et al. (2021). "Molecular characterization and expression profiles of two interleukin genes IL-8 and IL-10 in Pacific cod (Gadus macrocephalus)." Aquaculture Reports 21: 100788. Jung, J.-H., et al. (2011). "Biomarker responses in pelagic and benthic fish over 1 year following the Hebei Spirit oil spill (Taean, Korea)." Marine pollution bulletin 62(8): 1859-1866. Kamalam, B. S., et al. (2017). "Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies." Aquaculture 467: 3-27. Kavitha, M., et al. (2018). "Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822)." Aquaculture Reports 11: 59-69. Keysami, M. A. and M. Mohammadpour (2013). "Effect of Bacillus subtilis on Aeromonas hydrophila infection resistance in juvenile freshwater prawn, Macrobrachium rosenbergii (de Man)." Aquaculture international 21: 553-562. Khailova, L., et al. (2013). "Lactobacillus rhamnosus GG improves outcome in experimental pseudomonas aeruginosa pneumonia: potential role of regulatory T cells." Shock 40(6): 496-503. Khajepour, F. and S. A. Hosseini (2012). "Citric acid improves growth performance and phosphorus digestibility in Beluga (Huso huso) fed diets where soybean meal partly replaced fish meal." Animal feed science and technology 171(1): 68-73. Khalili, L., et al. (2022). "Role of probiotics in diabetes control." Microbiome-Gut-Brain Axis: Implications on Health: 337-353. Kim, J., et al. (2016). "Probiotic delivery systems: A brief overview." Journal of pharmaceutical investigation 46: 377-386. Kirchman, D. L. (2002). "The ecology of Cytophaga–Flavobacteria in aquatic environments." FEMS microbiology ecology 39(2): 91-100. Kleerebezem, M. and E. E. Vaughan (2009). "Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity." Annual review of microbiology 63: 269-290. Knap, I., et al. (2011). "Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers." Poultry science 90(8): 1690-1694. Kudo, T., et al. (1988). "Nocardia seriolae sp. nov. causing nocardiosis of cultured fish." International Journal of Systematic and Evolutionary Microbiology 38(2): 173-178. Kumar, S., et al. (2016). "Metabolic fitness and growth performance in tropical freshwater fish L abeo rohita are modulated in response to dietary starch type (gelatinized versus non‐gelatinized) and water temperature." Aquaculture nutrition 22(5): 966-975. Lalloo, R., et al. (2010). "Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent." Letters in Applied Microbiology 50(6): 563-570. Lee, N.-K., et al. (2014). "Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters." LWT-Food Science and Technology 58(1): 130-134. Lengeler, J. W., et al. (2009). Biology of the Prokaryotes, John Wiley & Sons. Leyva, J. M., et al. (2018). "Identifying the causal agent of necrotizing hepatopancreatitis in shrimp: Multilocus sequence analysis approach." Aquaculture Research 49(5): 1795-1802. Li, E., et al. (2018). "Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei." Reviews in Fisheries Science & Aquaculture 26(3): 381-399. Li, J., et al. (2019). "Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus♂× E. fuscoguttatus♀)." Fish & shellfish immunology 93: 1047-1055. Li, S.-W., et al. (2020). "Transcriptome profiling reveals the molecular processes for survival of Lysinibacillus fusiformis strain 15-4 in petroleum environments." Ecotoxicology and Environmental Safety 192: 110250. Li, W., et al. (2024). "Effects of dietary Lactobacillus reuteri on antimicrobial activity, antioxidant capacity, non-specific immune response, and resistance to Streptococcus agalactiae infection of the Nile tilapia (Oreochromis niloticus)." Aquaculture Reports 35: 101976. Lin, S.-M., et al. (2017). "Effects of Astragalus polysaccharides (APS) and chitooligosaccharides (COS) on growth, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides." Fish & shellfish immunology 70: 40-47. Lin, Y.