Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏恆巍zh_TW
dc.contributor.advisorHen-Wei Weien
dc.contributor.author蕭雅芠zh_TW
dc.contributor.authorYa-Wen Hsiaoen
dc.date.accessioned2024-08-20T16:22:17Z-
dc.date.available2024-08-21-
dc.date.copyright2024-08-20-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation林亮全。2004。土雞屠體分級分切標準手冊。行政院農業委員會輔導處,臺北市。
趙清賢、林旻蓉、賴元亮、蘇夢蘭、何玉珍、陳志峰、李淵百。2005a。台灣商用紅羽土雞與黑羽土雞的生長性能。中畜會誌。34: 65-78。
趙清賢、黃雅梅、陳志峰、何玉珍、蘇夢蘭、李淵百。2005b。台灣商用種土雞的繁殖性能研究。中畜會誌。34: 151-161。
林旻蓉、張伸彰、趙清賢、謝豪晃、陳添福、王治華、賈玉祥、鄭裕信、陳志峰、范揚廣、李淵百。2008。台灣土雞群不同雜交組合之種蛋受精率、孵化率及胚胎死亡率的比較。中畜會誌。37: 221-231。
蘇晉暉、陳怡瑾、何泰全、王薇淳、趙清賢。2008。商用紅羽土雞與興大選育土雞性狀之比較1.生長性狀與免疫能力。中畜會誌。37: 89-106。
蘇晉暉、陳怡瑾、何泰全、王薇淳、趙清賢。2008。商用紅羽土雞與興大選育土雞性狀之比較2.肌肉性狀與血液學參數。中畜會誌。37: 107-120。
林旻蓉、張伸彰、謝豪晃、趙清賢、陳添福、王治華、賈玉祥、鄭裕信、范揚廣、陳志峰、李淵百。2010。中畜會誌。39: 103-117。
梁筱梅、林德育、林正鏞、康獻仁、梁桂容、許岩得、洪國翔。2016。畜產研究。49: 99-104。
陳志峰。2019。從天擇到人擇-家雞的起源與演變。臺灣博物季刊。38: 14-19.
林德育。2020。民間土雞新品系的育成與命名。科學發展。567:16-23。
徐維翎。2020。臺灣土雞全基因體定序與族群結構分析。中興大學動物科學系碩士學位論文。
許郁汝、陳韋誠、倪千祥、鄭富元。2022。商用紅羽土雞雜交抗熱緊迫土雞品系對後裔屠體性狀與肉質影響之研究。中畜會誌。51: 233-243。
陳志峰。2022。2022台灣家禽統計手冊。獸醫畜產發展基金會。
張啟聖。2022。臺灣有色肉雞雙雄:紅羽土雞、黑羽土雞的傳奇。畜產報導。243。
財團法人中央畜產會。2023。2022臺灣養豬統計手冊。臺北市。
林正鏞、李秀蘭。2023。性別對商用紅羽土雞生長性能、血液生化值、屠體性狀及生產效益之影響。畜產研究。56: 46-54。
陳大中、洪與成。2024。認識臺灣土雞主要品種。豐年雜誌。74: 26-29。
Accili, D., and K. C. Arden. 2004. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 117: 421-426. doi: 10.1016/S0092-8674(04)00452-0
Allaire, J. 2012. RStudio: integrated development environment for R. Boston, MA. 770: 165-171.
Alonso-Martin, S., A. Rochat, D. Mademtzoglou, J. Morais, A. De Reynies, F. Auradé, and F. Relaix. 2016. Gene expression profiling of muscle stem cells identifies novel regulators of postnatal myogenesis. Front. cell dev. biol. 4: 58. doi: 10.3389/fcell.2016.00058
Andersson, L., B. Bed'hom, C. M. Chuong, M. Inaba, R. Okimoto, and M. Tixier-Boichard. 2020. The genetic basis for pigmentation phenotypes in poultry Advances in poultry genetics and genomics. 67-106. Burleigh Dodds Science Publishing. doi: 10.19103/AS.2020.0065.31
Arbuckle, J. L. 2011. IBM SPSS Amos 20 user’s guide. Amos development corporation, SPSS Inc. 226-229.
