Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94883Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 許如君 | zh_TW |
| dc.contributor.advisor | Ju-Chun Hsu | en |
| dc.contributor.author | 謝宏騰 | zh_TW |
| dc.contributor.author | Hung-Teng Hsieh | en |
| dc.date.accessioned | 2024-08-21T16:08:55Z | - |
| dc.date.available | 2024-08-22 | - |
| dc.date.copyright | 2024-08-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [APHIA] Animal and Plant Health Inspection Agency. 2024. https://faw.aphia.gov.tw/ws.php?id=19095#. Accessed 26 February 2024.
Abbas N, Khan HAA, Shad SA. 2014. Resistance of the house fly Musca domestica (Diptera: Muscidae) to lambda-cyhalothrin: mode of inheritance, realized heritability, and cross-resistance to other insecticides. Ecotoxicol 23: 791-801. Abbott WS. 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267. Adewale IO, Afolayan A. 2006. Studies on glutathione transferase from grasshopper (Zonocerus variegatus). Pestic Biochem Physiol 85: 52-59. Antonelli P, Duval P, Luis P, Minard G, Valiente Moro C. 2022. Reciprocal interactions between anthropogenic stressors and insect microbiota. Environ Sci Pollut Res Int 29: 64469-64488. Arias O, Cordeiro E, Corrêa AS, Domingues FA, Guidolin AS, Omoto C. 2019. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. Pest Manag Sci 75: 2948-2957. Babithaa S, Kokiladevi E, Balasubramani V, Rajadurai G, Balachandar D, Mohankumar S. 2022. Monitoring of target site mutation in insecticide binding receptors in Spodoptera frugiperda population of different locations in Tamil Nadu. J Pharm Innov 5: 844-853. Bailey SF, Alonso Morales LA, Kassen R. 2021. Effects of synonymous mutations beyond codon bias: The evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol Evol 13. Barton NH, Turelli M. 1987. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genet Res 49: 157-173. Bass C, Field LM. 2011. Gene amplification and insecticide resistance. Pest Manag Sci 67: 886-890. Bayliss MK, Bell JA, Wilson K, Park GR. 1994. 7-Ethoxycoumarin O-deethylase kinetics in isolated rat, dog and human hepatocyte suspensions. Xenobiotica 24: 231-241. Bentley KS, Fletcher JL, Woodward MD. 2010. Chapter 102 - Chlorantraniliprole: an insecticide of the anthranilic diamide class, pp. 2231-2242. in: Krieger R (Ed.), Hayes' Handbook of Pesticide Toxicology (Third Edition). Academic Press, New York. Boa E. 2009. How the global plant clinic began. Outlooks Pest Manag 20: 112-116. Boaventura D, Bolzan A, Padovez FE, Okuma DM, Omoto C, Nauen R. 2020. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda. Pest Manag Sci 76: 47-54. Boeckx J, Hertog M, Geeraerd A, Nicolai B. 2017. Kinetic modelling: an integrated approach to analyze enzyme activity assays. Plant Methods 13: 69. DOI: 10.1186/s13007-13017-10218-y. Bolzan A, Padovez FE, Nascimento AR, Kaiser IS, Lira EC, Amaral FS, Kanno RH, Malaquias JB, Omoto C. 2019. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag Sci 75: 2682-2689. Boyland E, Chasseaud L. 1967. Enzyme-catalysed conjugations of glutathione with unsaturated compounds. Biochem J 104: 95. DOI: 10.1042/bj1040095. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. Brogdon WG, McAllister JC. 1998. Insecticide resistance and vector control. Emerg Infect Dis 4: 605. DOI: 10.3201/eid0404.980410. Brookes G, Barfoot P. 2017. Environmental impacts of genetically modified (GM) crop use 1996–2015: Impacts on pesticide use and carbon emissions. GM Crops Food 8: 117-147. Buntin GD. 1986. A review of plant response to fall armyworm, Spodoptera frugiperda (JE Smith), injury in selected field and forage crops. Fla Entomol: 549-559. Burke MD, Mayer RT. 1974. Ethoxyresorufin: direct fluorimetric assay of a microsomal o-dealkylation which is preferentially inducible by 3-methylcholanthrene. Drug Metab Dispos 2: 583-588. Campos MR, Silva TB, Silva WM, Silva JE, Siqueira HA. 2015. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Pest Manag Sci 71: 537-544. Capinera JL. 2008. Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), pp. 1409-1412. in: Capinera JL (Ed.), Encyclopedia of Entomology. Springer Netherlands, Dordrecht. Carena MJ, Hallauer AR, Miranda Filho J. 2010. Quantitative genetics in maize breeding, 3rd ed. Springer, New York. 664 pp. Carvalho IF, Erdmann LL, Machado LL, Rosa A, Zotti MJ, Neitzke CG. 2018. Metabolic resistance in the fall armyworm: an overview. J Agric Sci 10: 426. DOI: 10.5539/jas.v5510n5512p5426. Chao HM. 2022. The susceptibility to the insecticides and resistance mechanisms of Spodoptera frugiperda in Taiwan. National Taiwan University Master's Thesis. 1-83 pp. DOI: 10.6342/NTU202200297. Chapman JW, Williams T, Escribano A, Caballero P, Cave RD, Goulson D. 1999. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav Ecol 10: 298-303. Che W, Shi T, Wu Y, Yang Y. 2013. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J Econ Entomol 106: 1855-1862. Chen HL, Hasnain A, Cheng QH, Xia LJ, Cai YH, Hu R, Gong CW, Liu XM, Pu J, Zhang L. 2023. Resistance monitoring and mechanism in the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) for chlorantraniliprole from Sichuan Province, China. Front Physiol 14: 1180655. DOI: 10.1183389/fphys.1182023. Cock MJW, Beseh PK, Buddie AG, Cafá G, Crozier J. 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci Rep 7: 4103. DOI: 10.1038/s41598-41017-04238-y. Cordova D, Benner E, Sacher M, Rauh J, Sopa J, Lahm G, Selby T, Stevenson T, Flexner L, Gutteridge S. 2006. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic Biochem Physiol 84: 196-214. Council NR. 1986. Pesticide resistance: strategies and tactics for management. National Academies Press. 1-471 pp. Danielsen S, Centeno J, López J, Lezama L, Varela G, Castillo P, Narváez C, Zeledón I, Pavón F, Boa E. 2013. Innovations in plant health services in Nicaragua: from grassroots experiment to a systems approach. J Int Dev 25: 968-986. Dary O, Georghiou GP, Parsons E, Pasteur N. 1990. Microplate adaptation of Gomori's assay for quantitative determination of general esterase activity in single insects. J Econ Entomol 83: 2187-2192. Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J. 2017. Fall armyworm: impacts and implications for Africa. Outlooks Pest Manag 28: 196-201. De Montellano PRO. 2005. Cytochrome P450: structure, mechanism, and biochemistry. Springer. 1-912 pp. Denholm I, Rowland M. 1992. Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 37: 91-112. Denholm I, Pickett JA, Devonshire AL. 1999. Insecticide resistance: from mechanisms to management. 1-123 pp. Desousa G, Cuany A, Brun A, Amichot M, Rahmani R, Berge JB. 1995. A microfluorometric method for measuring ethoxycoumarin-O-deethylase activity on individual Drosophila melanogaster abdomens: Interest for screening resistance in insect populations. Anal Biochem 229: 86-91. Du J, Fu Y. 2023. Diamide insecticides targeting insect ryanodine receptors: mechanism and application prospect. Biochem Biophys Res Commun 670: 19-26. Du Plessis H, Schlemmer ML, Van den Berg J. 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11: 228. DOI: :10.3390/insects11040228. Durmuşoğlu E, Hatipoğlu A, Gürkan MO, Moores G. 2015. Comparison of different bioassay methods for determining insecticide resistance in European grapevine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae). Turk J Entomol 39: 271-276. Dyte CE, Rowlands DG. 1968. The metabolism and synergism of malathion in resistant and susceptible strains of Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae). J Stored Prod Res 4: 157-173. Falconer DS. 1989. Introduction to quantitative genetics, 3rd ed ed. Longman, Scientific & Technical, New York. 438 pp. [FAO] Food and Agriculture Organization of the United Nations. 2017. Briefing note on FAO actions on fall armyworm in Africa. https://openknowledge.fao.org/server/api/core/bitstreams/fb914387-1559-4b90-ba3f-a1c668fc88e1/content. Accessed 2 November 2023. [FAO] Food and Agriculture Organization of the United Nations. 2023. Global action for fall armyworm control. https://www.fao.org/fall-armyworm/monitoring-tools/faw-map/en/. Accessed 14 January 2024. Feyereisen R. 1999. Insect P450 enzymes. Annu Rev Entomol 44: 507-533. Feyereisen R. 2006. Evolution of insect P450. Biochem Soc Trans 34: 1252-1255. DOI: 10.1042/BST0341252. Feyereisen R. 2012. Insect CYP genes and P450 enzymes, pp. 236-316. in: Gilbert LI (Ed.), Insect Molecular Biology and Biochemistry. Academic Press, San Diego. Ffrench-Constant RH. 2013. The molecular genetics of insecticide resistance. Genetics 194: 807-815. Firko MJ, Hayes JL. 1990. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance. J Econ Entomol 83: 647-654. Franciosa H, BergÉ JB. 1995. Glutathione S-transferases in housefly (Musca domestica): Location of GST-1 and GST-2 families. Insect Biochem Mol Biol 25: 311-317. Garner J, Lynch R. 1981. Fall armyworm leaf consumption and development on Florunner peanuts. J Econ Entomol 74: 191-193. Georghiou GP, Taylor CE. 1977. Genetic and biological influences in the evolution of insecticide resistance. J Econ Entomol 70: 319-323. Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLOS ONE 11: e0165632. DOI: 10.0161371/journal.pone.0165632. Gong W, Yan HH, Gao L, Guo YY, Xue CB. 2014. Chlorantraniliprole resistance in the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 107: 806-814. Gorman K, Slater R, Blande JD, Clarke A, Wren J, McCaffery A, Denholm I. 2010. Cross‐resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66: 1186-1190. Gottardi M, Kretschmann A, Cedergreen N. 2016. Measuring cytochrome P450 activity in aquatic invertebrates: a critical evaluation of in vitro and in vivo methods. Ecotoxicol 25: 419-430. Gould F, Hodgson E. 1980. Mixed function oxidase and glutathione transferase activity in last instar Heliothis virescens larvae. Pestic Biochem Physiol 13: 34-40. Gould F, Amasino RM, Brossard D, Buell CR, Dixon RA, Falck-Zepeda JB, Gallo MA, Giller K, Glenna LL, Griffin TS, Hamaker BR, Kareiva PM, Magraw D, Smith CM, Pixley K, Ransom EP, Rodemeyer M, Stelly DM, Stewart CN, Whitaker R. 2016. Genetically Engineered Crops: Experiences and Prospects. The National Academies Press, Washington, DC. 606 pp. Groeters FR, Tabashnik BE. 2000. Roles of selection intensity, major genes, and minor genes in evolution of insecticide resistance. J Econ Entomol 93: 1580-1587. Guengerich FP. 2001. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14: 611-650. Gui F, Lan T, Zhao Y, Guo W, Dong Y, Fang D, Liu H, Li H, Wang H, Hao R, Cheng X, Li Y, Yang P, Sahu SK, Chen Y, Cheng L, He S, Liu P, Fan G, Lu H, Hu G, Dong W, Chen B, Jiang Y, Zhang Y, Xu H, Lin F, Slippers B, Postma A, Jackson M, Abate BA, Tesfaye K, Demie AL, Bayeleygne MD, Degefu DT, Chen F, Kuria PK, Kinyua ZM, Liu TX, Yang H, Huang F, Liu X, Sheng J, Kang L. 2022. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 13: 513-531. Gunning RV, Moores GD, Devonshire AL. 1996. Esterases and esfenvalerate resistance in Australian Helicoverpa armigera (Hübner) Lepidoptera: Noctuidae. Pestic Biochem Physiol 54: 12-23. Guo L, Liang P, Zhou X, Gao X. 2014. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Sci Rep 4: 6924. DOI: 10.1038/srep06924. Gupta S, Majumdar S, Bhattacharya T, Ghosh T. 2000. Studies on the relationships between the synonymous codon usage and protein secondary structural units. Biochem Biophys Res Commun 269: 692-696. Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H, Rodriguez-Maciel JC, Difonzo C. 2018. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J Econ Entomol 112: 792-802. Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139. Hardke JT, Lorenz GM, III, Leonard BR. 2015. Fall armyworm (Lepidoptera: Noctuidae) ecology in Southeastern cotton. J Integr Pest Manag 6: 1-8. DOI: 10.1093/jipm/pmv1009. Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C, Schaffner U, van den Berg J. 2019. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J Environ Manage 243: 318-330. Hayes JD, Wolf CR. 1988. Role of glutathione transferase in drug resistance, pp. 316-355. in: Sies H, Ketterer B (Eds.), Glutathione conjugation. Academic Press Limited, London. He Y, Zhang J, Chen J. 2014. Effect of synergists on susceptibility to chlorantraniliprole in field populations of Chilo suppressalis (Lepidoptera: Pyralidae). J Econ Entomol 107: 791-796. Hirano C. 1963. Effect of dietary unsaturated fatty acids on the growth of larvae of Chilo suppressalis Walker (Lepidoptera: Pyralidae). Jpn J Appl Entomol Zool 7: 59-62. Hou DJ. 2012. Pyrethroid Resistant Mechanisms of the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae). National Taiwan University Master's Thesis. 