-T., et al. (2024). "Effects of adding Bacillus subtilis natto NTU-18 in paste feed on growth, intestinal morphology, gastrointestinal microbiota diversity, immunity, and disease resistance of Anguilla japonica glass eels." Fish & shellfish immunology 149: 109556. Liu, B., et al. (2017). "Effects of stocking density on growth performance and welfare‐related physiological parameters of Atlantic salmon S almo salar L. in recirculating aquaculture system." Aquaculture Research 48(5): 2133-2144. Liu, C. H., et al. (2009). "Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease‐producing probiotic, Bacillus subtilis E20, from natto." Journal of applied microbiology 107(3): 1031-1041. Liu, H., et al. (2017). "Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus." Fish & shellfish immunology 60: 326-333. Liu, Y., et al. (2023). "A review on the pathogenic bacterium Nocardia seriolae: aetiology, pathogenesis, diagnosis and vaccine development." Reviews in Aquaculture 15(1): 14-34. Ma, C.-W., et al. (2009). "Removal of pathogenic bacteria and nitrogens by Lactobacillus spp. JK-8 and JK-11." Aquaculture 287(3-4): 266-270. Manga, S. (2018). "INVESTIGATION OF THE BACTERIAL SPOILAGE OF SOME FRESH FISH SPECIES SOLD IN BIRNIN KEBBI, NIGERIA." Equity Journal of Science and Technology 1(1): 52-52. Mani, S. R., et al. (2021). "Evaluation of probiotic properties of Lysinibacillus macroides under in vitro conditions and culture of Cyprinus carpio on growth parameters." Archives of microbiology 203(7): 4705-4714. Martínez‐Córdova, L. R., et al. (2015). "Microbial‐based systems for aquaculture of fish and shrimp: an updated review." Reviews in Aquaculture 7(2): 131-148. Martínez Cruz, P., et al. (2012). "Use of probiotics in aquaculture." International scholarly research notices 2012(1): 916845. Mathur, S. and R. Singh (2005). "Antibiotic resistance in food lactic acid bacteria—a review." International journal of food microbiology 105(3): 281-295. Matsumoto, A., et al. (2009). "Ilumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary." The Journal of general and applied microbiology 55(3): 201-205. Matsumoto, A., et al. (2013). "Ilumatobacter nonamiense sp. nov. and Ilumatobacter coccineum sp. nov., isolated from seashore sand." International Journal of Systematic and Evolutionary Microbiology 63(Pt_9): 3404-3408. Matsuyama, T., et al. (2007). "Gene expression of leucocytes in vaccinated Japanese flounder (Paralichthys olivaceus) during the course of experimental infection with Edwardsiella tarda." Fish & shellfish immunology 22(6): 598-607. Mayrberger, J. M. (2011). Studies of genera cytophaga-flavobacterium in context of the soil carbon cycle. McKeen, C., et al. (1986). "Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis." Phytopathology 76(2): 136-139. Mehling, H. and A. Busjahn (2013). "Non-viable Lactobacillus reuteri DSMZ 17648 (Pylopass™) as a new approach to Helicobacter pylori control in humans." Nutrients 5(8): 3062-3073. Mehta, H. H. and Y. Shamoo (2020). "Pathogenic Nocardia: A diverse genus of emerging pathogens or just poorly recognized?" PLoS pathogens 16(3): e1008280. Mohapatra, S., et al. (2012). "Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora." Aquaculture nutrition 18(1): 1-11. Moroni, F., et al. (2021). "The effects of nisin-producing Lactococcus lactis strain used as probiotic on gilthead sea bream (Sparus aurata) growth, gut microbiota, and transcriptional response." Frontiers in Marine Science 8: 659519. Mu, Q., et al. (2018). "Role of Lactobacillus reuteri in human health and diseases." Frontiers in microbiology 9: 757. Mulder, I., et al. (2007). "Cytokine expression in the intestine of rainbow trout (Oncorhynchus mykiss) during infection with Aeromonas salmonicida." Fish & shellfish immunology 23(4): 747-759. Mutaz Al-Ajlani, M. and S. Hasnain (2010). Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. The Open Conference Proceedings Journal. Nawaz, M., et al. (2022). "Pathogenicity, diagnosis, prevention strategies and immune response of bacterium Nocardia seriolae: A critical review." Aquaculture Research 53(14): 4901-4918. Nayak, S. K. (2021). "Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis." Reviews in Aquaculture 13(2): 862-906. Nielsen, E. and A. Black (1944). "Role of inositol in alopecia of rats fed sulfasuxidine." Proceedings of the Society for Experimental Biology and Medicine 55(1): 14-16. Nikoskelainen, S., et al. (2001). "Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus." Aquaculture 198(3-4): 229-236. Nordlie, R. C., et al. (1999). "Regulation of glucose production by the liver." Annual review of nutrition 19(1): 379-406. Owusu-Agyeman, I., et al. (2022). "Long-term alkaline volatile fatty acids production from waste streams: Impact of pH and dominance of Dysgonomonadaceae." Bioresource Technology 346: 126621. Pan, C.-Y., et al. (2013). "Immunomodulatory effects of dietary Bacillus coagulans in grouper (Epinephelus coioides) and zebrafish (Danio rerio) infected with Vibrio vulnificus." Aquaculture international 21: 1155-1168. Panigrahi, A., et al. (2011). "Real‐time quantification of the immune gene expression in rainbow trout fed different forms of probiotic bacteria Lactobacillus rhamnosus." Aquaculture Research 42(7): 906-917. Parata, L., et al. (2020). "Diet type influences the gut microbiome and nutrient assimilation of Genetically Improved Farmed Tilapia (Oreochromis niloticus)." Plos one 15(8): e0237775. Patel, S. and R. S. Gupta (2020). "A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov." International Journal of Systematic and Evolutionary Microbiology 70(1): 406-438. Pérez‐Sánchez, T., et al. (2014). "Probiotics in aquaculture: a current assessment." Reviews in Aquaculture 6(3): 133-146. Pierson, B. K. and R. W. Castenholz (1974). "A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov." Archives of microbiology 100: 5-24. Piette, A. and G. Verschraegen (2009). "Role of coagulase-negative staphylococci in human disease." Veterinary microbiology 134(1-2): 45-54. Pirarat, N., et al. (2006). "Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus)." Veterinary immunology and immunopathology 113(3-4): 339-347. Pirarat, N., et al. (2009). "In Vitro efficacy of human-derived probiotic, Lactobacillus rhamnosus against pathogenic bacteria in fish and frogs." The Thai Journal of Veterinary Medicine 39(4): 305-310. Pirarat, N., et al. (2011). "Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG." Research in veterinary science 91(3): e92-e97. Pomaranski, E., et al. (2018). "Characterization of spaC‐type Erysipelothrix sp. isolates causing systemic disease in ornamental fish." Journal of Fish Diseases 41(1): 49-60. Priest, F. (1993). Systematics and Ecology of Bacillus. Sonenshein ALHoch JALosick R Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, Washington, DC: ASM Press. Puvanasundram, P., et al. (2021). "Multi-strain probiotics: Functions, effectiveness and formulations for aquaculture applications." Aquaculture Reports 21: 100905. Ren, M., et al. (2015). "Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala." Aquaculture 438: 75-81. Ricklin, D., et al. (2010). "Complement: a key system for immune surveillance and homeostasis." Nature immunology 11(9): 785-797. Rooks, M. G. and W. S. Garrett (2016). "Gut microbiota, metabolites and host immunity." Nature reviews immunology 16(6): 341-352. Sagar, V., et al. (2019). "Effect of different stock types and dietary protein levels on key enzyme activities of