Bartoli-Leonard, F., M. Rogers, K. Zheng, A. Small, T. Asano, S. Kuraoka, and S. Tsimikas. 2022. Inhibition of novel lipoprotein (a) receptor major facilitator superfamily domain containing 5 (MFSD5) reduces development of aortic valve calcification. Cardiovasc. Res. 118: 139. doi: 10.1093/cvr/cvac066.139
Chakraborty, P., R. Kuo, L. Vervelde, B. M. Dutia, P. Kaiser, and J. Smith. 2019. Macrophages from susceptible and resistant chicken lines have different transcriptomes following marek’s disease virus infection. Genes. 10: 74. doi: 10.3390/genes10020074
Chang, C.-S. 2011. A global approach of chicken genetic diversity in Taiwan combining phenotypes and molecular markers. AgroParisTech. doi: 10.1111/j.1365-2052.2011.02226.x
Chang, X. Y., O. U. Edna, J. Wang, H. J. Zhang, J. M. Zhou, K. Qiu, and S. G. Wu. 2024. Histological and molecular difference in albumen quality between post-adolescent hens and aged hens. Poult. Sci. 103: 103618. doi: 10.1016/j.psj.2024.103618
Chen, B., J. Xu, X. He, H. Xu, G. Li, H. Du, and X. Zhang. 2015. A genome-wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth. PloS one. 10: e0137087. doi: 10.1371/journal.pone.0137087
Chen, B., Y. Zhang, Y. Niu, Y. Wang, Y. Liu, H. Ji, and X. Kang. 2024. RRM2 promotes the proliferation of chicken myoblasts, inhibits their differentiation and muscle regeneration. Poult. Sci. 103: 103407. doi: 10.1016/j.psj.2023.103407
Chen, K., P. Gao, Z. Li, A. Dai, M. Yang, S. Chen, and L. Li. 2022. Forkhead box O signaling pathway in skeletal muscle atrophy. Am. J. Pathol. 192: 1648-1657. doi: 10.1016/j.ajpath.2022.09.003
Cho, Y., J. Y. Kim, and N. Kim. 2022. Comparative genomics and selection analysis of Yeonsan Ogye black chicken with whole-genome sequencing. Genomics. 114: 110298. doi: 10.1016/j.ygeno.2022.110298
Choi, K. M., J. K. Moon, S. H. Choi, K. S. Kim, Y. I. Choi, J. J. Kim, and C. K. Lee. 2008. Differential expression of cytochrome P450 genes regulate the level of adipose arachidonic acid in Sus Scrofa. J. Anim. Sci. 21: 967-971. doi: ajas.2008.80059
Cintron, D. L., A. M. Muir, A. Scott, M. Mcdonald, K. G. Monaghan, T. Santiago-Sim, and D. J. Harris. 2022. A recurrent, de novo pathogenic variant in ARPC4 disrupts actin filament formation and causes microcephaly and speech delay. Hum. Genet. Genom. Adv. 3. doi: 10.1016/j.xhgg.2021.100072
Dávila, S., M. Gil, P. Resino-Talaván, and J. Campo. 2014. Association between polymorphism in the melanocortin 1 receptor gene and E locus plumage color phenotype. Poult. Sci. 93: 1089-1096. doi: 10.3382/ps.2013-03611
Deng, B., M. Wehling-Henricks, S. A. Villalta, Y. Wang, and J. G. Tidball. 2012. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immun. 189: 3669-3680. doi: 10.4049/jimmunol.1103180
Do, C., R. S. Waples, D. Peel, G. Macbeth, B. J. Tillett, and J. R. Ovenden. 2014. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14: 209-214. doi: 10.1111/1755-0998.12157
Dou, D., L. Shen, J. Zhou, Z. Cao, P. Luan, Y. Li, and H. Zhang. 2022. Genome-wide association studies for growth traits in broilers. BMC Genom. Data. 23: 1-9. doi: 10.1186/s12863-021-01017-7
Dull, K., F. Fazekas, D. Deák, D. Kovács, S. Póliska, A. Szegedi, and D. Törőcsik. 2021. miR-146a modulates TLR1/2 and 4 induced inflammation and links it with proliferation and lipid production via the indirect regulation of GNG7 in human SZ95 sebocytes. Sci. Rep. 11: 21510. doi: 10.1038/s41598-021-00907-1
Falker-Gieske, C., I. Blaj, S. Preuß, J. Bennewitz, G. Thaller, and J. Tetens. 2019. GWAS for meat and carcass traits using imputed sequence level genotypes in pooled F2-designs in pigs. G3: Genes Genomes Genet. 9: 2823-2834. doi: 10.1534/g3.119.400452
Fumihito, A., T. Miyake, S. I. Sumi, M. Takada, S. Ohno, and N. Kondo. 1994. One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc. Nat. Acad. Sci. 91: 12505-12509. doi: 10.1073/pnas.91.26.12505
Gagolewski, M. 2022. stringi: Fast and portable character string processing in R. J. Stat. Softw. 103: 1-59. doi: 10.18637/jss.v103.i02
Gheyas, A., A. Vallejo-Trujillo, A. Kebede, T. Dessie, O. Hanotte, and J. Smith. 2022. Whole genome sequences of 234 indigenous African chickens from Ethiopia. Sci. Data. 9: 53. doi: 10.1038/s41597-022-01129-4
Goley, E. D., A. Rammohan, E. A. Znameroski, E. N. Firat-Karalar, D. Sept, and M. D. Welch. 2010. An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability. Proc. Nat. Acad. Sci. 107: 8159-8164. doi: 10.1073/pnas.0911668107
Goni, L., M. Cuervo, F. I. Milagro, and J. A. Martínez. 2015. Gene-gene interplay and gene-diet interactions involving the MTNR1B rs10830963 variant with body weight loss. J. Nutrigenet Nutrigenomics. 7: 232-242. doi: 10.1159/000380951
Gruber, B., P. J. Unmack, O. F. Berry, and A. Georges. 2018. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18: 691-699. doi: 10.1111/1755-0998.12745
Guo, X., X. Li, Y. Li, Z. Gu, C. Zheng, Z. Wei, and H. Zheng. 2010. Genetic variation of chicken MC1R gene in different plumage colour populations. Br. Poult. Sci. 51: 734-739. doi: 10.1080/00071668.2010.518408
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic. Acids. Symp. 95-98. doi: 10.14601/Phytopathol_Mediterr-14998u1.29