1-107 pp. DOI: 10.6342/ntu.2012.10593. Hsieh CH. 2019. Molecular identification and population distribution of the new alien invasive fall armyworm (Spodoptera frugiperda). J Plant Med 61: 31. (in Chinese) DOI: 10.6716/JPM.201912_201961(201914).200004. Hsu JC, Feng HT, Wu WJ. 2004. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J Econ Entomol 97: 1682-1688. Huang JM, Rao C, Wang S, He LF, Zhao SQ, Zhou LQ, Zhao YX, Yang FX, Gao CF, Wu SF. 2020. Multiple target-site mutations occurring in lepidopterans confer resistance to diamide insecticides. Insect Biochem Mol Biol 121: 103367. DOI: 10.101016/j.ibmb.102020.103367. Ichii S, Yago N. 1969. Hormonal regulation of aminopyrine N-demethylase system in rat liver. Biochem 65: 597-601. [IRAC] Insecticide Resistance Action Committee. 2011. IRAC susceptibility test methods series (method No: 020, version: 3.2). https://irac-online.org/methods/spodoptera-helicoverpa-heliothis-larvae/. Accessed 15 July 2022. Ismail SM. 2024. Field evaluation of whorl application of sand mixed or spray insecticides against Spodoptera frugiperda (Lepidoptera: Noctuidae) on yield of maize. Bull Natl Res Cent 48: 22. Jallow MF, Dahab AA, Albaho MS, Devi VY, Awadh DG, Thomas BM. 2019. Baseline susceptibility and assessment of resistance risk to flubendiamide and chlorantraniliprole in Tuta absoluta (Lepidoptera: Gelechiidae) populations from Kuwait. Appl Entomol Zool 54: 91-99. Jeanguenat A. 2013. The story of a new insecticidal chemistry class: the diamides. Pest Manag Sci 69: 7-14. Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, Navarro MN, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Day R, Early R, Hruska A, Nagoshi R, Gardi C, Mosbach Schultz O, MacLeod A. 2018. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA Journal 16: e05351. DOI: 10.02903/j.efsa.02018.05351. Jeschke P. 2016. N-Benzoyl-N′-Phenyl Ureas as Insecticides, Acaricides, and Termiticides, pp. 439-452. Bioactive Carboxylic Compound Classes Jiang D, Qian C, Wang D, Wang F, Zhao S, Yang Y, Baxter SW, Wang X, Wu Y. 2021. Varying contributions of three ryanodine receptor point mutations to diamide insecticide resistance in Plutella xylostella. Pest Manag Sci 77: 4874-4883. Jiang YY, Zhang YY, Zhou XY, Hong XY, Chen L. 2022. Population genetics reveal multiple independent invasions of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. Bull Entom Res 112: 796-806. Jouraku A, Kuwazaki S, Miyamoto K, Uchiyama M, Kurokawa T, Mori E, Mori MX, Mori Y, Sonoda S. 2020. Ryanodine receptor mutations (G4946E and I4790K) differentially responsible for diamide insecticide resistance in diamondback moth, Plutella xylostella L. Insect Biochem Mol Biol 118: 103308. DOI: 10.101016/j.ibmb.102019.103308. Juárez ML, Murúa MG, García MG, Ontivero M, Vera MT, Vilardi JC, Groot AT, Castagnaro AP, Gastaminza G, Willink E. 2012. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J Econ Entomol 105: 573-582. Justus K, Motoba K, Reiner H. 2007. Metabolism of flubendiamide in animals and plants. Bayer Cropsci J 60: 141-166. Kalleshwaraswamy C, Asokan R, Maruthi M, Pavithra H, Hegbe K, Prabhu S, Goergen GE. 2018. First report of the fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag Hort Ecosyst 24: 23-29. Kaneko H. 2010. Chapter 76 - Pyrethroid Chemistry and Metabolism, pp. 1635-1663. in: Krieger R (Ed.), Hayes' Handbook of Pesticide Toxicology (Third Edition). Academic Press, New York. Kato K, Kiyonaka S, Sawaguchi Y, Tohnishi M, Masaki T, Yasokawa N, Mizuno Y, Mori E, Inoue K, Hamachi I. 2009. Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel. Biochem 48: 10342-10352. Kenis M, Benelli G, Biondi A, Calatayud P-A, Day R, Desneux N, Harrison RD, Kriticos D, Rwomushana I, Van den Berg J. 2022. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol Gen 43: 187-241. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM. 2007. A"silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528. Kirst HA, Michel KH, Mynderase JS, Chio EH, Yao RC, Nakasukasa WM, Boeck LD, Occlowitz JL, Paschal JW, Deeter JB. 1992. Discovery, isolation, and structure elucidation of a family of structurally unique, fermentation-derived tetracyclic macrolides, pp. 214-225. in: Baker DR, Fenyes JG, Moberg WK, Cross B (Eds.), Synthesis and Chemistry of Agrochemicals, 1 ed. ACS Publications. Krieger RI, Wilkinson CF. 1969. Microsomal mixed-function oxidases in insects-I: Localization and properties of an enzyme system effecting aldrin epoxidatton in larvae of the southern armyworm (Prodenia eridania). Biochem Pharmacol 18: 1403-1415. Ku CC, Chiang FM, Hsin CY, Yao YE, Sun CN. 1994. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic Biochem Physiol 50: 191-197. Kumela T, Simiyu J, Sisay B, Likhayo P, Mendesil E, Gohole L, Tefera T. 2019. Farmers' knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int J Pest Manag 65: 1-9. Lahm GP, Cordova D, Barry JD. 2009. New and selective ryanodine receptor activators for insect control. Bioorg Med Chem 17: 4127-4133. Lahm GP, Selby TP, Freudenberger JH, Stevenson TM, Myers BJ, Seburyamo G, Smith BK, Flexner L, Clark CE, Cordova D. 2005. Insecticidal anthranilic diamides: A new class of potent ryanodine receptor activators. Bioorg Med Chem Lett 15: 4898-4906. Lai T, Li J, Su J. 2011. Monitoring of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pestic Biochem Physiol 101: 198-205. Langa TP, Dantas KCT, Pereira DL, de Oliveira M, Ribeiro LMS, Siqueira HAA. 2022. Basis and monitoring of methoxyfenozide resistance in the South American tomato pinworm Tuta absoluta. J Pest Sci 95: 351-364. Leite SA, Dos Santos MP, Resende-Silva GA, da Costa DR, Moreira AA, Lemos OL, Guedes RNC, Castellani MA. 2020. Area-wide survey of chlorantraniliprole resistance and control failure likelihood of the neotropical coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). J Econ Entomol 113: 1399-1410. LeOra Software. 2003. Poloplus, a user's guide to probit or logit analysis. LeOra Software. Berkeley, CA. Levy HC, Garcia-Maruniak A, Maruniak JE. 2002. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol 85: 186-190. Li X, Schuler MA, Berenbaum MR. 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231-253. Li X, Zhu B, Gao X, Liang P. 2017. Over-expression of UDP–glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag Sci 73: 1402-1409. Li X, Li R, Zhu B, Gao X, Liang P. 2018. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag Sci 74: 1386-1393. Lin L, Hao Z, Cao P, Yuchi Z. 2020. Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. Pest Manag Sci 76: 1291-1303. Linduska JJ, Harrison FP. 1986. Adult sampling as a means of predicting damage levels of fall armyworm (Lepidoptera: Noctuidae) in grain corn. Fla Entomol: 487-491. Lira EC, Bolzan A, Nascimento AR, Amaral FS, Kanno RH, Kaiser IS, Omoto C. 2020. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: inheritance and cross-resistance to spinosad. Pest Manag Sci 76: 2674-2680. Liu J, Zhang X, Wu H, Gao Y, Silver K, Ma E, Zhang J, Zhu KY. 2018. Comparisons of microsomal cytochrome P450 content and enzymatic activity towards selected model substrates and insecticides in different tissues from the migratory locust (Locusta migratoria). Chemosphere 208: 366-373. Liu X, Wang HY, Ning YB, Qiao K, Wang KY. 2015. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 108: 1978-1985. Ludwick DC, Meihls LN, Huynh MP, Pereira AE, French BW, Coudron TA, Hibbard BE. 2018. A new artificial diet for western corn rootworm larvae is compatible with and detects resistance to all current Bt toxins. Sci Rep 8: 1-10. DOI: 10.1038/s41598-41018-23738-z. Luginbill P. 1928. The fall armyworm. US Department of Agriculture, United State of America. 1-92 pp. Lumjuan N, Rajatileka S, Changsom D, Wicheer J, Leelapat P, Prapanthadara La, Somboon P, Lycett G, Ranson H. 2011. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol 41: 203-209. Lv SL, Shi Y, Zhang JC, Liang P, Zhang L, Gao XW. 2021. Detection of ryanodine receptor target-site mutations in diamide insecticide-resistant Spodoptera frugiperda in China. Insect Sci 28: 639-648. Majuga JCN, Uzayisenga B, Kalisa JP, Almekinders C, Danielsen S. 2018. “Here we give advice for free”: the functioning of plant clinics in Rwanda. Dev Pract 28: 858-871. Mak PJ, Denisov IG. 2018. Spectroscopic studies of the cytochrome P450 reaction mechanisms. Biochim Biophys Acta - Proteins Proteom 1866: 178-204. Maruthadurai R, Ramesh R. 2020. Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (JE smith)(Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica 48: 15-23. Matsumura F. 1985. Metabolism of insecticides by animals and plants, pp. 203-298. Toxicology of insecticides. Springer, New York. Mau RF, Gusukuma-Minuto L. 2004. Diamondback moth, Plutella xylostella (L.), resistance management in Hawaii. Proceedings of The management of diamondback moth and other crucifer pests. Proceedings of the Fourth International Workshop, Melbourne, Victoria, Australia, 26-29 November 2001: The Regional Institute Ltd. pp. 307-312. Mayer RT, Jermyn JW, Burke MD, Prough RA. 1977. Methoxyresorufin as a substrate for the fluorometric assay of insect microsomal O-dealkylases. Pestic Biochem Physiol 7: 349-354. Meissner G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol 56: 485-508. Melzer W, Herrmann-Frank A, Lüttgau HC. 1995. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta Rev Biomembr 1241: 59-116. Metcalf RL. 1989. Insect resistance to insecticides. Pestic Sci 26: 333-358. Michaelis L, Menten ML. 1913. Die kinetik der invertinwirkung. Biochem Z 49: 352. Mitchell E, McNeil J, Westbrook JK, Silvain JF, Lalanne Cassou B, Chalfant R, Pair S, Waddill V, Sotomayor Rios A, Proshold F. 1991. Seasonal periodicity of fall armyworm (Lepidoptera: Noctuidae) in the Caribbean basin and northward to Canada. J Entomol Sci 26: 39-50. Montella IR, Schama R, Valle D. 2012. The classification of esterases: an important gene family involved in insecticide resistance-A review. Mem Inst Oswaldo Cruz 107: 437-449. Montezano DG, Sosa-Gómez D, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes Sd, Peterson JA, Hunt T. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26: 286-300. Morris R. 2015. Spectrophotometry. Curr Protoc Essent Lab 11: 2.1.1-2.1.30. DOI: 10.1002/9780470089941.et9780470080201s9780470089911. Muraro DS, Garlet CG, Godoy DN, Cossa GE, Rodrigues Junior GLdS, Stacke RF, Medeiros SL, Guedes JV, Bernardi O. 2019. Laboratory and field survival of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Bt and non-Bt maize and its susceptibility to insecticides. Pest Manag Sci 75: 2202-2210. Muthusamy R, Vishnupriya M, Shivakumar MS. 2014. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J Asia Pac Entomol 17: 865-869. Nagoshi RN. 2010. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol 103: 283-292. Nagoshi RN. 2012. Improvements in the identification of strains facilitate population studies of fall armyworm subgroups. Ann Entomol 105: 351-358. Nagoshi RN, Meagher RL. 2004. Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87: 440-449. Nagoshi RN, Meagher RL. 2022. The Spodoptera frugiperda host strains: what they are and why they matter for understanding and controlling this global agricultural pest. J Econ Entomol 115: 1729-1743. Nagoshi RN, Meagher RL, Hay-Roe M. 2012. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol Evol 2: 1458-1467. Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. 2019. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep 9: 8311. DOI: 10.1038/s41598-41019-44744-41599. Nagoshi RN, Koffi D, Agboka K, Tounou KA, Banerjee R, Jurat-Fuentes JL, Meagher RL. 2017. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLOS ONE 12: e0181982. DOI: 10.0181371/journal.pone.0181982. Nascimento ARBd, Farias JR, Bernardi D, Horikoshi RJ, Omoto C. 2016. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Manag Sci 72: 810-815. Nauen R, Steinbach D. 2016. Resistance to diamide insecticides in lepidopteran pests. Advances in insect control and resistance management: 219-240. Nelson DR. 2009. The cytochrome p450 homepage. Hum Genet 4: 1-7. DOI: 10.1186/1479-7364-1184-1181-1159. Niwa R, Matsuda T, Yoshiyama T, Namiki T, Mita K, Fujimoto Y, Kataoka H. 2004. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J Biol Chem 279: 35942-35949. Oelschlaeger P. 2024. Molecular mechanisms and the significance of synonymous mutations. Biomolecules 14: 132. Oesch F, Arand M. 1999. Chapter 4 - Xenobiotic Metabolism, pp. 83-109. in: Marquardt H, Schäfer SG, McClellan R, Welsch F (Eds.), Toxicology. Academic Press, San Diego. Okuma DM, Bernardi D, Horikoshi RJ, Bernardi O, Silva AP, Omoto C. 2018. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Manag Sci 74: 1441-1448. Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239: 2370-2378. Overton K, Maino JL, Day R, Umina PA, Bett B, Carnovale D, Ekesi S, Meagher R, Reynolds OL. 2021. Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. J Crop Prot 145: 105641. Pantelouris EM, Downer RGH. 1969. Phenotypic changes of the esterase pattern in insect metamorphosis. J Insect Physiol 15: 2357-2362. Pashley DP. 1986. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex. Ann Entomol 79: 898-904. Payne GT, Brown TM. 1984. EPN and s, s, s,-tributyl phosphorotrithioate as synergisms of methyl parathion in resistant tobacco budworm larvae (Lepidoptera: Noctuidae). J Econ Entomol 77: 294-297. Perkins WD. 1979. Laboratory rearing of the fall armyworm. Fla Entomol 62: 87-91. Pitre HN. 1986. Chemical control of the fall armyworm (Lepidoptera: Noctuidae): An update. Fla Entomol 69: 570-578. Posos-Parra O, Mota-Sanchez D, Pittendrigh BR, Wise JC, DiFonzo CD, Patterson E. 2024. Characterization of the inheritance of field-evolved resistance to diamides in the fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae) population from Puerto Rico. Plos one 19: e0295928. DOI: 10.0291371/journal.pone.0295928. Protasi F, Franzini-Armstrong C, Allen PD. 1998. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle. J Cell Biol 140: 831-842. Prowell DP, McMichael M, Silvain JF. 2004. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann Entomol 97: 1034-1044. Qian L, Cao G, Song J, Yin Q, Han Z. 2008. Biochemical mechanisms conferring cross-resistance between tebufenozide and abamectin in Plutella xylostella. Pestic Biochem Physiol 91: 175-179. Qinqin W, Li C, Li W, Pei L, Huizhu Y, Changhui R. 2019. Research progress on insecticides resistance in fall armyworm, Spodoptera frugiperda. Chin J Pestic Sci 21: 401-408. Radermacher M, Rao V, Grassucci R, Frank J, Timerman AP, Fleischer S, Wagenknecht T. 1994. Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J Cell Biol 127: 411-423. Raffa KF, Priester TM. 1985. Synergists as research tools and control agents in agriculture. J Agric Entomol 2: 27-45. Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ. 1994. Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci U S A 91: 10000-10004. DOI: 10.11073/pnas.10091.10021.10000. Remmer H. 1970. The role of the liver in drug metabolism. Am J Med 49: 617-629. Ren Q, Haseeb M, Fan J, Wu P, Tian T, Zhang R. 2020. Functional response and intraspecific competition in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11: 806. DOI: 10.3390/insects11110806. Ribeiro L, Wanderley-Teixeira V, Ferreira H, Teixeira ÁA, Siqueira H. 2014. Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). Bull Entom Res 104: 88-96. Ribeiro LM, Siqueira HA, Wanderley-Teixeira V, Ferreira HN, Silva WM, Silva JE, Teixeira ÁA. 2017. Field resistance of Brazilian Plutella xylostella to diamides is not metabolism-mediated. J Crop Prot 93: 82-88. Richardson E, Troczka BJ, Gutbrod O, Ebbinghaus-Kintscher U, Williamson MS, George CH, Nauen R, Davies TGE. 2021. Chimeric investigations into the diamide binding site on the lepidopteran ryanodine receptor. Int J Mol Sci 22: 13033. DOI: 10.13390/ijms222313033. Richardson EB, Troczka BJ, Gutbrod O, Davies TE, Nauen R. 2020. Diamide resistance: 10 years of lessons from lepidopteran pests. J Pest Sci 93: 911-928. Robertson JL, Preisler HK. 1992. Pesticide Bioassays With Arthropods. CRC Press, Boca Raton. 598 pp. Roditakis E, Vasakis E, Grispou M, Stavrakaki M, Nauen R, Gravouil M, Bassi A. 2015. First report of Tuta absoluta resistance to diamide insecticides. J Pest Sci 88: 9-16. Roditakis E, Steinbach D, Moritz G, Vasakis E, Stavrakaki M, Ilias A, García-Vidal L, Martínez-Aguirre MdR, Bielza P, Morou E, Silva JE, Silva WM, Siqueira ΗAA, Iqbal S, Troczka BJ, Williamson MS, Bass C, Tsagkarakou A, Vontas J, Nauen R. 2017. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae). Insect Biochem Mol Biol 80: 11-20. Rogers EF, Koniuszy FR, Shavel Jr J, Folkers K. 1948. Plant insecticides. I. Ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70: 3086-3088. Rose A, Silversides R, Lindquist O. 1975. Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid, Spodoptera frugiperda (Lepidoptera: Noctuidae). Can Entomol 107: 567-576. Rose RL, Barbhaiya L, Roe RM, Rock GC, Hodgson E. 1995. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pestic Biochem Physiol 51: 178-191. Roush RT, McKenzie JA. 1987. Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32: 361-380. Salinas AE, Wong MG. 1999. Glutathione S-transferases-a review. Curr Med Chem 6: 279-310. Sattelle DB, Cordova D, Cheek TR. 2008. Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invertebr Neurosci 8: 107. DOI: 10.1007/s10158-10008-10076-10154. Schuler MA. 2011. P450s in plant–insect interactions. Biochim Biophys Acta - Proteins Proteom 1814: 36-45. Scopes RK. 2001. Enzyme activity and assays. e LS: 1-6. DOI: 10.1038/NPG.ELS.0000712. Scott JG. 1999. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29: 757-777. Silva CSBD, Parra JRP. 2013. New method for rearing Spodoptera frugiperda in laboratory shows that larval cannibalism is not obligatory. Rev Bras Entomol 57: 347-349. Silva JE, Assis CP, Ribeiro LM, Siqueira HA. 2016. Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J Econ Entomol 109: 2190-2195. Silva JE, Ribeiro LMdS, Vinasco N, Guedes RNC, Siqueira HÁA. 2019. Field-evolved resistance to chlorantraniliprole in the tomato pinworm Tuta absoluta: inheritance, cross-resistance profile, and metabolism. J Pest Sci 92: 1421-1431. Sogorb MA, Vilanova E. 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128: 215-228. Sousa A, Frazee J, Weiden M, D’Silva T. 1977. DC 51762, a new carbamate insecticide. J Econ Entomol 70: 803-807. Sparks AN. 1979. Fall armyworm symposium: A review of the biology of the fall armyworm. Fla Entomol 62: 82-87. Sparks TC. 2013. Insecticide discovery: An evaluation and analysis. Pestic Biochem Physiol 107: 8-17. Sparks TC, Nauen R. 2015. IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121: 122-128. Sparks TC, Dripps JE, Watson GB, Paroonagian D. 2012. Resistance and cross-resistance to the spinosyns: A review and analysis. Pestic Biochem Physiol 102: 1-10. Steinbach D, Gutbrod O, Lümmen P, Matthiesen S, Schorn C, Nauen R. 2015. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Insect Biochem Mol Biol 63: 14-22. Su J, Lai T, Li J. 2012. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. J Crop Prot 42: 217-222. Sun Y, Xu L, Chen Q, Qin W, Huang S, Jiang Y, Qin H. 2018. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker). Pest Manag Sci 74: 1416-1423. Sutherland T, Unnithan G, Andersen J, Evans P, Murataliev M, Szabo L, Mash E, Bowers W, Feyereisen R. 1998. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proceedings of the National Academy of Sciences 95: 12884-12889. Sutko JL, Airey JA. 1996. Ryanodine receptor Ca2+ release channels: Does diversity in form equal diversity in function. Physiol Rev 76: 1027-1071. Tabashnik BE. 1992. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 85: 1551-1559. Tabashnik BE, McGaughey WH. 1994. Resistance risk assessment for single and multiple insecticides: responses of Indianmeal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. J Econ Entomol 87: 834-841. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T. 1989. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439-445. Tambo JA, Day RK, Lamontagne-Godwin J, Silvestri S, Beseh PK, Oppong-Mensah B, Phiri NA, Matimelo M. 2020. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: an analysis of farmers’ control actions. Int J Pest Manag 66: 298-310. Tang T, Hu F, Wang P, Fu W, Liu X. 2021. Broflanilide effectively controls Helicoverpa armigera and Spodoptera exigua exhibiting diverse susceptibilities to chlorantraniliprole and emamectin benzoate. Pest Manag Sci 77: 1262-1272. Thompson GD, Leonard PK. 1996. The insecticide resistance action committee: A continuing industry initiative, pp. 187-195. in: Brown TM (Ed.), Molecular Genetics and Evolution of Pesticide Resistance. ACS Publications, United state of America. Thompson GD, Sparks TC. 2002. Spinosad: a green natural product for insect control, pp. 61-73. in: Lankey RL, Anastas PT (Eds.), Advancing Sustainability through Green Chemistry and Engineering. ACS Publications, United state of America. Thompson GD, Dutton R, Sparks TC. 2000. Spinosad-a case study: an example from a natural products discovery programme. Pest Manag Sci 56: 696-702. Tingle MD, Clarke JB, Kitteringham NR, Park BK. 1990. Influence of glutathione conjugation on the immunogenicity of dinitrophenyl derivatives in the rat. Int Arch Allergy Appl Immunol 91: 160-165. Tohnishi M, Nakao H, Furuya T, Seo A, Kodama H, Tsubata K, Fujioka S, Kodama H, Hirooka T, Nishimatsu T. 2005. Flubendiamide, a novel insecticide highly active against lepidopterous insect pests. J Pestic Sci 30: 354-360. Toprak U, Doğan C, Hegedus D. 2021. A comparative perspective on functionally-related, intracellular calcium channels: the insect ryanodine and inositol 1, 4, 5-trisphosphate receptors. Biomolecules 11: 1031. DOI: 10.3390/biom11071031. Torres-Vila LM, Rodrı́guez-Molina MC, Lacasa-Plasencia A, Bielza-Lino P, Rodrı́guez-del-Rincón Á. 2002. Pyrethroid resistance of Helicoverpa armigera in Spain: current status and agroecological perspective. Agric Ecosyst Environ 93: 55-66. Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, Field LM, Williamson MS, Slater R, Nauen R. 2012. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem Mol Biol 42: 873-880. Troczka BJ, Williams AJ, Williamson MS, Field LM, Lüemmen P, Davies TGE. 2015. Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides. Sci Rep 5: 14680. DOI: 10.11038/srep14680. Trostanetsky A, Kostyukovsky M. 2008. Transovarial activity of the chitin synthesis inhibitor novaluron on egg hatch and subsequent development of larvae of Tribolium castaneum. Phytoparasitica 36: 38-41. Uchiyama T, Ozawa A. 2014. Rapid development of resistance to diamide insecticides in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae), in the tea fields of Shizuoka Prefecture, Japan. Appl Entomol Zool 49: 529-534. Ullrich V, Weber P. 1972. The O-dealkylation of 7-ethoxycoumarin by liver microsomes: A direct fluorometric test. Hoppe Seylers Z Physiol Chem 353: 1171-1177. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3-new capabilities and interfaces. Nucleic Acids Research 40: e115-e115. DOI: 10.1093/nar/gks1596. Van Asperen K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. J Insect Physiol 8: 401-416. Van Daalen JJ, Meltzer J, Mulder R, Wellinga K. 1972. A selective insecticide with a novel mode of action. Sci Nat 59: 312-313. Van den Berg J, Van Rensburg JBJ. 1996. Comparison of various directional insecticide sprays against Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Pyralidae) in sorghum and maize. S Afr J Plant Soil 13: 51-54. Van den Berg J, du Plessis H. 2022. Chemical control and insecticide resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 115: 1761-1771. Via S. 1986. Quantitative genetic models and the evolution of pesticide resistance, pp. 222-235. Pesticide resistance: strategies and tactics for management. National Academies Press, Washington DC. Vontas JG, Small GJ, Nikou DC, Ranson H, Hemingway J. 2002. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362: 329-337. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W. 2005. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C > T affects mRNA stability. Pharmacogenet Genom 15: 693-704. Wang HH, Zhao R, Gao J, Zhang L, Zhang S, Liang P, Gao XW, Gu SH. 2023. Genetic architecture and insecticide resistance in Chinese populations of Spodoptera frugiperda. J Pest Sci 96: 1595-1610. Wang Q, Rui C, Wang L, Nahiyoon SA, Huang W, Zhu J, Ji X, Yang Q, Yuan H, Cui L. 2021. Field‐evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manag Sci 77: 5086-5095. Wang X, Wu Y. 2012. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella. J Econ Entomol 105: 1019-1023. Wang X, Khakame SK, Ye C, Yang Y, Wu Y. 2013. Characterisation of field‐evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag Sci 69: 661-665. Wang X, Cao X, Jiang D, Yang Y, Wu Y. 2020. CRISPR/Cas9 mediated ryanodine receptor I4790M knockin confers unequal resistance to diamides in Plutella xylostella. Insect Biochem Mol Biol 125: 103453. DOI: 10.101016/j.ibmb.102020.103453. Wang X, Chen Y, Gong C, Yao X, Jiang C, Yang Q. 2018. Molecular identification of four novel cytochrome P450 genes related to the development of resistance of Spodoptera exigua (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Manag Sci 74: 1938-1952. Watkins PB, Wrighton SA, Maurel P, Schuetz EG, Mendez-Picon G, Parker GA, Guzelian PS. 1985. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci U S A 82: 6310-6314. Waxman DJ, Chang TK. 2006. Use of 7-ethoxycoumarin to monitor multiple enzymes in the human CYP1, CYP2, and CYP3 families. Methods Mol Biol 320: 153-156. Wei Y, Yan R, Zhou Q, Qiao L, Zhu G, Chen M. 2019. Monitoring and mechanisms of chlorantraniliprole resistance in Chilo suppressalis (Lepidoptera: Crambidae) in China. J Econ Entomol 112: 1348-1353. Westfall PH, Tobias RD, Wolfinger RD. 2011. Multiple comparisons and multiple tests using SAS, 2nd ed. SAS Institute, Cary, North Carolina, USA. 644 pp. Wu LJ, Wu J, Lan H, Bai Y, Liu TX, Cao HH. 2022. Evaluation and optimization of the protocols for measuring cytochrome P450 activity in aphids. Anal Biochem 639: 114522. DOI: 10.111016/j.ab.112021.114522. Wu M, Zhang S, Yao R, Wu S, Su J, Gao C. 2014. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China. J Econ Entomol 107: 1250-1255. Xu Q, Zhang L, Li T, Zhang L, He L, Dong K, Liu N. 2012. Evolutionary adaptation of the amino acid and codon usage of the mosquito sodium channel following insecticide selection in the field mosquitoes. PLOS ONE 7: e47609. DOI: 10.41371/journal.pone.0047609. Yainna S, Nègre N, Silvie PJ, Brévault T, Tay WT, Gordon K, Dalençon E, Walsh T, Nam K. 2021. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the fall armyworm. Insects 12: 468. DOI: 10.3390/insects12050468. Yan HH, Xue CB, Li GY, Zhao XL, Che XZ, Wang LL. 2014. Flubendiamide resistance and Bi-PASA detection of ryanodine receptor G4946E mutation in the diamondback moth (Plutella xylostella L.). Pestic Biochem Physiol 115: 73-77. Yao R, Zhao DD, Zhang S, Zhou LQ, Wang X, Gao CF, Wu SF. 2017. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides. Pest Manag Sci 73: 1169-1178. Yin F, Lin Q, Wang X, Li Z, Feng X, Shabbir MZ. 2021. The glutathione S-transferase (PxGST2L) may contribute to the detoxification metabolism of chlorantraniliprole in Plutella xylostella (L.). Ecotoxicol 30: 1007-1016. Yu S. 1982. Host plant induction of glutathione S-transferase in the fall armyworm. Pestic Biochem Physiol 18: 101-106. Yu SJ. 1983. Age variation in insecticide susceptibility and detoxification capacity of fall armyworm (Lepidoptera: Noctuidae) larva. J Econ Entomol 76: 219-222. Yu SJ. 1991. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic Biochem Physiol 39: 84-91. Yu SJ, Abo-Elghar GE. 2000. Allelochemicals as inhibitors of glutathione S-transferases in the fall armyworm. Pestic Biochem Physiol 68: 173-183. Zalucki MP, Clarke AR, Malcolm SB. 2002. Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47: 361-393. Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, Li Z, Xu P, Wilson K, Withers A, Jones CM, Smith JA, Chipabika G, Kachigamba DL, Nam K, d’Alençon E, Liu B, Liang X, Jin M, Wu C, Chakrabarty S, Yang X, Jiang Y, Liu J, Liu X, Quan W, Wang G, Fan W, Qian W, Wu K, Xiao Y. 2020. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol Ecol Resour 20: 1682-1696. Zhang SK, Ren XB, Wang YC, Su J. 2014. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides. J Econ Entomol 107: 815-820. Zhao J, Xu L, Sun Y, Song P, Han Z. 2019. UDP-glycosyltransferase genes in the striped rice stem borer, Chilo suppressalis (Walker), and their contribution to chlorantraniliprole resistance. Int J Mol Sci 20: 1064. DOI: 10.3390/ijms20051064. Zuo Y, Wang H, Xu Y, Huang J, Wu S, Wu Y, Yang Y. 2017. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Insect Biochem Mol Biol 89: 79-85. Zuo YY, Ma HH, Lu WJ, Wang XL, Wu SW, Nauen R, Wu YD, Yang YH. 2020. Identification of the ryanodine receptor mutation I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae). Insect Sci 27: 791-800. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94883 | - |
| dc.description.abstract | 秋行軍蟲 (Spodoptera frugiperda (J.E. Smith)) 為原產於美洲的植食性害蟲,危害的作物種類眾多,對農業生產造成極大的威脅。秋行軍蟲自 2019 年入侵臺灣至今已接近五年,極有可能對目前所使用的防治藥劑產生抗藥性。因此,本論文於 2022 年自彰化縣、雲林縣、嘉義縣、臺南市和花蓮縣這五個臺灣主要的玉米產區採集田間秋行軍蟲,以飼料混拌法測試三齡幼蟲對硫敵克 (thiodicarb)、賜諾特 (spinetoram)、諾伐隆 (novaluron)、氟大滅 (flubendiamide) 和剋安勃 (chlorantraniliprole) 這五種緊急防治用藥的感受性。結果發現採自田間秋行軍蟲對賜諾特的敏感性最高,而對氟大滅的敏感性最低,其中彰化、嘉義、臺南地區的族群對氟大滅之百分之九十致死濃度 (90% lethal concentration, LC90) 超過田間推薦施用濃度。另外,各地區的秋行軍蟲對剋安勃的半致死濃度 (medium lethal concentration, LC50) 與感性蟲相比皆出現較大的抗性比,顯示目前田間秋行軍蟲對氟大滅及剋安勃這兩種二醯胺類 (diamide) 藥劑出現抗藥性。進一步選擇敏感性相對較低之臺南地區秋行軍蟲,比較三、四和五齡期秋行軍蟲對上述五種藥劑的感受性,發現除了氟大滅以外,五齡蟲對其餘緊急防治藥劑的 LC90 皆未超過田間推薦藥劑濃度。為了進一步瞭解秋行軍蟲對氟大滅及剋安勃產生抗藥性的成因,分別將採自彰化和臺南地區的田間族群以氟大滅和剋安勃篩選,建立抗性品系。經過 11 代及 10 代的篩選後,秋行軍蟲抗性蟲對氟大滅和剋安勃的抗性分別增加了 18.0 倍和 25.8 倍。接著針對氟大滅及剋安勃的作用標的魚尼丁受體上已知及可能的鱗翅目突變位點 K4642R、Y4643F、I4734C、S4864L、V4890M 和 G4891V 進行點突變偵測,發現抗性蟲在 4643 及 4890 這兩個位點有核酸序列的突變,但並未發現有任何的胺基酸位點產生突變。之後分別以胡椒基丁醚 (piperonyl butoxide, PBO)、1-氟-2,4-二硝基苯 (1-fluoro-2 4-dinitrobenzene, DNFB) 和磷酸三苯酯 (triphenyl phosphate, TPP) 這三種協力劑測試對氟大滅與剋安勃抗性蟲的協力效果,結果發現 PBO、DNFB 及 TPP 對氟大滅抗性蟲的協力比分別為 1.75、1.18 和 1.23,其中 PBO 具有顯著的協力效果,而 DNFB 與 TPP 則沒有顯著的協力效果;對剋安勃抗性蟲的協力效果分別為 3.03、5.88 及 28.8,且 PBO、DNFB 和 TPP 皆具有顯著的協力效果。進一步分析感性蟲與抗性蟲的酵素活性,以 ethoxycoumarin-O-deethylase (ECOD) 法測量細胞色素 P450 活性,發現氟大滅抗性蟲的活性為感性蟲的 1.24 倍並具有顯著差異 (p = 0.0012),而剋安勃抗性蟲活性為感性蟲的 0.96 倍且沒有顯著差異 (p = 0.1971);使用 1-Chloro-2,4-dinitrobenzene (CDNB) 與 3,4-dichloronitrobenzene (DCNB) 這兩種受質測試穀胱甘肽 S-轉移酶活性,以 CDNB 為受質發現氟大滅與剋安勃抗性蟲的活性分別為感性蟲的 1.27 及 1.33 倍,亦具有顯著差異 (p = 0.001),但以DCNB 為受質則感性蟲與抗性蟲則無顯著的差異 (p = 0.126);使用 α-naphthyl acetate (α-NA) 和 β-naphthyl acetate (β-NA) 這兩種受質測試酯酶活性,結果發現以 α-NA 為受質時,氟大滅與剋安勃抗性蟲的酯酶活性分別為感性蟲的1.24及1.52 倍且與感性蟲有顯著差異 (p < 0.0001)。以 β-NA 作為受質,氟大滅與剋安勃抗性蟲的酯酶活性分別為感性蟲的1.86和1.94 倍,亦與感性蟲有顯著差異 (p < 0.0001)。最後在交互抗性的測試中,發現對氟大滅與剋安勃產生抗性之抗性蟲間,會對二藥劑有交互抗性產生,但與硫敵克、賜諾特、諾伐隆則沒有交互抗性產生。本論文結果除了可作為田間防治的參考外,亦能作為國內秋行軍蟲對二醯胺類藥劑抗藥性研究的基礎。 | zh_TW |
| dc.description.abstract | The fall armyworm (Spodoptera frugiperda (J.E. Smith)) is an herbivorous pest originating from the Americas which causes damage to many crops and poses a great threat to agricultural production. It initially invaded Taiwan in 2019 and may have begun developing resistance to currently used emergency insecticides in the ensuing five years. This study collected field fall armyworms from five major corn-producing areas in Changhua, Yunlin, Chiayi, Tainan, and Hualien in 2022, and used the diet-incorporation method to test the susceptibility of third instar larvae to five emergency insecticides: thiodicarb, spinetoram, novaluron, flubendiamide, and chlorantraniliprole. The results showed that fall armyworms collected from field displayed the highest susceptibility to spinetoram and the lowest susceptibility to flubendiamide. Additionally, the 90% lethal concentration (LC90) of Changhua, Chiayi, and Tainan strains to flubendiamide exceeded recommended concentrations. Furthermore, the medium lethal concentration (LC50) of field fall armyworms showed a greater resistance ratio to chlorantraniliprole compared with the susceptible strain, indicating that field fall armyworms may be resistant to the two diamides of flubendiamide and chlorantraniliprole. We further chose Tainan strain, which had the lowest susceptibility, testing the susceptibilities to 3rd, 4th & 5th instar larvae of five pesticides showed that. Except for flubendiamide, the LC90 of the fifth instar to other emergency insecticides did not exceed recommended concentrations. In order to understand the mechanism of fall armyworm resistance to flubendiamide and chlorantraniliprole, field populations from Changhua and Tainan were selected with flubendiamide and chlorantraniliprole to establish resistant strains, respectively. After 11 and 10 generations of selection, resistant strain of fall armyworm to flubendiamide and chlorantraniliprole increased 18.0 and 25.8 times, respectively. After detecting point mutations at the known and possible mutation sites of K4642R、Y4643F、I4734C、S4864L、V4890M and G4891V on target ryanodine receptors, nucleic acid sequence mutations at the two sites 4643 and 4890 were found in resistant strains, but no mutations were found at any amino acid sites. Three synergists, piperonyl butoxide (PBO), 1-fluoro-2 4-dinitrobenzene (DNFB), and triphenyl phosphate (TPP), were used to test the synergistic effects to resistant strains. The results showed that the synergistic ratios of PBO, DNFB and TPP against flubendiamide-resistant fall armyworms were 1.75, 1.18 and 1.23 respectively. PBO had a significant synergistic effect, while DNFB and TPP had no significant synergistic effect; and the synergistic ratios on chlorantraniliprole-resistant fall armyworms were 3.03, 5.88 and 28.8 respectively. PBO, DNFB and TPP all had significant synergistic effects against chlorantraniliprole-resistant fall armyworms. We conducted further analysis of the enzyme activities in susceptible and resistant strains. Using ethoxycoumarin-O-deethylase (ECOD) to measure cytochrome P450 activity, and found that the activities of the flubendiamide-resistant strain was significantly 1.24 times higher than that of the susceptible strain (p = 0.0012), while the activities of chlorantraniliprole-resistant strain was 0.96 times that of the susceptible strain, showing no significant difference (p = 0.1971). The two substrates 1-Chloro-2,4-dinitrobenzene (CDNB) and 3,4-dichloronitrobenzene (DCNB) were used to test glutathione S-transferase activity. For CDNB, the activities of the flubendiamide-resistant and chlorantraniliprole-resistant strains were both significantly (p = 0.001) higher than the susceptible strain at 1.27 and 1.33 times, respectively. DCNB showed no significant differences in the activities between the susceptible and resistant strains (p = 0.126). Esterase activity was tested using α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA) as substrates. The results showed that when α-NA was used as substrate, the esterase activities of flubendiamide-resistant and chlorantraniliprole-resistant strains were both significantly (p < 0.0001) higher than the susceptible strain at 1.24 and 1.52 times, respectively. When β-NA was used as the substrate, the esterase activities of flubendiamide-resistant and chlorantraniliprole-resistant strains were 1.86 and 1.94 times that of the susceptible strain, respectively, and were also significantly different from the susceptible strain (p < 0.0001). Finally, cross-resistance tests showed that resistant strains displayed cross-resistance to flubendiamide and chlorantraniliprole, but not to thiodicarb, spinetoram, and novaluron. The results of this study can be used as a reference for field control, and can also serve as the basis for research on the resistance of fall armyworms to diamide pesticides. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-21T16:08:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-21T16:08:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目次 vi 表次 viii 圖次 ix 附錄次 x 壹、 前言 1 貳、 往昔研究 3 2.1 秋行軍蟲之形態和生物學 3 2.2 秋行軍蟲之寄主植物和經濟危害 4 2.3 秋行軍蟲之全球擴散 5 2.4各國針對秋行軍蟲入侵採取的防治措施 6 2.5 二醯胺類殺蟲劑介紹與作用機制 7 2.6鱗翅目對二醯胺類藥劑之抗藥性 8 2.6.1作用位點基因點突變所產生之抗藥性 9 2.6.2代謝抗性 10 2.7 代謝酵素活性之測量 12 2.8 殺蟲劑增效劑 (協力劑) (synergists) 14 參、 材料與方法 15 3.1 秋行軍蟲之採集和飼養 15 3.2 秋行軍蟲幼蟲生物檢定 15 3.3 抗性品系之篩選 16 3.4 抗性基因點突變頻度測定 17 3.4.1 Total RNA 萃取 17 3.4.2 反轉錄 RNA 至 DNA 18 3.4.3 聚合酶鏈鎖反應 (Polymerase chain reaction, PCR) 18 3.4.4桑格定序 19 3.5 協力劑試驗 19 3.6 酵素活性測定 20 3.6.1蟲體均質化 20 3.6.2蛋白濃度測定 20 3.6.3細胞色素 P450 活性測定 20 3.6.4 穀胱甘肽 S-轉移酶 (GSTs) 活性測定 21 3.6.5酶酯 (ESTs) 活性測定 22 3.7 統計分析 22 肆、 結果 24 4.1 田間五個地區秋行軍蟲族群對五種緊急防治藥劑之感受性 24 4.2. 三個齡期的秋行軍蟲對五種緊急防治藥劑之感受性 25 4.3 抗性品系篩選 25 4.4 抗性基因點突變頻度測定 26 4.5 秋行軍蟲的協力劑試驗 26 4.6 細胞色素 P450 活性測定 27 4.7 穀胱甘肽 S-轉移酶 (GSTs) 活性測試 27 4.8 酯酶 (ESTs) 活性測定 27 4.9 交互抗性 28 伍、 討論 29 5.1臺灣地區秋行軍蟲對五種殺蟲劑之感受性 29 5.2 三個齡期之秋行軍蟲對五種緊急防治藥劑之感受性 32 5.3 抗性品系篩選 32 5.4 作用標的位點基因點突變 33 5.5 協力劑與酵素活性 34 5.6 交互抗性 37 陸、 結論 39 柒、 引用文獻 59 捌、 附錄 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 秋行軍蟲 | zh_TW |
| dc.subject | 感受性 | zh_TW |
| dc.subject | 點突變 | zh_TW |
| dc.subject | 代謝抗性 | zh_TW |
| dc.subject | 交互抗性 | zh_TW |
| dc.subject | 二醯胺類 | zh_TW |
| dc.subject | point mutation | en |
| dc.subject | Spodoptera frugiperda | en |
| dc.subject | susceptibility | en |
| dc.subject | diamide | en |
| dc.subject | metabolic resistance | en |
| dc.subject | cross-resistance | en |
| dc.title | 臺灣秋行軍蟲 (Spodoptera frugiperda) 對二醯胺類殺蟲劑抗藥性機制探討 | zh_TW |
| dc.title | Study on the resistance mechanisms of Spodoptera frugiperda (J.E. Smith) to diamide insecticides in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 戴淑美;林彥伯;楊永裕;曾書萍 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Mei Dai;Yen-Po Lin;Yung-Yu Yang;Shu-Ping Tseng | en |
| dc.subject.keyword | 秋行軍蟲,感受性,點突變,代謝抗性,交互抗性,二醯胺類, | zh_TW |
| dc.subject.keyword | Spodoptera frugiperda,susceptibility,point mutation,metabolic resistance,cross-resistance,diamide, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202404034 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | - |
| Appears in Collections: | 植物醫學碩士學位學程 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 2.12 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