glycolysis‐gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in Macrobrachium rosenbergii." Journal of Applied Ichthyology 35(4): 1016-1024. Saini, D. K., et al. (2018). "Cyanobacterial pigments: Perspectives and biotechnological approaches." Food and chemical toxicology 120: 616-624. Sayed Hassani, M. H., et al. (2020). "Effects of commercial superzist probiotic on growth performance and hematological and immune indices in fingerlings Acipenser baerii." Aquaculture international 28(1): 377-387. Shan, H., et al. (2024). "Bacterial Community Characteristics and Roles in Nitrogen Transformation in Industrial Farming Systems of Litopenaeus vannamei." Journal of Marine Science and Engineering 12(5): 787. Shannon, C. E. (1948). "A mathematical theory of communication." The Bell system technical journal 27(3): 379-423. Sharma, R. and A. Gupta "Haemolysis in Blood Agar Medium in Vitro." Shimahara, Y., et al. (2009). "Genotypic and phenotypic analysis of fish pathogen, Nocardia seriolae, isolated in Taiwan." Aquaculture 294(3-4): 165-171. Shimahara, Y., et al. (2008). "Genetic and phenotypic comparison of Nocardia seriolae isolated from fish in Japan." Journal of Fish Diseases 31(7): 481-488. Shyu, C. and T. Lee (1983). "Hydrographic studies on the area of Taiwan Strait in winter using satellite IR imagery and its relationships to the formation of grey mullet fishing ground." Study on the resource of grey mullet in Taiwan 1985: 1-26. Silo-Suh, L. A., et al. (1994). "Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85." Applied and environmental microbiology 60(6): 2023-2030. Simpson, E. H. (1949). "Measurement of diversity." nature 163(4148): 688-688. Singh, R., et al. (2017). "Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects." Frontiers in microbiology 8: 515. Sivakumar, N., et al. (2012). "Probiotic effect of Lactobacillus acidophilus against vibriosis in juvenile shrimp (Penaeus monodon)." African journal of Biotechnology 11(91): 15811-15818. SL, H. (2004). "Isolation and characterization of the pathogenic bacterium, Nocardia seriolae, from female broodstock of Striped Mullet, Mugil cephalus." J Fish Res 12: 61-69. Smith, P. and S. Davey (1993). "Evidence for the competitive exclusion of Aeromonas salmonicida from fish with stress-inducible furunculosis by a fluorescent pseudomonad." Journal of Fish Diseases 16(5). Stein, T. (2005). "Bacillus subtilis antibiotics: structures, syntheses and specific functions." Molecular microbiology 56(4): 845-857. Sugiura, S. H., et al. (1998). "Effects of dietary supplements on the availability of minerals in fish meal; preliminary observations." Aquaculture 160(3-4): 283-303. Sumi, C. D., et al. (2015). "Antimicrobial peptides of the genus Bacillus: a new era for antibiotics." Canadian journal of microbiology 61(2): 93-103. Sun, F., et al. (2019). "Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment." Aquaculture 507: 196-202. Tan, Q., et al. (2009). "Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio)." Aquaculture Research 40(9): 1011-1018. Teng, C., et al. (2015). "Whole-genome optical mapping and finished genome sequence of Sphingobacterium deserti sp. nov., a new species isolated from the Western Desert of China." Plos one 10(4): e0122254. Tepaamorndech, S., et al. (2019). "Effects of Bacillus aryabhattai TBRC8450 on vibriosis resistance and immune enhancement in Pacific white shrimp, Litopenaeus vannamei." Fish & shellfish immunology 86: 4-13. Thankappan, B., et al. (2015). "Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita—towards to identify novel probiotics against fish pathogens." Applied biochemistry and biotechnology 175: 340-353. Thy, H. T. T., et al. (2017). "Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus)." Fish & shellfish immunology 60: 391-399. Timmerman, H. M., et al. (2004). "Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy." International journal of food microbiology 96(3): 219-233. Tinh, N. T. N., et al. (2008). "A review of the functionality of probiotics in the larviculture food chain." Marine Biotechnology 10: 1-12. Tseng, D.