He, M., P. Wu, F. Chen, B. Zhang, L. Chen, T. Zhang, and G. Zhang. 2020. Transcriptome analysis of leg muscles in fast and slow growth Bian chickens. Anim. Biotechnol. 31: 295-305. doi: 10.1080/10495398.2019.1588129
Higgs, H. N., and T. D. Pollard. 2001. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70: 649-676. doi: 10.1146/annurev.biochem.70.1.649
Hoque, M., S. Jin, K. Heo, B. Kang, C. Jo, and J. Lee. 2013. Investigation of MC1R SNPs and their relationships with plumage colors in Korean native chicken. J. Anim. Sci. 26: 625. doi: 10.5713/ajas.2012.12581
Hou, X., Z. Wang, F. Ding, Y. He, P. Wang, X. Liu, and Y. Yang. 2019. Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/β-catenin signaling pathway. Int. J. Biol. Sci. 15: 1104. doi:10.7150/ijbs.31794
Hribal, M. L., J. Nakae, T. Kitamura, J. R. Shutter, and D. Accili. 2003. Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors. JCB. 162: 535-541. doi: 10.1083/jcb.200212107
Huang, X., F. Dai, G. Gaisano, K. Giglou, J. Han, M. Zhang, and A. Showalter. 2013. The identification of novel proteins that interact with the GLP-1 receptor and restrain its activity. J. Mol. Endocrinol. 27: 1550-1563. doi: 10.1210/me.2013-1047
Ikegami, K., and M. Setou. 2009. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett. 583: 1957-1963. doi: 10.1016/j.febslet.2009.05.003
Jiang, Y., Y. Jiang, S. Wang, Q. Zhang, and X. Ding. 2019. Optimal sequencing depth design for whole genome re-sequencing in pigs. BMC Bioinformatics. 20: 1-12. doi: 10.1186/s12859-019-3164-z
Jie, W., Q. X. Lei, D. G. Cao, Z. Yan, H. X. Han, L. Wei, and L. Jie. 2023. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features. J. Integr. Agric. 22: 2200-2212. doi: 10.1016/j.jia.2022.11.007
Kamei, Y., S. Miura, M. Suzuki, Y. Kai, J. Mizukami, T. Taniguchi, and H. Aburatani. 2004. Skeletal muscle Foxo1 (Fkhr) transgenic mice have less skeletal muscle mass, down-regulated type I (Slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279: 41114-41123. doi: 10.1074/jbc.M400674200
Kamvar, Z. N., J. F. Tabima, and N. J. Grünwald. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2: 281. doi: 10.7717/peerj.281
Kang, Y. J., D. K. Jeong, I. C. Cho, and S. H. Han. 2016. Association between genotypes of the isocitrate dehydrogenase 3, beta subunit (IDH3B) gene and carcass traits in an F₂ crossbred population of Landrace× Jeju (Korea) Black pigs. J. Life Sci. 26: 414-418. doi: 10.5352/JLS.2016.26.4.414
Kasimiotis, H., M. A. Myers, A. Argentaro, S. Mertin, S. Fida, T. Ferraro, and V. R. Harley. 2000. Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets. Diabetes. 49: 555-561. doi: 10.2337/diabetes.49.4.555
Keller, M., L. Hopp, X. Liu, T. Wohland, K. Rohde, R. Cancello, and F. Eichelmann. 2017. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol. Metab. 6: 86-100. doi: 10.1016/j.molmet.2016.11.003
Kerje, S., J. Lind, K. Schütz, P. Jensen, and L. Andersson. 2003. Melanocortin 1‐receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34: 241-248. doi: 10.1046/j.1365-2052.2003.00991.x
Kim, M., J. P. Munyaneza, E. Cho, A. Jang, C. Jo, K. C. Nam, and J. H. Lee. 2023. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals. 13: 2966. doi: 10.3390/ani13182966
Knudsen, K. 1990. Cell adhesion molecules in myogenesis. Curr. Opin. Cell Biol. 2: 902-906. doi: 10.1016/0955-0674(90)90090-2
Kumagai, T., T. Miki, M. Kikuchi, T. Fukuda, N. Miyasaka, R. Kamiyama, and S. Hirosawa. 1999. The proto-oncogene Bcl6 inhibits apoptotic cell death in differentiation-induced mouse myogenic cells. Oncogene. 18: 467-475. doi: 10.1038/sj.onc.1202306
Lai, W., and L. Yu. 2021. Elevated microRNA 183 impairs trophoblast migration and invasiveness by downregulating FOXP1 expression and elevating GNG7 expression during preeclampsia. Mol. Cell. Biol. 41: e00236-00220. doi: 10.1128/MCB.00236-20
Li, B., L. Fang, D. Null, J. Hutchison, E. Connor, P. Vanraden, and J. Cole. 2019. High-density genome-wide association study for residual feed intake in Holstein dairy cattle. J. Dairy Sci. 102: 11067-11080. doi: 10.3168/jds.2019-16645
Li, H., B. Hu, S. Hu, W. Luo, D. Sun, M. Yang, and D. Li. 2021. High expression of BCL6 inhibits the differentiation and development of hematopoietic stem cells and affects the growth and development of chickens. J. Anim. Sci. Biotechnol. 12: 1-13. doi: 10.1186/s40104-020-00541-3
Li, J., Q. Huang, C. Yang, C. Yu, Z. Zhang, M. Chen, and M. Qiu. 2023. Molecular Regulation of Differential Lipid Molecule Accumulation in the Intramuscular Fat and Abdominal Fat of Chickens. Genes. 14: 1457. doi: 10.3390/genes14071457
Ling, M. K., M. C. Lagerström, R. Fredriksson, R. Okimoto, N. I. Mundy, S. Takeuchi, and H. B. Schiöth. 2003. Association of feather colour with constitutively active melanocortin 1 receptors in chicken. Eur. J. Biochem. 270: 1441-1449. doi: 10.1046/j.1432-1033.2003.03506.x
Lokman, I., A. Zuki, Y. Goh, A. Sazili, and M. Noordin. 2011. Carcass compositions in three different breeds of chicken and their correlation with growth performance. Pertanika J. Trop. Agric. Sci. 34: 247-252.
Lucinda, F., M. Elaine, and W. Richard. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 432: 695-716. doi: 10.1038/nature03154
Luo, W., X. Ren, J. Chen, L. Li, S. Lu, T. Chen, and X. Zhang. 2018. TP63 transcripts play opposite roles in chicken skeletal muscle differentiation. Front. Physiol. 9: 396234. doi: 10.3389/fphys.2018.01298
Lyssenko, V., C. L. Nagorny, M. R. Erdos, N. Wierup, A. Jonsson, P. Spégel, and N. Pulizzi. 2009. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41: 82-88. oi: 10.1038/ng.288
Mailund, T., and T. Mailund. 2019. Manipulating data frames: dplyr. R data science quick reference: A pocket guide to APIs, libraries, and packages. 109-160.
Makarova, A., O. Mitrofanova, A. Vakhrameev, and N. Dementeva. 2019. Molecular-genetic bases of plumage coloring in chicken. Vavilov Journal of Genetics and Breeding. 23: 343-354. doi: 10.18699/VJ19.499
Manigandan, S., S. Mukherjee, and J. W. Yun. 2021. Loss of family with sequence similarity 107, member A (FAM107A) induces browning in 3T3-L1 adipocytes. Arch. Biochem. Biophys. 704: 108885. doi: 10.1016/j.abb.2021.108885
Martins, R., P. C. Machado, L. F. B. Pinto, M. R. Silva, F. S. Schenkel, L. F. Brito, and V. B. Pedrosa. 2021. Genome‐wide association study and pathway analysis for fat deposition traits in nellore cattle raised in pasture–based systems. J. Aim. Breed. Genet. 138: 360-378. doi: 10.1111/jbg.12525
Mastrangelo, S., F. Cendron, G. Sottile, G. Niero, B. Portolano, F. Biscarini, and M. Cassandro. 2020. Genome-wide analyses identifies known and new markers responsible of chicken plumage color. Animals. 10: 493. doi: 10.3390/ani10030493
Mcdonald, K. A., A. F. Horwitz, and K. A. Knudsen. 1995. Adhesion molecules and skeletal myogenesis. Semin. Cell. Dev. Biol. 105-116. doi: 10.1016/S1044-5781(06)80020-4
Mitchell, C. 1993. MultAlin–multiple sequence alignment. OUP. doi: 10.1093/bioinformatics/9.5.614
Murali, M., and J. A. Macdonald. 2018. Smoothelins and the control of muscle contractility. Advances in pharmacology. 81: 39-78. doi: 10.1016/bs.apha.2017.10.001
Nanda, V., and J. M. Miano. 2012. Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J. Biol. Chem. 287: 2459-2467. doi: 10.1074/jbc.M111.302224
Okubo, M., A. Iida, S. Hayashi, M. Mori-Yoshimura, Y. Oya, A. Watanabe, and I. Nishino. 2018. Three novel recessive DYSF mutations identified in three patients with muscular dystrophy, limb-girdle, type 2B. J. Neurol. Sci. 395: 169-171. doi: 10.1016/j.jns.2018.10.015
Oyabu, M., K. Takigawa, S. Mizutani, Y. Hatazawa, M. Fujita, Y. Ohira, and T. Suganami. 2022. FOXO1 cooperates with C/EBPδ and ATF4 to regulate skeletal muscle atrophy transcriptional program during fasting. FASEB J. 36: 22152. doi: 10.1096/fj.202101385RR
Paradis, E., and K. Schliep. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35: 526-528. doi: 10.1093/bioinformatics/bty633
Park, M. N., J. A. Choi, K. T. Lee, H. J. Lee, B. H. Choi, H. Kim, and T. Lee. 2013. Genome-wide association study of chicken plumage pigmentation. J. Anim. Sci. 26: 1523. doi: 10.5713/ajas.2013.13413
Perland, E., E. Lekholm, M. M. Eriksson, S. Bagchi, V. Arapi, and R. Fredriksson. 2016. The putative SLC transporters Mfsd5 and Mfsd11 are abundantly expressed in the mouse brain and have a potential role in energy homeostasis. PloS one. 11: e0156912. doi: 10.1371/journal.pone.0156912
Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, and M. J. Daly. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81: 559-575. doi: 10.1086/519795
R Core Team, R. 2013. R: A language and environment for statistical computing. R foundation for statistical computing Vienna, Austria.