-Y., et al. (2009). "Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20." Fish & shellfish immunology 26(2): 339-344. Urga, K., et al. (1992). "Change in Acidity and Lactic Acid Production During Ititu Fermentation." Ethiopian Journal of Agricultural Science (Ethiopia) 13(1). Van Hai, N. (2015). "Research findings from the use of probiotics in tilapia aquaculture: a review." Fish & shellfish immunology 45(2): 592-597. van Kessel, M. A., et al. (2011). "Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.)." AMB express 1: 1-9. Verschuere, L., et al. (2000). "Probiotic bacteria as biological control agents in aquaculture." Microbiology and molecular biology reviews 64(4): 655-671. Vucenik, I. (2019). "Anticancer properties of inositol hexaphosphate and inositol: An overview." Journal of nutritional science and vitaminology 65(Supplement): S18-S22. Wang, F., et al. (2017). "Nocardia seriolae infection in cultured jade perch, Scortum barcoo." Aquaculture international 25: 2201-2212. Wang, G.-L., et al. (2007). "Nocardiosis in snakehead, Ophiocephalus argus Cantor." Aquaculture 271(1-4): 54-60. Wang, G. L., et al. (2005). "Nocardiosis in large yellow croaker, Larimichthys crocea (Richardson)." Journal of Fish Diseases 28(6): 339-345. Wang, H., et al. (2015). "Molecular characterization and expression analysis of a complement component C3 in large yellow croaker (Larimichthys crocea)." Fish & shellfish immunology 42(2): 272-279. Wang, H., et al. (2011). "Activity against plant pathogenic fungi of Lactobacillus plantarum IMAU10014 isolated from Xinjiang koumiss in China." Annals of Microbiology 61: 879-885. Wang, Q., et al. (2010). "Erysipelothrix rhusiopathiae." Veterinary microbiology 140(3-4): 405-417. Wang, X., et al. (2021). "Probiotics regulate gut microbiota: an effective method to improve immunity." Molecules 26(19): 6076. Wang, Y.-C., et al. (2019). "Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains." Fish & shellfish immunology 84: 1050-1058. Waterman, S. R. and P. Small (1998). "Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources." Applied and environmental microbiology 64(10): 3882-3886. Werck-Reichhart, D. and R. Feyereisen (2000). "Cytochromes P450: a success story." Genome biology 1: 1-9. Whittaker, R. H. (1972). "Evolution and measurement of species diversity." Taxon 21(2-3): 213-251. Won, S., et al. (2020). "Effects of Bacillus subtilis WB60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile tilapia, Oreochromis niloticus." Microorganisms 8(1). Wu, D., et al. (2009). "A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea." nature 462(7276): 1056-1060. Wu, Z., et al. (2012). "Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora." Journal of Applied Ichthyology 28(5): 721-727. Yan, Y. Y., et al. (2016). "Effects of dietary live or heat‐inactivated autochthonous Bacillus pumilus SE 5 on growth performance, immune responses and immune gene expression in grouper Epinephelus coioides." Aquaculture nutrition 22(3): 698-707. Yang, G., et al. (2019). "Changes in microbiota along the intestine of grass carp (Ctenopharyngodon idella): Community, interspecific interactions, and functions." Aquaculture 498: 151-161. Yang, M.