Resnyk, C. W., W. Carré, X. Wang, T. E. Porter, J. Simon, E. Le Bihan-Duval, and L. A. Cogburn. 2017. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC genomics. 18: 1-31. doi: 10.1186/s12864-017-4035-5
Riazuddin, S. A., E. N. Vithana, L. F. Seet, Y. Liu, A. Al‐Saif, L. W. Koh, and A. O. Eghrari. 2010. Missense mutations in the sodium borate cotransporter SLC4A11 cause late-onset Fuchs corneal dystrophy. Hum. Mutat. 31: 1261-1268. doi: 10.1002/humu.21356
Robbins, L. S., J. H. Nadeau, K. R. Johnson, M. A. Kelly, L. Roselli-Rehfuss, E. Baack, and R. D. Cone. 1993. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell. 72: 827-834. doi: 10.1016/0092-8674(93)90572-8
Rubin, C. J., M. C. Zody, J. Eriksson, J. R. Meadows, E. Sherwood, M. T. Webster, and S. Ka. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 464: 587-591. doi: 10.1038/nature08832
Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. 74: 5463-5467. doi: 10.1073/pnas.74.12.5463
Sen, C. 1998. Glutathione: a key role in skeletal muscle metabolism Oxidative stress in skeletal muscle. Springer. 127-139. doi: 10.1007/978-3-0348-8958-2_8
Song, X., and Y. Qian. 2013. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell. Signal. 25: 2335-2347. doi: 10.1016/j.cellsig.2013.07.021
Sturn, A., J. Quackenbush, and Z. Trajanoski. 2002. Genesis: cluster analysis of microarray data. Bioinformatics. 18: 207-208. doi: 10.1093/bioinformatics/18.1.207
Sun, Y., J. Xue, W. Guo, M. Li, Y. Huang, X. Lan, and H. Chen. 2016. Haplotypes of bovine FoxO1 gene sequence variants and association with growth traits in Qinchuan cattle. J. Genet. 93: 8-14. doi: 10.1007/s12041-013-0209-3
Takeuchi, S., H. Suzuki, M. Yabuuchi, and S. Takahashi. 1996. A possible involvement of melanocortin 1-receptor in regulating feather color pigmentation in the chicken. Biochim Biophys Acta. 1308: 164-168. doi: 10.1016/0167-4781(96)00100-5
Tamura, K., G. Stecher, and S. Kumar. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 38: 3022-3027. doi: 10.1093/molbev/msab120
Tan, X., J. Zhang, J. Dong, M. Huang, Q. Li, H. Wang, and S. Yang. 2024. Whole-genome variants dataset of 209 local chickens from China. Sci. Data. 11: 169. doi: 10.1038/s41597-024-02995-w
Tsai, S. H., P. Y. Chang, Y.-H. Wen, W. T. Lin, F. P. Hsu, and D. P. Chen. 2023. Screening of single nucleotide polymorphisms within HLA region related to hematopoietic stem cell transplantation using MassARRAY technology. Sci. Rep. 13: 5913. doi: 10.1038/s41598-023-33149-4
Turner, S. D. 2014. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv. 005165.
Turner, S. R., and J. A. Macdonald. 2014. Novel contributions of the smoothelin‐like 1 protein in vascular smooth muscle contraction and its potential involvement in myogenic tone. Microcirculation. 21: 249-258. doi: 10.1111/micc.12108
Wang, H., J. Wen, H. Li, T. Zhu, X. Zhao, J. Zhang, and M. Gemingguli. 2022. Candidate pigmentation genes related to feather color variation in an indigenous chicken breed revealed by whole genome data. Front. Genet. 13: 985228. doi: 10.3389/fgene.2022.985228
Wang, J., C. Song, X. Cao, H. Li, H. Cai, Y. Ma, and Y. Ma. 2019. MiR‐208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. J Cell Physiol. 234: 3720-3729. doi: 10.1002/jcp.27146
Wang, K., M. Li, and H. Hakonarson. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38: 164-164. doi: 10.1093/nar/gkq603
Wilkinson, L. 2011. ggplot2: elegant graphics for data analysis by WICKHAM, H. Oxford University Press.
Wu, B., M. Jin, Y. Zhang, T. Wei, and Z. Bai. 2011. Evolution of the IL17 receptor family in chordates: a new subfamily IL17REL. Immunogenetics. 63: 835-845. doi: 10.1007/s00251-011-0554-4
Xiong, X., J. Liu, and Y. Rao. 2023. Whole genome resequencing helps study important traits in chickens. Genes. 14: 1198. doi: 10.3390/genes14061198
Xu, D., W. Zhu, Y. Wu, S. Wei, G. Shu, Y. Tian, and G. Wu. 2023. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC genomics. 24: 570. doi: 10.1186/s12864-023-09621-w
Yakovlev, I. A., A. M. Emelin, Y. S. Slesarenko, I. S. Limaev, I. A. Vetrova, L. D. Belikova, and E. V. Kuzubova. 2023. Dual Adeno-Associated Virus 9 with Codon-Optimized DYSF Gene Promotes In Vivo Muscle Regeneration and May Decrease Inflammatory Response in Limb Girdle Muscular Dystrophy Type R2. In. J. Mol. Sci. 24: 13551. doi: 10.3390/ijms241713551
Yang, C. W., J. S. Ran, C. L. Yu, M. H. Qiu, Z. R. Zhang, H. R. Du, and B. Xia. 2019. Polymorphism in MC1R, TYR and ASIP genes in different colored feather chickens. 3 Biotech. 9: 1-8. doi: 10.1007/s13205-019-1710-z
Yang, H., Z. Xu, M. Lei, F. Li, C. Deng, Y. Xiong, and B. Zuo. 2010. Association of 3 polymorphisms in porcine troponin I genes (TNNI1 and TNNI2) with meat quality traits. J. Appl. Geneti. 51: 51-57. doi: 10.1007/BF03195710
Yang, S., Y. Yang, X. Long, H. Li, F. Zhang, and Z. Wang. 2023. Integrated analysis of the effects of cecal microbiota and serum metabolome on market weights of Chinese native chickens. Animals. 13: 3034. doi: 10.3390/ani13193034
Yang, Z., L. Zou, T. Sun, W. Xu, L. Zeng, Y. Jia, and X. Yang. 2021. Genome-wide association study using whole-genome sequencing identifies a genomic region on chromosome 6 associated with comb traits in Nandan-Yao chicken. Front. Genet. 12: 682501. doi: 10.3389/fgene.2021.682501
Yeo, J., Y. Lee, K. Hyeong, J. Ha, J. Yi, B. Kim, and D. Oh. 2014. Detection of exonic variants within the melanocortin 1 receptor (MC1R) gene in Black Silky, White Leghorn and Golden duckwing Araucana chicken. Mol. Biol. Rep. 41: 4843-4846. doi: 10.1007/s11033-014-3394-0
Yin, L. 2020. CMplot: circle manhattan plot. R package version. 3: 699.
Zhang, G. W., Y. Liao, W. X. Zhang, Y. Wu, and A. Liu. 2017. A new dominant haplotype of MC1R gene in Chinese black plumage chicken. Anim. Genet. 48: 624. doi: 10.1111/age.12576
Zhang, G., X. Zhang, K. Zhou, X. Ling, J. Zhang, P. Wu, and G. Dai. 2022. miRNA-10a-5p targeting the BCL6 gene regulates proliferation, differentiation and apoptosis of chicken myoblasts. Int. J. Mol. Sci. 23: 9545. doi: 10.3390/ijms23179545
Zhang, H., L. Shen, Y. Li, Z. Xu, X. Zhang, J. Yu, and P. Luan. 2019a. Genome‐wide association study for plasma very low‐density lipoprotein concentration in chicken. J. Anim. Breed. Genet. 136: 351-361. doi: 10.1111/jbg.12397
Zhang, Z., H. Du, C. Yang, Q. Li, M. Qiu, X. Song, and C. Hu. 2019b. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim. Biotechnology. 30: 233-241. doi: 10.1080/10495398.2018.1476377
Zhao, H., Y. Yang, J. Lyu, X. Ren, and W. Cheng. 2021. Development and application of a method to detect 27 respiratory pathogens using multiplex RT-PCR combined with MassARRAY technology. BMC Infect Dis. 21: 1-8. doi: 10.1186/s12879-021-06404-0
Zhi, Y., D. Wang, K. Zhang, Y. Wang, W. Geng, B. Chen, and X. Kang. 2023. Genome-Wide Genetic Structure of Henan Indigenous Chicken Breeds. Animals. 13: 753. doi: 10.3390/ani13040753
Zhu, T., M. Liu, S. Peng, X. Zhang, Y. Chen, X. Lv, and H. Wang. 2022. A deletion upstream of SOX10 causes light yellow plumage colour in chicken. Genes. 13: 327. doi: 10.3390/genes13020327
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94880-
dc.description.abstract  家雞(Gallus gallus domesticus)是全球分布最廣泛的經濟動物,其所生產的雞肉與雞蛋在世界各地都是非常重要的食物來源。經濟動物性狀會受到多種因子影響,包含環境因素與遺傳背景因素,而品種/系內性狀表型的不一致與不整齊是很重要的議題。2022年臺灣家禽總產值初次超越臺灣畜牧總產值五成,可見家禽產業在臺灣畜牧界的重要性,雞為家禽產業中最重要的物種,可區分為肉用與蛋用兩大類別,肉用雞種可分為白肉雞與有色肉雞,而有色肉雞產業可再細分為商用紅羽土雞、商用黑羽土雞、烏骨雞、鬥雞、文昌雞及閹雞等多樣品種。在商業生產上,以商用紅羽土雞與黑羽土雞為大宗,佔整體土雞總產量85%,可知商用紅羽土雞與商用黑羽土雞在臺灣家禽產業的重要性。