-J., et al. (2018). "Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection." Virulence 9(1): 634-644. Yoshida, T. (2016). "Streptococcosis in aquaculture." Gyobyo Kenkyu= Fish Pathology 51(2): 44-48. Yukgehnaish, K., et al. (2020). "Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish." Reviews in Aquaculture 12(3): 1903-1927. Zhang, Y., et al. (2019). "Bactericidal effect of cold plasma on microbiota of commercial fish balls." Innovative Food Science & Emerging Technologies 52: 394-405. Zheng, C. N. and W. Wang (2017). "Effects of Lactobacillus pentosus on the growth performance, digestive enzyme and disease resistance of white shrimp, Litopenaeus vannamei (Boone, 1931)." Aquaculture Research 48(6): 2767-2777. Zhou, X.-x., et al. (2009). "Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities." Aquaculture 287(3-4): 349-353. 板野公一, et al. (2006). "Comparison of sensitivity between yellowtail Seriola quinqueradiata and red sea bream Pagrus major to Nocardia seriolae." 魚病研究 41(4): 135-139. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94885 | - |
| dc.description.abstract | 烏魚 (Mugil cephalus) 是台灣重要的養殖魚類。近年烏魚許多嚴重疾病如: 奴卡氏菌症造成嚴重損失。目前在烏魚養殖上仍沒有有效的奴卡氏菌症的防治方式,加上由於益生菌已被證實能幫助魚類增加抗病能力,因此本研究旨以添加多株益生菌的方式,來對抗奴卡氏菌的感染。研究中以不同組合的Lactobacillus rhamnosus、Lactobacillus reuteri和Bacillus subtilis natto三株益生菌以1*109CFU/g添加於飼料,投餵35天後始使用奴卡氏菌進行攻毒。結果顯示,餵食L. reuteri和B. subtilis natto的混菌組別中在增重率、特殊成長率以及飼料轉換率都有所提升;免疫基因表現結果顯示,添加三株益生菌的飼料提升了促發炎因子IL-8和IL-1β,此外抗奴卡相關基因 TNFRSF25、PANX1表現也有顯著上升。攻毒後,也以混合L. rhamnosus,L. reuteri和B. subtilis natto的組別活存率最高,達到86%,顯著高於控制組。在菌相組成方面,Alpha diversity沒有顯著的差異,但在Beta diversity中,有添加益生菌的組別其菌相組成與控制組相比具有明顯的分群,從LefSE分析中,在控制組中,大多與病原菌有關,例如:Cytophagales、Erysipelothrix、Pseudomonas fragi、Streptococcus、Staphylococcus及Nocardioides,在有添加益生菌組別中大多發現有益菌的存在,Lre+Bsn組發現Bacillus;Lrh+Bsn組發現Sphingobacteriales、Dysgonomonadaceae;Lre+Lrh+Bsn組發現Lysinibacillus豐度的提高,綜合上述結果,在經過35天的多株益生菌投餵後,這三株菌益生菌可以藉由改變腸道中的微生物相來降低腸道中病原菌的數量,從而提升烏魚的免疫能力以及生長性能。因此未來可以針對這三株益生菌的使用作為烏魚養殖抗奴卡氏菌症的防治策略之方法,提升經濟效益。 | zh_TW |
| dc.description.abstract | Grey mullet (Mugil cephalus) is an important aquaculture species in Taiwan. In recent years, serious diseases such as infections caused by Nocardia seriolae have resulted in significant losses. Currently, there is no effective method to prevent and control N. seriolae infection in grey mullet aquaculture. Given that probiotics have been proven to enhance disease resistance in fish, this study aims to protect against N. seriolae infection by treating fish with multiple probiotic strains. In the study, different combinations of three probiotic strains Lactobacillus rhamnosus, Lactobacillus reuteri, and Bacillus subtilis natto were added to the feed at a concentration of 1*109 CFU/g. After 35 days of feeding, the growth rate, immunity, and gut microbiota were analyzed followed by a challenge test using N. seriolae. The results showed that the group fed with the combination of L. reuteri and B. subtilis natto exhibited improvements in weight gain rate, specific growth rate, and feed conversion ratio. The results of immune gene expression revealed that feeding with diet containing the three probiotic strains enhanced the expression of pro-inflammatory factors IL-8 and IL-1β. Additionally, the expression of anti-N. seriolae related genes TNFRSF25 and PANX1 also significantly increased. After the challenge, the group supplemented with a combination of the three probiotics also showed the highest survival rate at 86%, which was significantly higher than that of the control group. In microbial composition, there was no significant difference observed in alpha diversity. However, in beta diversity, the group supplemented with probiotics showed distinct clustering compared to the control group, indicating notable differences in microbial composition. From LefSE analysis, most of enriched taxa in the control group were associated with pathogens such as Cytophagales, Erysipelothrix, Pseudomonas fragi, Streptococcus, Staphylococcus, and Nocardioides. In contrast, in groups supplemented with probiotics, beneficial bacteria were predominantly found: the Lre+Bsn group showed Bacillus; the Lrh+Bsn group showed Sphingobacteriales and Dysgonomonadaceae; and the Lre+Lrh+Bsn group showed increased abundance of Lysinibacillus. Combining the above results, after 35 days of feeding with a multi-strain probiotic, these three probiotic strains can reduce the abundance of pathogens in the intestine by altering the gut microbiota. This process enhances the immune response and growth performance of grey mullet. Therefore, in the future, utilizing these three probiotic strains could serve as a strategy to combat N. seriolae infections in grey mullet aquaculture, potentially enhancing economic benefits. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:09:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:09:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目次 V 表次 VIII 圖次 IX 第一章 前言 1 1.1 烏魚 1 1.2 奴卡氏菌症 2 1.3 益生菌 3 1.4 水產益生菌 4 1.41 革蘭氏陽性菌 5 1.42 革蘭氏陰性菌 5 1.5 多株益生菌在水產養殖的應用 5 1.6 芽孢桿菌的介紹 6 1.7 乳酸菌的介紹 7 1.8 Bacillus subtilis natto 8 1.9 Lactobacillus rhamnosus 8 1.10 Lactobacillus reuteri 9 1.11 多株益生菌的篩選 10 1.12 微生物相的介紹 10 1.13 魚類腸胃道微生物相 11 第二章 研究目的 13 第三章 材料與方法 14 3.1 烏魚 14 3.2 細菌鑑定 14 3.3 病原菌和益生菌培養 14 3.4 生長曲線 15 3.5 低pH值耐受力 15 3.6 膽鹽耐受力 15 3.7 溶血性測試 15 3.8 澱粉酶測試 16 3.9 蛋白酶測試 16 3.10 脂肪酶測試 16 3.11 纖維酶測試 16 3.12 體外抑菌測試 17 3.13 製備複合益生菌飼料 17 3.14 動物投餵實驗 17 3.15 樣本收集及成長表現計算 18 3.16 腸道細菌DNA萃取和次世代定序分析 18 3.17 攻毒實驗 19 3.18 抽取 RNA 19 3.19 反轉錄cDNA 19 3.20 Real-time PCR 19 3.21 菌株來源 20 3.22 宏基因體學(Metagenomics)定序資料分析 20 3.22.1 上傳序列檔案與品質控制 (Quality control) 20 3.22.2 稀釋曲線圖 (Rarefaction curve)和Alpha diversity 21 3.22.3 Beta diversity 21 3.22.4 微生物相的功能性預測 (Microbiome function prediction) 21 3.22.5 LEfSe (Linear discriminant analysis (LDA) Effect Size) 21 3.23 統計分析 21 第四章 實驗結果 22 4.1 溶血性測試 22 4.2 體外產消化酶測試 22 4.3 pH耐受性 23 4.4 膽鹽耐受性 23 4.5 體外抑菌實驗 24 4.6 投餵試驗後成長表現 24 4.8 添加多株益生菌對烏魚抗奴卡氏菌免疫基因表現量 25 4.9 攻毒實驗結果 25 4.11 比較有投餵多株益生菌組別和沒投餵益生菌組別在門的分類階層差異 26 4.12 α多樣性(Alpha diversity) 27 4.13 β多樣性(Beta diversity) 28 4.14 LEfSe (Linear discriminant analysis (LDA) Effect Size) 28 第五章 討論 30 5.1 益生菌的安全性試驗 30 5.2 益生菌耐酸性以及耐膽鹽試驗 31 5.3 益生菌產生消化酶活性與烏魚的成長表現 33 5.4 益生菌對抗病原菌的能力 34 5.5 發炎因子與抗奴卡免疫基因表現量 35 5.6 餵食多株益生菌後烏魚抗N. seriolae的能力 38 5.7 比較有添加多株益生菌和沒有添加多株益生菌烏魚腸道微生物多樣性 39 5.8 比較添加多株益生菌和沒有添加多株益生菌烏魚腸道微生物的關鍵菌種 40 5.9 有添加多株益生菌和沒有添加益生菌在代謝途徑上的功能性分析 48 5.10 比較多株菌益生菌組別添加的細菌濃度對烏魚的影響 51 第六章 結論 53 參考文獻 54 結果圖/表 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奴卡氏菌 | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | 乳酸菌 | zh_TW |
| dc.subject | 芽孢桿菌 | zh_TW |
| dc.subject | 成長表現 | zh_TW |
| dc.subject | 免疫基因 | zh_TW |
| dc.subject | 烏魚 | zh_TW |
| dc.subject | Nocardia seriolae | en |
| dc.subject | Mugil cephalus | en |
| dc.subject | Probiotics | en |
| dc.subject | Lactobacillus | en |
| dc.subject | Bacillus subtilis | en |
| dc.subject | Growth performance | en |
| dc.subject | Immune genes | en |
| dc.subject | Gut microbiota | en |
| dc.title | 使用多株益生菌透過調節烏魚免疫反應及腸道微生物群提升生長性能和抗奴卡氏菌(Nocardia seriolae)能力 | zh_TW |
| dc.title | Multi-strain probiotics improved the growth performance and resistance against Nocardia seriolae via regulating immunity and gut microbiota in grey mullet (Mugil cephalus) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賴亮全;韓玉山;吳育騏;蓋玉軒 | zh_TW |
| dc.contributor.oralexamcommittee | Liang-Quan Lai;Yu-San Han;Yu-Chi Wu;Yu-Hsuan Kai | en |
| dc.subject.keyword | 烏魚,奴卡氏菌,益生菌,乳酸菌,芽孢桿菌,成長表現,免疫基因,腸道菌相, | zh_TW |
| dc.subject.keyword | Mugil cephalus,Nocardia seriolae,Probiotics,Lactobacillus,Bacillus subtilis,Growth performance,Immune genes,Gut microbiota, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202403325 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2029-08-07 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-07 | 2.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