  隨著分子技術的進步,次世代定序(Next-generation sequencing;NGS)當中的全基因組定序(Whole genome sequencing;WGS)是能夠針對物種的基因組全長進行完整的測序技術,因此能夠完整瞭解物種的基因組,在育種選拔和疾病的篩選有非常大的貢獻,且有助於進行物種的保種及瞭解演化過程。在雞隻方面第一個進行全基因組定序的品種為紅色叢林雞(Red Junglefowl),而目前在國外已有許多以全基因組重定序(Whole genome re-sequencing)的研究應用在動物族群遺傳結構分析及尋找品種/系的特異性基因。但目前臺灣尚未針對紅羽土雞進行過遺傳結構的解析,因此本研究與國內四場紅羽土雞種雞場合作,其所飼養的紅羽土雞種母雞佔全國紅羽土雞種母雞總量35.3%,並收集種母雞的血液及屠體性狀資料作為紅羽土雞遺傳結構的解析。
  本研究針對臺灣商用紅羽土雞種母雞進行MC1R毛色基因序列定序與基因型鑑定,並應用全基因組重定序技術進行全基因組序列定序,以研究其族群遺傳結構,並搭配收集的屠體性狀數據,包含屠體重、屠宰率與各部位肉重,並應用全基因組關聯性分析(Genome-wide association study;GWAS),以探討屠體重、屠宰率與各部位肉重之特定位點與相鄰基因,並依照候選位點繪製層次聚類(Hierarchical clustering)分析圖,瞭解候選位點在樣本之間的基因型分布情況,再利用基因功能分類分析候選基因,包含:GO分析(Gene Ontology)與KEGG分析(Kyoto Encyclopedia of Genes and Genomes;KEGG),以尋找可能影響屠體表型性狀的候選基因。
  研究結果顯示,從屠體性狀資料分析發現,四場商用紅羽土雞品系內屠體重性狀及腿肉重的標準差較大,表示品系內表型性狀並不整齊。在族群遺傳結構分析中,不論是主成分分析圖(Principal component analysis;PCA)、親緣關係樹(Phylogenetic tree)及層次聚類分析熱圖(Heat map)皆顯示臺灣商用紅羽土雞不同品系之間的基因組有所差異。
  本研究初次揭示臺灣商用紅羽土雞的族群遺傳結構,對於商用紅羽土雞的基因組有初步的瞭解,篩選出與屠體重、屠宰率與各部位肉重的相關位點及基因,並開發鑑別不同紅羽土雞族群品系之分子標記之檢測平台,未來可提供臺灣商用紅羽土雞之育種及建立新品系的參考。
zh_TW
dc.description.abstract  The domestic chicken (Gallus gallus domesticus) is the most widely distributed economic animal globally, with its meat and eggs being crucial food sources worldwide. Economic traits in animals are influenced by various factors, including environmental and genetic background. The inconsistency and irregularity of phenotypic traits within breeds/lines being significant issues. In 2022, the poultry production value exceeded half of total livestock production value in Taiwan, indicating the importance of the poultry industry in the livestock sector. Poultry is categorized into meat chickens and egg-laying chickens, with meat chickens further classified into broiler and colored-feathered chickens. The colored-feathered chicken industry includes various breeds such as commercial red-feathered country chickens, commercial black-feathered country chickens, Silkies, fighting cocks, Wen-Chang chickens, and capons, among which commercial red-feathered and black-feathered country chickens constitute the majority, accounting for 85% of the total chicken production in Taiwan, highlighting their significance in the country's poultry industry.
  With the advancement of molecular techniques, whole-genome sequencing (WGS) within next-generation sequencing (NGS) has emerged as a comprehensive sequencing technique capable of sequencing the entire genome of a species, facilitating a thorough understanding of the species genome. This technology has made significant contributions to breeding selection, disease screening, species conservation, and understanding evolutionary processes. The red junglefowl was the first chicken breed subjected to whole-genome sequencing. Many studies abroad have utilized whole-genome re-sequencing to understand the population genetic structure and specific genes of local chickens, yet Taiwan has not conducted genetic structural analysis of commercial red-feathered country chickens. This study collected blood and carcass samples from commercial red-feathered country chicken breeding hens in four Taiwanese farms. Initial data surveys revealed that the four collaborating farms accounted for 35.3% of the total number of breeding hens nationwide, representing a significant portion of the genetic information of Taiwan's commercial red-feathered country chickens.
  This research involved sequencing and genotyping the MC1R feather color gene in commercial red-feathered Taiwan country chicken breeding hens. Additionally, whole-genome resequencing was employed to sequence their entire genome to study their population genetic structure. Combining collected carcass trait data, including carcass weight, dressing percentage, and meat weights of various parts, with genome-wide association analysis (GWAS), the study aimed to explore specific SNPs and adjacent genes. Hierarchical clustering analysis was conducted to understand the genotype distribution of candidate SNPs among samples, followed by gene functional classification analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), to identify candidate genes potentially affecting carcass phenotype traits.
  The results revealed significant variability in carcass weight and thighs weight among the four commercial red-feathered country chicken lines, indicating inconsistency in phenotypic traits within these lines. Population genetic structure analysis, including principal component analysis (PCA), phylogenetic tree, and hierarchical clustering analysis heatmap, showed genetic differences among different of Taiwan's commercial red-feathered country chickens.
  This study provides initial insights into the population genetic structure of Taiwan's commercial red-feathered country chickens, offering preliminary understanding of their genomic characteristics. It identified relevant SNPs and genes associated with carcass weight, dressing percentage, and various meat weights, and developed molecular markers to differentiate between different population lines, providing a reference for breeding and establishing new lines of Taiwan's commercial red-feathered country chickens in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:22:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-20T16:22:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書........................................................................................................ii
致謝...............................................................................................................................iii
中文摘要.......................................................................................................................iv
Abstract.........................................................................................................................vi
目次...............................................................................................................................ix
圖次..............................................................................................................................xii
表次..............................................................................................................................xv
壹、前言........................................................................................................................1
貳、文獻探討 ...............................................................................................................3
一、臺灣家禽產業................................................................................................3
(一)臺灣肉雞產業現況............................................................................3
(二)臺灣商用土雞....................................................................................6
二、影響雞隻毛色表型的基因..........................................................................10
三、全基因組定序..............................................................................................15
(一)全基因組定序之原理......................................................................16
(二)全基因組定序在家禽上的應用......................................................20
四、MassARRAY 基因分型 ..............................................................................21
貳、材料與方法 .........................................................................................................24
一、試驗材料與樣本處理..................................................................................25
(一)雞場調查..........................................................................................25
(二)血液樣本收集..................................................................................29
(三)屠宰與屠體表型測定項目..............................................................29
(四)雞血 gDNA 萃取.............................................................................31
二、MC1R 定序..................................................................................................32
三、上機定序與資料分析..................................................................................33
(一)文庫製備..........................................................................................33
(二)資料分析篩選位點..........................................................................33
(三)突變位置註釋與密度......................................................................35
(四)遺傳多樣性計算..............................................................................35
四、族群遺傳結構分析......................................................................................36
(一)層次聚類分析圖..............................................................................36
(二)主成分分析圖..................................................................................36
(三)親緣關係樹圖..................................................................................37
五、全基因組關聯性分析..................................................................................38
(一)曼哈頓圖..........................................................................................38
(二)層次聚類分析圖..............................................................................38
六、基因富集分析..............................................................................................39
七、開發基因型鑑定平台..................................................................................40
參、結果......................................................................................................................41
一、雞隻屠體表型測定結果..............................................................................41
二、MC1R 基因分型結果..................................................................................44
三、全基因組定序結果......................................................................................46
(一)核酸與文庫品質控制之測定..........................................................46
(二)全基因組定序結果基本資料..........................................................48
四、族群遺傳結構分析......................................................................................55
(一)層次聚類分析圖..............................................................................55
(二)主成分分析圖..................................................................................56
(三)親緣關係樹......................................................................................58
五、全基因組關聯性分析..................................................................................59
(一)屠體重關聯性分析..........................................................................59
(二)屠宰率關聯性分析..........................................................................59
(三)各部位肉重關聯性分析..................................................................59
六、屠體性狀相關位點驗證..............................................................................69
七、基因富集分析..............................................................................................71
(一)屠體重之相關候選基因..................................................................71
(二)屠宰率之相關候選基因..................................................................73
(三)各部位肉重之相關候選基因..........................................................75
(四)各個性狀候選基因的 KEGG 分析 ................................................77
肆、討論......................................................................................................................79
一、雞隻屠體表型測定......................................................................................79
二、MC1R 基因分型..........................................................................................80
三、族群遺傳結構分析......................................................................................82
四、全基因組關聯性分析之表型相關候選位點與基因..................................83
(一)屠體性狀相關候選位點驗證..........................................................85
(二)不同性狀全基因組關聯性分析的重疊候選基因..........................85
(三)具有顯著差異的位點於基因外顯子上的候選基因......................87
(四)具有顯著差異的位點於基因內含子上的候選基因......................87
(五)屠體重之 GO 分析相關基因..........................................................88
(六)屠宰率之 GO 分析相關基因..........................................................89
(七)各部位肉重之 GO 分析相關基因..................................................90
(八)各個性狀的候選基因 KEGG 分析 ................................................91
伍、結論......................................................................................................................92
陸、參考資料 .............................................................................................................93
柒、附錄....................................................................................................................105
-
dc.language.isozh_TW-
dc.title臺灣商用紅羽土雞不同族群遺傳結構之研析zh_TW
dc.titleAnalysis of genetic structure in different Taiwan commercial red-feathered country chickensen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor張啟聖zh_TW
dc.contributor.coadvisorChi-Sheng Changen
dc.contributor.oralexamcommittee陳志峰;鄭富元zh_TW
dc.contributor.oralexamcommitteeZhi-Feng Chen;Fu-Yuan Chengen
dc.subject.keyword臺灣商用紅羽土雞,全基因組定序,族群遺傳結構分析,全基因組關聯性分析,zh_TW
dc.subject.keywordTaiwan commercial red-feathered country chicken,Population genetic structure analysis,Whole-genome sequencing,Genome-wide association study,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202403876-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
5.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved