Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁詩同zh_TW
dc.contributor.advisorShih-Torng Dingen
dc.contributor.author郭蕙瑄zh_TW
dc.contributor.authorHui-Hshuan Kuoen
dc.date.accessioned2024-08-20T16:20:19Z-
dc.date.available2024-08-21-
dc.date.copyright2024-08-20-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citationAdams, L. A., P. Angulo, and K. D. Lindor. 2005. Nonalcoholic fatty liver disease. Can. Med. Assoc. J. 172:899–905. doi: 10.1503/cmaj.045232
Aithal, G. P., J. A. Thomas, P. V. Kaye, A. Lawson, S. D. Ryder, I. Spendlove, A. S. Austin, J. G. Freeman, L. Morgan, and J. Webber. 2008. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology, 135:1176–1184. doi: 10.1053/j.gastro.2008.06.047
Araya, J., R. Rodrigo, L. A. Videla, L. Thielemann, M. Orellana, P. Pettinelli, and J. Poniachik. 2004. Increase in long-chain polyunsaturated fatty acid n - 6/n - 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 106:635–643. doi: 10.1042/CS20030326
Argo, C. K., P. G. Northup, A. M. Al-Osaimi, and S. H. Caldwell. 2009. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J. Hepatol. 51:371–379. doi: 10.1016/j.jhep.2009.03.019
Arzumanian, V. A., O. I. Kiseleva, and E. V. Poverennaya. 2021. The curious case of the HepG2 cell Line: 40 years of expertise. Int. J. Mol. Sci. 22:13135. doi: 10.3390/ijms222313135
Ayala, I., A. M. Castillo, G. Adánez, A. Fernández-Rufete, B. G. Pérez, and M. T. Castells. 2009. Hyperlipidemic chicken as a model of non-alcoholic steatohepatitis. Exp. Biol. Med. (Maywood) 234:10-16.
Baldwin, A. S., and Jr. 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683. doi: 10.1146/annurev.immunol.14.1.649
Berardo, C., L. G. Di Pasqua, M. Cagna, P. Richelmi, M. Vairetti, and A. Ferrigno. 2020. Nonalcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: Current Issues and Future Perspectives in Preclinical and Clinical Research. Int. J. Mol. Sci. 21:9646. doi: 10.3390/ijms21249646
Beysen, C., P. Schroeder, E. Wu, J. Brevard, M. Ribadeneira, W. Lu, K. Dole, T. O'Reilly, L. Morrow, M. Hompesch, M. K. Hellerstein, K. Li, L. Johansson, and P. F. Kelly. 2021. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with non-alcoholic fatty liver disease: Results from two early-phase randomized trials. Diabetes Obes. Metab. 23:700–710. doi: 10.1111/dom.14272
Boudaba, N., A. Marion, C. Huet, R. Pierre, B. Viollet, and M. Foretz. 2018. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine 28:194–209. doi: 10.1016/j.ebiom.2018.01.008
Bricambert, J., J. Miranda, F. Benhamed, J. Girard, C. Postic, and R. Dentin. 2010. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J. Clin. Invest. 120:4316–4331. doi: 10.1172/JCI41624
Buzzetti, E., M. Pinzani, and E. A. Tsochatzis. 2016. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65:1038–1048. doi: 10.1016/j.metabol.2015.12.012
Cai, D., M. Yuan, D. F. Frantz, P. A. Melendez, L. Hansen, J. Lee, and S. E. Shoelson. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 11:183–190. doi: 10.1038/nm1166
Cai, X., and X. Xu. 2022. Investigation of the key targets and pharmacological mechanisms of rhamnocitrin against oxaliplatin-induced neuropathic pain based on network pharmacology approach and experimental validation. Gen. Physiol. Biophys. 41:191–203. doi: 10.4149/gpb_2022015
Caligiuri, A., A. Gentilini, and F. Marra. 2016. Molecular Pathogenesis of NASH. Int. J. Mol. Sci. 17:1575. doi: 10.3390/ijms17091575
Cao, P., Y. Wang, C. Zhang, M. A. Sullivan, W. Chen, X. Jing, H. Yu, F. Li, Q. Wang, Z. Zhou, Q. Wang, W. Tian, Z. Qiu, and L. Luo. 2023. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J. Nutr. Biochem. 120:109414. doi: 10.1016/j.jnutbio.2023.109414
Carr, R. M., A. Oranu, and V. Khungar. 2016. Nonalcoholic Fatty Liver Disease: Pathophysiology and Management. Gastroenterol. Clin. North Am. 45:639-652. doi: 10.1016/j.gtc.2016.07.003
Chalasani, N., Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi, M. Rinella, S. A. Harrison, E. M. Brunt, and A. J. Sanyal. 2018. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328–357. doi: 10.1002/hep.29367
Chavez-Tapia, N. C., N. Rosso, and C. Tiribelli. 2011. In vitro models for the study of non-alcoholic fatty liver disease. Current medicinal chemistry. Curr. Med. Chem. 18:1079–1084. doi: 10.2174/092986711794940842
Cheang, W. S., X. Y. Tian, W. T. Wong, C. W. Lau, S. S. Lee, Z. Y. Chen, X. Yao, N. Wang, and Y. Huang. 2014. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler. Thromb. Vasc. Biol. 34:830–836. doi: 10.1161/ATVBAHA.113.301938
Chen, Q., X. Lu, and X. Zhang. 2021. Noncanonical NF-κB Signaling Pathway in Liver Diseases. J. Clin. Transl. Hepatol. 9:81-89. doi: 10.14218/JCTH.2020.00063
Cherian, G., T. B. Holsonbake, M. P. Goeger, and R. Bildfell. 2002. Dietary CLA alters yolk and tissue FA composition and hepatic histopathology of laying hens. Lipids 37:751–757. doi: 10.1007/s11745-002-0957-4
Cobbina, E., and F. Akhlaghi. 2017. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 49:197–211. doi: 10.1080/03602532.2017.1293683
Cohen, J. C., J. D. Horton, and H. H. Hobbs. 2011. Human fatty liver disease: old questions and new insights. Science 332:1519–1523. doi: 10.1126/science.1204265
Corbin, K. D., and S. H. Zeisel. 2012. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 28:159–165. doi: 10.1097/MOG.0b013e32834e7b4b
Couch, J. R. 1956. Fatty livers in laying hens: a condition which may occur as a result of increased strain. Feedstuffs 28:46–51.
Cui, W., S. L. Chen, and K. Q. Hu. 2010. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am. J. Transl. Res. 2:95–104.
Dao, T. B., T. M. Nguyen, V. Q. Nguyen, T. M. Tran, N. M. Tran, C. H. Nguyen, T. H. Nguyen, H. H. Nguyen, J. Sichaem, C. L. Tran, and T. H. Duong. 2021. Flavones from Combretum quadrangulare Growing in Vietnam and Their Alpha-Glucosidase Inhibitory Activity. Molecules 26:2531.
David, D., and C. E. Eapen. 2021. What Are the Current Pharmacological Therapies for Nonalcoholic Fatty Liver Disease? J. Clin. Exp. Hepatol. 11:232-238. doi: 10.1016/j.jceh.2020.09.001
Day, C. P., and O. F. James. 1998. Steatohepatitis: a tale of two "hits"? Gastroenterology, 114:842–845. doi: 10.1016/s0016-5085(98)70599-2
Del-Rio, D., A. Rodriguez-Mateos, J. P. Spencer, M. Tognolini, G. Borges, and A. Crozier. 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox. Signal. 18:1818–1892. doi: 10.1089/ars.2012.4581
Delli-Bovi, A. P., F. Marciano, C. Mandato, M. A. Siano, M. Savoia, and P. Vajro. 2021. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review. Front. Med. 8:595371. doi: 10.3389/fmed.2021.595371
Dong, X., and J. Tong. 2019. Different susceptibility to fatty liver-haemorrhagic syndrome in young and older layers and the interaction on blood LDL-C levels between oestradiols and high energy-low protein diets. Br. Poult. Sci. 60:265–271. doi: 10.1080/00071668.2019.1571164
Dowman, J. K., J. W. Tomlinson, and P. N. Newsome. 2010. Pathogenesis of non-alcoholic fatty liver disease . Q. J. Med. 103:71-83. doi: 10.1093/qjmed/hcp158
Eberlé, D., B. Hegarty, P. Bossard, P. Ferré, and F. Foufelle. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848. doi: 10.1016/j.biochi.2004.09.018
Emami, N. K., U. Jung, B. Voy, and S. Dridi. 2020. Radical response: Effects of heat stress-Induced oxidative stress on lipid metabolism in the avian liver. Antioxidants 10:35. doi: 10.3390/antiox10010035
Eynaudi, A., F. Díaz-Castro, J. C. Bórquez, R. Bravo-Sagua, V. Parra, and R. Troncoso. 2021. Differential effects of oleic and palmitic acids on lipid droplet-mitochondria interaction in the hepatic cell line HepG2. Front. Nutr. 8:775382. doi: 10.3389/fnut.2021.775382
Fabbrini, E., S. Sullivan, and S. Klein. 2010 Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51:679-689. doi: 10.1002/hep.23280
Fan, H., Q. Pan, Y. Xu, and X. Yang. 2013. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. . Arq. Bras. Endocrinol. Metabol. 57:702-708. doi: 10.1590/s0004-2730201300090000
Fang, S. H., Y. K. Rao, and Y. M. Tzeng. 2008. Anti-oxidant and inflammatory mediator's growth inhibitory effects of compounds isolated from Phyllanthus urinaria. Journal of ethnopharmacology 116:333–340. doi: 10.1016/j.jep.2007.11.040
Feast, M., R. C. Noble, B. K. Speake, and M. W. Ferguson. 1998. The effect of temporary reductions in incubation temperature on growth characteristics and lipid utilisation in the chick embryo. J. Anat. 193:383–390. doi: 10.1046/j.1469-7580.1998.19330383.x
Feldstein, A. E., N. W. Werneburg, A. Canbay, M. E. Guicciardi, S. F. Bronk, R. Rydzewski, L. J. Burgart, and G. J. Gores. 2004. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194. doi: 10.1002/hep.20283
Feng, W., C. Gao, Y. Bi, M. Wu, P. Li, S. Shen, W. Chen, T. Yin, and D. Zhu. 2017. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease. J. Diabetes. 9:800-809. doi: 10.1111/1753-0407.12555
Fishman, S., R. H. Muzumdar, G. Atzmon, X. Ma, X. Yang, F. H. Einstein, and N. Barzilai. 2007. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo. FASEB J. 21:53–60. doi: 10.1096/fj.06-6557com
Ford, R. J., M. D. Fullerton, S. L. Pinkosky, E. A. Day, J. W. Scott, J. S. Oakhill, A. L. Bujak, B. K. Smith, J. D. Crane, R. M. Blümer, K. Marcinko, B. E. Kemp, H. C. Gerstein, and G. R. Steinberg. 2015. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem. J. 468:125–132. doi: 10.1042/BJ20150125
Francis, G. A., E. Fayard, F. Picard, and J. Auwerx. 2003. Nuclear receptors and the control of metabolism. Annu. Rev. Physiol. 65:261–311. doi: 10.1146/annurev.physiol.65.092101.142528
Francque, S., G. Szabo, M. F. Abdelmalek, C. D. Byrne, K. Cusi, J. F. Dufour, M. Roden, F. Sacks, and F. Tacke. 2021. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat. Rev. Gastroenterol. Hepatol. 18:24–39. doi: 10.1038/s41575-020-00366-5
Friedman, S. L., B. A. Neuschwander-Tetri, M. Rinella, and A. J. Sanyal. 2018. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24:908-922. doi: 10.1038/s41591-018-0104-9
Fujita, K., Y. Nozaki, K. Wada, M. Yoneda, Y. Fujimoto, M. Fujitake, H. Endo, H. Takahashi, M. Inamori, N. Kobayashi, H. Kirikoshi, K. Kubota, S. Saito, and A. Nakajima. 2009. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 50:772–780. doi: 10.1002/hep.23094
Fullerton, M. D., S. Galic, K. Marcinko, S. Sikkema, T. Pulinilkunnil, Z. P. Chen, H. M. O'Neill, R. J. Ford, R. Palanivel, M. O'Brien, D. G. Hardie, S. L. Macaulay, J. D. Schertzer, J. R. Dyck, B. J. van Denderen, B. E. Kemp, and G. R. Steinberg. 2013. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19:1649–1654. doi: 10.1038/nm.3372
Gao, D., F. Yang, Z. Xia, and Q. Zhang. 2016. Molecularly imprinted polymer for the selective extraction of luteolin from Chrysanthemum morifolium Ramat. J. Sep. Sci. 39:3002–3010. doi: 10.1002/jssc.201600520
Geethangili, M., C. W. Lin, H. J. Mersmann, and S. T. Ding. 2021. Methyl Brevifolincarboxylate Attenuates Free Fatty Acid-Induced Lipid Metabolism and Inflammation in Hepatocytes through AMPK/NF-κB Signaling Pathway. Int. J. Mol. Sci. 22:10062. doi: 10.3390/ijms221810062
Gomez-Lechon, M. J., M. T. Donato, A. Martinez-Romero, N. Jimenez, J. V. Castell, and J. E. O'Connor. 2007. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 165(2):106-116. doi: 10.1016/j.cbi.2006.11.004
Guo, J., Y. Zhou, Y. Cheng, W. Fang, G. Hu, J. Wei, Y. Lin, Y. Man, L. Guo, M. Sun, Q. Cui, and J. Li. 2018. Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell Physiol. Biochem. 45:1487–1505. doi: 10.1159/000487575
Guo, W. R., J. Liu, L. D. Cheng, Z. Y. Liu, X. B. Zheng, H. Liang, and F. Xu. 2021. Metformin alleviates steatohepatitis in diet-induced obese mice in a SIRT1-dependent way. Front. Pharmacol. 12:704112. doi: 10.3389/fphar.2021.704112
Guo, X., X. Yin, Z. Liu, and J. Wang. 2022. Non-alcoholic fatty liver disease (NAFLD) pathogenesis and natural products for prevention and treatment. Int. J. Mol. Sci. 23:15489. doi: 10.3390/ijms232415489
Hamid, H., J. Y. Zhang, W. X. Li, C. Liu, M. L. Li, L. H. Zhao, C. Ji, and Q. G. Ma. 2019. Interactions between the cecal microbiota and non-alcoholic steatohepatitis using laying hens as the model. Poult. Sci. 98:2509–2521. doi: 10.3382/ps/pey596
Hassan, K., V. Bhalla, M. E. El Regal, and H. H. A-Kader. 2014. Nonalcoholic fatty liver disease: a comprehensive review of a growing epidemic. World J. Gastroenterol. 20:12082–12101. doi: 10.3748/wjg.v20.i34.12082
Haukeland, J. W., Z. Konopski, H. B. Eggesbø, H. L. von Volkmann, G. Raschpichler, K. Bjøro, T. Haaland, E. M. Løberg, and K. Birkeland. 2009. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand. J. Gastroenterol. 44:853-860. doi: 10.1080/00365520902845268
Hawley, S. A., A. E. Gadalla, G. S. Olsen, and D. G. Hardie. 2002. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes Obes. Metab. 51:2420–2425. doi: 10.2337/diabetes.51.8.2420
Hermier, D. 1997. Lipoprotein metabolism and fattening in poultry. J. Nutr. 127:805S–808S. doi: 10.1093/jn/127.5.805S
Hoffmann, A., G. Natoli, and G. Ghosh. 2006. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 25:6706–6716. doi: 10.1038/sj.onc.1209933
Hong, J. T., J. H. Yen, L. Wang, Y. H. Lo, Z. T. Chen, and M. J. Wu. 2009. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicol. Appl. Pharmacol. 237:59–68. doi: 10.1016/j.taap.2009.02.014
Horton, J. D., J. L. Goldstein, and M. S. Brown. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109:1125–1131. doi: 10.1172/JCI15593
Hou, X., S. Yin, R. Ren, S. Liu, L. Yong, Y. Liu, Y. Li, M. H. Zheng, G. Kunos, B. Gao, and H. Wang. 2021. Myeloid-Cell-Specific IL-6 Signaling Promotes MicroRNA-223-Enriched Exosome Production to Attenuate NAFLD-Associated Fibrosis. Hepatology 74:116–132. doi: 10.1002/hep.31658
Huang, C., H. Jiao, Z. Song, J. Zhao, X. Wang, and H. Lin. 2015. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J. Anim. Sci. 93:2144–2153. doi: 10.2527/jas.2014-8739
Huang, D. Q., H. B. El-Serag, and R. Loomba. 2021. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18:223–238. doi: 10.1038/s41575-020-00381-6
Huang, H., S. H. Lee, I. Sousa-Lima, S. S. Kim, W. M. Hwang, Y. Dagon, W. M. Yang, S. Cho, M. C. Kang, J. A. Seo, M. Shibata, H. Cho, G. D. Belew, J. Bhin, B. N. Desai, M. J. Ryu, M. Shong, P. Li, H. Meng, B. H. Chung, and Y. B. Kim. 2018. Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J. Clin. Invest. 128:5335–5350. doi: 10.1172/JCI63562
Ichimura-Shimizu, M., K. Omagari, M. Yamashita, and K. Tsuneyama. 2021. Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis-related progressive bridging fibrosis. Biosci. Biotechnol. Biochem. 85:941–947. doi: 10.1093/bbb/zbaa107
Ipsen, D. H., J. Lykkesfeldt, and P. Tveden-Nyborg. 2018. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 75:3313-3327. doi: 10.1007/s00018-018-2860-6
Israël, A. 2010. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol. 2:a000158. doi: 10.1101/cshperspect.a000158
Jiang, H., W. Q. Zhan, X. Liu, and S. X. Jiang. 2008. Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Nat. Prod. Res. 22:1650–1656. doi: 10.1080/14786410701875686
Kar, S., S. Paglialunga, S. H. Jaycox, R. Islam, and A. H. Paredes. 2019. Assay validation and clinical performance of chronic inflammatory and chemokine biomarkers of NASH fibrosis. PLoS One 14:e0217263. doi: 10.1371/journal.pone.0217263
Katerelos, M., S. J. Mudge, D. Stapleton, R. B. Auwardt, S. A. Fraser, C. G. Chen, B. E. Kemp, and D. A. Power. 2010. 5-aminoimidazole-4-carboxamide ribonucleoside and AMP-activated protein kinase inhibit signalling through NF-κB. Immunol. Cell Biol. 88:754–760. doi: 10.1038/icb.2010.44
Kazemi, R., M. Aduli, M. Sotoudeh, R. Malekzadeh, N. Seddighi, S. G. Sepanlou, and S. Merat. 2012. Metformin in nonalcoholic steatohepatitis: a randomized controlled trial. Middle East J. Dig. Dis. 4:16-22.
Ke, R., Q. Xu, C. Li, L. Luo, and D. Huang. 2018. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol. Int. 42:384–392. doi: 10.1002/cbin.10915
Kemper, J. K., S. E. Choi, and D. H. Kim. 2013. Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam. Horm. 91:385-404. doi: 10.1016/B978-0-12-407766-9.00016-X
Khalaf, H. M., M. A. Ibrahim, E. F. Amin, S. Abdel-Tawab Ibrahim, S. Abdel-Wahab, and Y. M. Fouad. 2019. Allopurinol potentiates the hepatoprotective effect of metformin and vitamin E in fructose-induced fatty liver in rats. Clin. Exp. Hepatol. 5:65–74. doi: 10.5114/ceh.2019.83159
Kikiowo, B., J. A. Ogunleye, O. Iwaloye, and T. T. Ijatuyi. 2020. Therapeutic potential of Chromolaena odorata phyto-constituents against human pancreatic α-amylase. J. Biomol. Struct. Dyn. 40:1801–1812. doi: 10.1080/07391102.2020.1833758
Laliotis, G. P., I. Bizelis, and E. Rogdakis. 2010. Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: From Biochemical Level to the Main Regulatory Lipogenic Genes. Curr. Genomics 11:168-183. doi: 10.2174/138920210791110960
Lassailly, G., R. Caiazzo, D. Buob, M. Pigeyre, H. Verkindt, J. Labreuche, V. Raverdy, E. Leteurtre, S. Dharancy, A. Louvet, M. Romon, A. Duhamel, F. Pattou, and P. Mathurin. 2015. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology, 149:379–e316. doi: 10.1053/j.gastro.2015.04.014
Lawitz, E. J., A. Coste, F. Poordad, N. Alkhouri, N. Loo, B. J. McColgan, J. M. Tarrant, T. Nguyen, L. Han, C. Chung, A. S. Ray, J. G. McHutchison, G. M. Subramanian, R. P. Myers, M. S. Middleton, C. Sirlin, R. Loomba, E. Nyangau, M. Fitch, K. Li, and M. Hellerstein. 2018. Acetyl-CoA Carboxylase Inhibitor GS-0976 for 12 Weeks Reduces Hepatic De Novo Lipogenesis and Steatosis in Patients With Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 16:1983–1991.e1983. . doi: 10.1016/j.cgh.2018.04.042
Lee, B. K., J. S. Kim, H. J. Ahn, J. H. Hwang, J. M. Kim, H. T. Lee, B. K. An, and C. W. Kang. 2010. Changes in hepatic lipid parameters and hepatic messenger ribonucleic acid expression following estradiol administration in laying hens (Gallus domesticus). Poult. Sci. 89:2660–2667. doi: 10.3382/ps.2010-00686
Lee, W. H., and S. G. Kim. 2010. AMPK-Dependent Metabolic Regulation by PPAR Agonists. PPAR Res. 2010:549101. doi: 10.1155/2010/549101
Leoni, S., F. Tovoli, L. Napoli, I. Serio, S. Ferri, and L. Bolondi. 2018. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J. Gastroenterol. 24:3361-3373. doi: 10.3748/wjg.v24.i30.3361
Leveille, G. A., D. R. Romsos, Y. Yeh, and E. K. O'Hea. 1975. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult. Sci. 54:1075–1093. doi: doi.org/10.3382/ps.0541075
Li, N., L. Yin, J. Shang, M. Liang, Z. Liu, H. Yang, G. Qiang, G. Du, and X. Yang. 2023. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed. Pharmacother. 165:115113. doi: 10.1016/j.biopha.2023.115113
Li, X., S. D. Zhang, H. Z. Jin, F. Dong, L. Shan, and W. D. Zhang. 2013a. A new flavonol from Oxytropis ochrocephala Bunge. Nat. Prod. Res. 27:554–557. doi: 10.1080/14786419.2012.678350
Li, Y., L. Liu, B. Wang, J. Wang, and D. Chen. 2013b. Metformin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed. Rep. 1:57–64. doi: 10.3892/br.2012.18
Li, Y., S. Xu, M. M. Mihaylova, B. Zheng, X. Hou, B. Jiang, O. Park, Z. Luo, E. Lefai, J. Y. Shyy, B. Gao, M. Wierzbicki, T. J. Verbeuren, R. J. Shaw, R. A. Cohen, and M. Zang. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13:376–388. doi: 10.1016/j.cmet.2011.03.009
Li, Y. L., X. Q. Li, Y. D. Wang, C. Shen, and C. Y. Zhao. 2019. Metformin alleviates inflammatory response in non-alcoholic steatohepatitis by restraining signal transducer and activator of transcription 3-mediated autophagy inhibition in vitro and in vivo. Biochem. Biophys. Res. Commun. 513:64–72. doi: 10.1016/j.bbrc.2019.03.077
Liang, K. 2023. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front. Pharmacol. 14:1160440. doi: 10.3389/fphar.2023.1160440
Lin, C. W., T. W. Huang, Y. J. Peng, Y. Y. Lin, H. J. Mersmann, and S. T. Ding. 2021. A novel chicken model of fatty liver disease induced by high cholesterol and low choline diets. Poult. Sci. 100(3):100869. doi: 10.1016/j.psj.2020.11.046
Lin, T., W. Luo, Z. Li, L. Zhang, X. Zheng, L. Mai, W. Yang, G. Guan, Z. Su, P. Liu, Z. Li, and Y. Xie. 2020. Rhamnocitrin extracted from Nervilia fordii inhibited vascular endothelial activation via miR-185/STIM-1/SOCE/NFATc3. Phytomedicine 79:153350. doi: 10.1016/j.phymed.2020.153350
Liu, B., C. Deng, and P. Tan. 2022. Ombuin ameliorates diabetic nephropathy in rats by anti-inflammation and antifibrosis involving Notch 1 and PPAR γ signaling pathways. . Drug Dev. Res. 83:1270–1280. doi: 10.1002/ddr.21956
Liu, P., P. Wu, B. Yang, T. Wang, J. Li, X. Song, and W. Sun. 2021. Kaempferol prevents the progression from simple steatosis to non-alcoholic steatohepatitis by inhibiting the NF-κB pathway in oleic acid-induced HepG2 cells and high-fat diet-induced rats. J. Funct. Foods 85:104655. doi: 10.1016/j.jff.2021.104655
Liu, Y., L. Zalameda, K. W. Kim, M. Wang, and J. D. McCarter. 2007. Discovery of acetyl-coenzyme A carboxylase 2 inhibitors: comparison of a fluorescence intensity-based phosphate assay and a fluorescence polarization-based ADP Assay for high-throughput screening. Assay Drug Dev. Technol. 5:225–235. doi: 10.1089/adt.2006.045
Lonardo, A., S. Leoni, K. A. Alswat, and Y. Fouad. 2020. History of Nonalcoholic Fatty Liver Disease. International journal of molecular sciences. Int. J. Mol. Sci. 21:5888. doi: 10.3390/ijms21165888
Loomba, R., and A. J. Sanyal. 2013. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10:686–690. doi: 10.1038/nrgastro.2013.171
Mørkholt, A. S., O. Wiborg, J. G. K. Nieland, S. Nielsen, and J. D. Nieland. 2017. Blocking of carnitine palmitoyl transferase 1 potently reduces stress-induced depression in rat highlighting a pivotal role of lipid metabolism. Sci. Rep. 7:2158. doi: 10.1038/s41598-017-02343-6
Mahzari, A., S. Li, X. Zhou, D. Li, S. Fouda, M. Alhomrani, W. Alzahrani, S. R. Robinson, and J. M. Ye. 2019. Matrine Protects Against MCD-Induced Development of NASH via Upregulating HSP72 and Downregulating mTOR in a Manner Distinctive From Metformin. Front. Pharmacol. 10:405. doi: 10.3389/fphar.2019.00405
Matafome, P., T. Louro, L. Rodrigues, J. Crisóstomo, E. Nunes, C. Amaral, P. Monteiro, A. Cipriano, and R. Seiça. 2011. Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia. Diabetes. Metab. Res. Rev. 27:54–62. doi: 10.1002/dmrr.1157
Maury, E., and S. M. Brichard. 2010. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell Endocrinol. 314:1–16. doi: 10.1016/j.mce.2009.07.031
Mazidi, M., N. Katsiki, and M. Banach. 2019. A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: results from a multiethnic study. J. Nutr. Biochem. 65:66–71. doi: 10.1016/j.jnutbio.2018.10.001
McGarry, J. D., Y. Takabayashi, and D. W. Foster. 1978. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 253:8294–8300.
Mench, J. A., and T. B. Rodenburg. 2018. Sustainability of laying hen housing systems, Advances in Poultry Welfare.
Morizane, Y., A. Thanos, K. Takeuchi, Y. Murakami, M. Kayama, G. Trichonas, J. Miller, M. Foretz, B. Viollet, and D. G. Vavvas. 2011. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts. J. Biol. Chem. 286:16030–16038. doi: 10.1074/jbc.M110.199398
Muthiah, M. D., N. Cheng Han, and A. J. Sanyal. 2022. A clinical overview of non-alcoholic fatty liver disease: A guide to diagnosis, the clinical features, and complications-What the non-specialist needs to know. Diabetes Obes. Metab. 24:3–14. doi: 10.1111/dom.14521
Nafikov, R. A., and D. C. Beitz. 2007. Carbohydrate and lipid metabolism in farm animals. J. Nutr. 137:702–705. doi: 10.1093/jn/137.3.702
Namikawa, C., Z. Shu-Ping, J. R. Vyselaar, Y. Nozaki, Y. Nemoto, M. Ono, N. Akisawa, T. Saibara, M. Hiroi, H. Enzan, and S. Onishi. 2004. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J. Hepatol. 40:781–786.
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, M. Xiao, and L. An. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 78:131–139. doi: 10.1016/j.jtherbio.2018.08.010
Nguyen, T. T., A. Ketha, H. V. Hieu, and V. B. Tatipamula. 2021. In vitro antimycobacterial studies of flavonols from Bauhinia vahlii Wight and Arn. Biotech 11:128. doi: 10.1007/s13205-021-02672-4
Nooreen, Z., S. Singh, D. K. Singh, S. Tandon, A. Ahmad, and S. Luqman. 2017. Characterization and evaluation of bioactive polyphenolic constituents from Zanthoxylum armatum DC., a traditionally used plant. Biomed. Pharmacother. 89:366–375. doi: 10.1016/j.biopha.2017.02.040
Oh, J. M., J. M. Choi, J. Y. Lee, S. J. Oh, H. C. Kim, B. H. Kim, J. Y. Ma, and S. K. Kim. 2012. Effects of palmitic acid on TNF-α-induced cytotoxicity in SK-Hep-1 cells. Toxicol. In Vitro 26:783–790. doi: 10.1016/j.tiv.2012.05.013
Orellana, E. A., and A. L. Kasinski. 2016. Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation. Bio. Protoc. 6:e1984. doi: 10.21769/BioProtoc.1984
Oseini, A. M., B. K. Cole, D. Issa, R. E. Feaver, and A. J. Sanyal. 2018. Translating scientific discovery: the need for preclinical models of nonalcoholic steatohepatitis. Hepatol. Int. 12:6–16. doi: 10.1007/s12072-017-9838-6
Pan, C., and H. Lü. 2019. Preparative separation of quercetin, ombuin and kaempferide from Gynostemma pentaphyllum by high-speed countercurrent chromatography. J. Chromatogr. Sci. 57:265–271. doi: 10.1093/chromsci/bmy110
Pikarsky, E., R. M. Porat, I. Stein, R. Abramovitch, S. Amit, S. Kasem, E. Gutkovich-Pyest, S. Urieli-Shoval, E. Galun, and Y. Ben-Neriah. 2004. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466. doi: 10.1038/nature02924
Pillarisetti, S. 2008. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat. Cardiovasc. Drug Discov. 3:156–164. doi: 10.2174/157489008786263989
Polyzos, S. A., J. Kountouras, and C. S. Mantzoros. 2015. Leptin in nonalcoholic fatty liver disease: a narrative review. Metabolism 64:60–78. doi: 10.1016/j.metabol.2014.10.012
Postic, C., and J. Girard. 2008. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118:829-838. doi: 10.1172/JCI34275
Qiu, K., Q. Zhao, J. Wang, G. H. Qi, S. G. Wu, and H. J. Zhang. 2021. Effects of Pyrroloquinoline Quinone on Lipid Metabolism and Anti-Oxidative Capacity in a High-Fat-Diet Metabolic Dysfunction-Associated Fatty Liver Disease Chick Model. International journal of molecular sciences. Int. J. Mol. Sci. 22:1458. doi: 10.3390/ijms22031458
Qiu, L., and C. Guo. 2020. Natural Aldose Reductase Inhibitor: A Potential Therapeutic Agent for Non-alcoholic Fatty Liver Disease. Curr. Drug Targets 21:599–609. doi: 10.2174/1389450120666191007111712
Radak, Z., E. Koltai, A. W. Taylor, M. Higuchi, S. Kumagai, H. Ohno, S. Goto, and I. Boldogh. 2013. Redox-regulating sirtuins in aging, caloric restriction, and exercise. Free Radic. Biol. Med. 58:87–97. doi: 10.1016/j.freeradbiomed.2013.01.004
Ramos, M. J., L. Bandiera, F. Menolascina, and J. A. Fallowfield. 2022. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 25:103549. doi: 10.1016/j.isci.2021.103549
Randall, B. 1980. Fatty liver and sudden death. A review. Hum. Pathol. 11:147-153.
Rao, Y. K., S. H. Fang, and Y. M. Tzeng. 2008. Antiinflammatory activities of flavonoids and a triterpene caffeate isolated from Bauhinia variegata. Phytother. Res. 22:957–962. doi: 10.1002/ptr.2448
Rena, G., D. G. Hardie, and E. R. Pearson. 2017. The mechanisms of action of metformin. Diabetologia 60:1577–1585. doi: 10.1007/s00125-017-4342-z
Ricchi, M., M. R. Odoardi, L. Carulli, C. Anzivino, S. Ballestri, A. Pinetti, L. I. Fantoni, F. Marra, M. Bertolotti, S. Banni, A. Lonardo, N. Carulli, and P. Loria. 2009. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 24:830–840. doi: 10.1111/j.1440-1746.2008.05733.x
Romero-Gómez, M., S. Zelber-Sagi, and M. Trenell. 2017. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 67:829–846. doi: 10.1016/j.jhep.2017.05.016
Rouabhia, S., N. Milic, and L. Abenavoli. 2014. Metformin in the treatment of non-alcoholic fatty liver disease: safety, efficacy and mechanism. Expert Rev. Gastroenterol. Hepatol. 8:343–349. doi: 10.1586/17474124.2014.894880
Salminen, A., J. M. Hyttinen, and K. Kaarniranta. 2011. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J. Mol. Med. 89:667-676. doi: 10.1007/s00109-011-0748-0
Salomone, F., J. Godos, and S. Zelber-Sagi. 2016. Natural antioxidants for non-alcoholic fatty liver disease: molecular targets and clinical perspectives. Liver Int. 36:5–20. doi: 10.1111/liv.12975
Sanders, F. W., and J. L. Griffin. 2016. De novo lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc. 91:452–468. doi: 10.1111/brv.12178
Sanyal, A. J., N. Chalasani, K. V. Kowdley, A. McCullough, A. M. Diehl, N. M. Bass, B. A. Neuschwander-Tetri, J. E. Lavine, J. Tonascia, A. Unalp, M. Van Natta, J. Clark, E. M. Brunt, D. E. Kleiner, J. H. Hoofnagle, and P. R. Robuck. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362:1675–1685. doi: 10.1056/NEJMoa0907929
Sanz, P. 2008. AMP-activated protein kinase: structure and regulation. Curr. Protein Pept. Sci. 9:478–492. doi: 10.2174/138920308785915254
Scorletti, E., and R. M. Carr. 2022. A new perspective on NAFLD: Focusing on lipid droplets. J. Hepatol. 76:934–945. doi: 10.1016/j.jhep.2021.11.009
Shen, B., and L. G. Lu. 2021. Efficacy and safety of drugs for nonalcoholic steatohepatitis. J. Dig. Dis. 22:72–82. doi: 10.1111/1751-2980.12967
Sherriff, J. L., T. A. O'Sullivan, C. Properzi, J. L. Oddo, and L. A. Adams. 2016. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes. Adv. Nutr. 7:5–13. doi: 10.3945/an.114.007955
Shibuya, T., N. Fushimi, M. Kawai, Y. Yoshida, H. Hachiya, S. Ito, H. Kawai, N. Ohashi, and A. Mori. 2018. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes. Obes. Metab. 20:438-442. doi: 10.1111/dom.13061
Shini, A., S. Shini, and W. L. Bryden. 2019. Fatty liver haemorrhagic syndrome occurrence in laying hens: impact of production system. Avian Pathol. 48:25–34. doi: 10.1080/03079457.2018.1538550
Siddiqui, M. S., M. O. Idowu, D. Parmar, B. B. Borg, D. Denham, N. M. Loo, D. Lazas, Z. Younes, and A. J. Sanyal. 2021. A Phase 2 Double Blinded, Randomized Controlled Trial of Saroglitazar in Patients With Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 19:2670–2672. doi: 10.1016/j.cgh.2020.10.051
Soccio, R. E., E. R. Chen, and M. A. Lazar. 2014. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20:573–591. doi: 10.1016/j.cmet.2014.08.005
Song, M. J., and H. Malhi. 2019. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol. Ther. 203:107401. doi: 10.1016/j.pharmthera.2019.107401
Song, S., R. R. Attia, S. Connaughton, M. I. Niesen, G. C. Ness, M. B. Elam, R. T. Hori, G. A. Cook, and E. A. Park. 2010. Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol. Cell Endocrinol. 325:54–63. doi: 10.1016/j.mce.2010.05.019
Song, Y. M., Y. H. Lee, J. W. Kim, D. S. Ham, E. S. Kang, B. S. Cha, H. C. Lee, and B. W. Lee. 2015. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 11:46–59. doi: 10.4161/15548627.2014.984271
Speake, B. K., A. M. Murray, and R. C. Noble. 1998. Transport and transformations of yolk lipids during development of the avian embryo. Prog. Lipid Res. 37:1–32. doi: 10.1016/s0163-7827(97)00012-x
Stachowicz, A., M. Suski, R. Olszanecki, J. Madej, K. Okoń, and R. Korbut. 2012. Proteomic analysis of liver mitochondria of apolipoprotein E knockout mice treated with metformin. J. Proteomics. 77:167–175. doi: 10.1016/j.jprot.2012.08.015
Su, S., Y. Wang, C. Chen, M. Suh, M. Azain, and W. K. Kim. 2020. Fatty Acid Composition and Regulatory Gene Expression in Late-Term Embryos of ACRB and COBB Broilers. Front. Vet. Sci. 7:317. doi: 10.3389/fvets.2020.00317
Sui, Y., X. Kong, R. Fan, Y. Ye, H. Mai, S. Zhuo, W. Lu, P. Ruan, S. Fang, and T. Yang. 2019. Long-term treatment with metformin in the prevention of fatty liver in Zucker diabetic fatty rats. Diabetol. Metab. Syndr. 11:94. doi: 10.1186/s13098-019-0491-1
Tai, Y., J. H. Gao, C. Zhao, H. Tong, S. P. Zheng, Z. Y. Huang, R. Liu, C. W. Tang, and J. Li. 2018. SK-Hep1: not hepatocellular carcinoma cells but a cell model for liver sinusoidal endothelial cells. Int. J. Clin. Exp. Pathol. 11:2931-2938.
Tak, P. P., and G. S. Firestein. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107:7-11. doi: 10.1172/JCI11830
Tan, P., L. Jin, X. Qin, and B. He. 2022. Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease. Front. Pharmacol. 13:1005312. doi: 10.3389/fphar.2022.1005312
Tancharoenrat, P., V. Ravindran, F. Zaefarian, and G. Ravindran. 2014. Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poult. Sci. 93:371–379. doi: 10.3382/ps.2013-03344
Tang, X., J. Li, W. Xiang, Y. Cui, B. Xie, X. Wang, Z. Xu, and L. Gan. 2016. Metformin increases hepatic leptin receptor and decreases steatosis in mice. J. Endocrinol. 230:227–237. doi: 10.1530/JOE-16-0142
Tanwar, S., F. Rhodes, A. Srivastava, P. M. Trembling, and W. M. Rosenberg. 2020. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J. Gastroenterol. 26:109–133. doi: 10.3748/wjg.v26.i2.109
Targher, G., K. E. Corey, C. D. Byrne, and M. Roden. 2021. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 18:599–612. doi: 10.1038/s41575-021-00448-y
Tian, F., Z. Zheng, D. Zhang, S. He, and J. Shen. 2018. Efficacy of liraglutide in treating type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease. Biosci. Rep. 38:BSR20181304. doi: 10.1042/BSR20181304
Tramunt, B., A. Montagner, N. S. Tan, P. Gourdy, H. Rémignon, and W. Wahli. 2021. Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 11:502. doi: 10.3390/metabo11080502
Trott, K. A., F. Giannitti, G. Rimoldi, A. Hill, L. Woods, B. Barr, M. Anderson, and A. Mete. 2014. Fatty liver hemorrhagic syndrome in the backyard chicken: a retrospective histopathologic case series. Vet Pathol. 51:787-795.
Tu, Y. C., T. W. Lian, J. H. Yen, Z. T. Chen, and M. J. Wu. 2007. Antiatherogenic effects of kaempferol and rhamnocitrin. J. Agric. Food Chem. 55:9969–9976. doi: 10.1021/jf0717788
Uyeda, K., and J. J. Repa. 2006. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4:107–110. doi: 10.1016/j.cmet.2006.06.008
Uygun, A., A. Kadayifci, A. T. Isik, T. Ozgurtas, S. Deveci, A. Tuzun, Z. Yesilova, M. Gulsen, and K. Dagalp. 2004. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 19:537-544. doi: 10.1111/j.1365-2036.2004.01888.x
Viollet, B., M. Foretz, B. Guigas, S. Horman, R. Dentin, L. Bertrand, L. Hue, and F. Andreelli. 2006. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J. Physiol. 574:41–53. doi: 10.1113/jphysiol.2006.108506
Walker, A. K., and A. M. Näär. 2012. SREBPs: regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases. Clin. Lipidol. 7:27–36. doi: 10.2217/clp.11.67
Windhorst, H. W. 2011. The changing global egg industry. World 16:0-4.
Wolford, J. H., and D. Polin. 1972. Lipid accumulation and hemorrhage in livers of laying chickens. A study on fatty liver-hemorrhagic syndrome (FLHS). Poult. Sci. 51:1707–1713. doi: 10.3382/ps.0511707
Wu, K. T., P. L. Kuo, S. B. Su, Y. Y. Chen, M. L. Yeh, C. I. Huang, J. F. Yang, C. I. Lin, M. H. Hsieh, M. Y. Hsieh, C. F. Huang, W. Y. Lin, M. L. Yu, C. Y. Dai, and H. Y. Wang. 2016. Nonalcoholic fatty liver disease severity is associated with the ratios of total cholesterol and triglycerides to high-density lipoprotein cholesterol. J. Clin. Lipidol. 10:420–425.e421. doi: 10.1016/j.jacl.2015.12.026
Y. Liu, J. Shen, X. Yang, Q. Sun, and X. Yang. 2018. Folic Acid Reduced Triglycerides Deposition in Primary Chicken Hepatocytes. J. Agric. Food Chem. 66:13162–13172.
Yabiku, K., A. Mutoh, K. Miyagi, and N. Takasu. 2017. Effects of Oral Antidiabetic Drugs on Changes in the Liver-to-Spleen Ratio on Computed Tomography and Inflammatory Biomarkers in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. Clin. Ther. 39:558-566. doi: 10.1016/j.clinthera.2017.01.015.
Yang, Y., Y. Wu, J. Zou, Y. H. Wang, M. X. Xu, W. Huang, D. J. Yu, L. Zhang, Y. Y. Zhang, and X. D. Sun. 2021. Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Enhancing Energy Expenditure and Regulating Autophagy via AMPK. Front. Pharmacol. 12:687095. doi: 10.3389/fphar.2021.687095
Ye, X., M. Li, T. Hou, T. Gao, W. G. Zhu, and Y. Yang. 2017. Sirtuins in glucose and lipid metabolism. Oncotarget 8:1845-1859. doi: 10.18632/oncotarget.12157
Younossi, Z. M. 2019. Non-alcoholic fatty liver disease - A global public health perspective. J. Hepatol. 70:531–544. doi: 10.1016/j.jhep.2018.10.033
Younossi, Z. M., P. Golabi, L. de Avila, J. M. Paik, M. Srishord, N. Fukui, Y. Qiu, L. Burns, A. Afendy, and F. Nader. 2019. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 71:793–801. doi: 10.1016/j.jhep.2019.06.021
Younossi, Z. M., P. Golabi, J. M. Paik, A. Henry, C. Van Dongen, and L. Henry. 2023. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology doi: 10.1097/HEP.0000000000000004
Zaboli, G., X. Huang, X. Feng, and D. U. Ahn. 2019. How can heat stress affect chicken meat quality? Poult. Sci. 98:1551–1556. doi: 10.3382/ps/pey399
Zaefarian, F., M. R. Abdollahi, A. Cowieson, and V. Ravindran. 2019. Avian Liver: The Forgotten Organ. Animals 9:63. doi: 10.3390/ani9020063
Zang, M., A. Zuccollo, X. Hou, D. Nagata, K. Walsh, H. Herscovitz, P. Brecher, N. B. Ruderman, and R. A. Cohen. 2004. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 279:47898–47905. doi: 10.1074/jbc.M408149200
Zhang, B., L. Niu, and X. Huang. 2023. Lonicera Caerulea Juice Alleviates Alcoholic Liver Disease by Regulating Intestinal Flora and the FXR-FGF15 Signaling Pathway. Nutrients 15:4025. doi: 10.3390/nu15184025
Zhang, R., K. Cheng, S. Xu, S. Li, Y. Zhou, S. Zhou, R. Kong, L. Li, J. Li, J. Feng, L. Wu, T. Liu, Y. Xia, J. Lu, C. Guo, and Y. Zhou. 2017. Metformin and Diammonium Glycyrrhizinate Enteric-Coated Capsule versus Metformin Alone versus Diammonium Glycyrrhizinate Enteric-Coated Capsule Alone in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Gastroenterol. Res. Pract. 2017:8491742. doi: 10.1155/2017/8491742
Zhang, X., T. M. Hung, P. T. Phuong, T. M. Ngoc, B. S. Min, K. S. Song, Y. H. Seong, and K. Bae. 2006. Anti-inflammatory activity of flavonoids from Populus davidiana. Arch. Pharm. Res. 29:1102–1108. doi: 10.1007/BF02969299
Zhang, Y., Z. Liu, R. Liu, J. Wang, M. Zheng, Q. Li, H. Cui, G. Zhao, and J. Wen. 2018. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken. Genes (Basel) 9:199.
Zhao, L., L. Yang, and K. Ahmad. 2023. Kaempferol ameliorates palmitate-induced lipid accumulation in HepG2 cells through activation of the Nrf2 signaling pathway. Hum. Exp. Toxicol. 42:9603271221146780. doi: 10.1177/09603271221146780
Zhao, P., and A. R. Saltiel. 2020. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. J. Biol. Chem. 295:12279–12289. doi: 10.1074/jbc.REV120.011356
Zhou, H., and R. Liu. 2014. ER stress and hepatic lipid metabolism. Front. Genet. 5:112. doi: 10.3389/fgene.2014.00112
Zhou, Y., H. Lan, Z. Dong, W. Li, B. Qian, Z. Zeng, W. He, and J. L. Song. 2022. Rhamnocitrin Attenuates Ovarian Fibrosis in Rats with Letrozole-Induced Experimental Polycystic Ovary Syndrome. Oxid. Med. Cell Longev. 2022:5558599. doi: 10.1155/2022/5558599
Zhu, Y., H. Mao, G. Peng, Q. Zeng, Q. Wei, J. Ruan, and J. Huang. 2021. Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens. Anim. Biosci. 34:143-153. doi: 10.5713/ajas.19.0874
Zhuang, Y., C. Xing, H. Cao, C. Zhang, J. Luo, X. Guo, and G. Hu. 2019. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci. Rep. 9:10141. doi: 10.1038/s41598-019-46183-y
Zsóri, G., D. Illés, E. Ivány, K. Kosár, G. Holzinger, M. Tajti, E. Pálinkás, G. Szabovik, A. Nagy, A. Palkó, and L. Czakó. 2019. In New-Onset Diabetes Mellitus, Metformin Reduces Fat Accumulation in the Liver, But Not in the Pancreas or Pericardium. Metab. Syndr. Relat. Disord. 17:289-295. doi: 10.1089/met.2018.0086
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94874-
dc.description.abstract非酒精性脂肪肝病 (nonalcoholic fatty liver disease, NAFLD) 為全球最常見的肝病之一,從單純的脂肪變性到發炎的非酒精性脂肪肝炎 (non-alcoholic steatosis hepatitis, NASH),甚至再演變成肝硬化或肝癌。有許多天然的黃酮類化合物能透過改善發炎、氧化壓力和脂質代謝來達到護肝的效果,rhamnocitrin和ombuin為植物中常見的兩種黃酮類化合物,近年來,有許多研究指出它們具有出色的抗發炎和抗氧化的生物活性,但其在 NAFLD 作用的研究相對少。因此,本試驗旨在探討 rhamnocitrin 和 ombuin 對模擬NAFLD的脂肪肝細胞的影響,尤其是其對降低肝臟細胞脂肪堆積和抗氧化抗發炎的機制。
本試驗分別探討 rhamnocitrin 和 ombuin 對細胞脂質代謝及發炎反應的影響,利用 500 µM 的油酸來誘導人肝癌細胞株SK-HEP-1和HepG2 以及雞隻初代肝臟細胞的脂質堆積,細胞經過不同濃度的rhamnocitrin和ombuin處理後,進行紅油染色和測定三酸甘油酯的含量,以探討rhamnocitrin和ombuin是否具有減少肝細胞脂質堆積的效果,並進一步分析脂質合成和脂質分解相關基因的表現,以了解rhamnocitrin和ombuin 影響細胞脂質堆積的相關機制。另一方面,利用 100 µM 的棕櫚酸來誘導人肝癌細胞株SK-HEP-1和HepG2 以及雞隻初代肝臟細胞的氧化壓力和發炎反應,細胞經過不同濃度的rhamnocitrin和ombuin處理後,進行 ROS 含量的測定,並進一步分析發炎反應相關基因的表現,以了解rhamnocitrin和ombuin 影響細胞發炎反應的相關機制。
試驗結果顯示,rhamnocitrin和ombuin 的處理能顯著的降低紅油染色的染色面積 (P<0.05),同時也能顯著降低油酸所誘導的總三酸甘油酯含量 (P<0.05),進一步分子機制的研究顯示 rhamnocitrin和ombuin 能夠透過增加 AMP activated protein kinase (AMPK) 的活性,顯著增加脂質氧化相關基因 peroxisome proliferator activated receptor α (PPARα) 和 carnitine palmitoyl transferase 1a (CPT1a) 的 mRNA 及蛋白質的表現量 (P<0.05),顯示會因此等處理增加細胞脂肪酸的分解;此二處理也同時降低脂質生合成相關基因 sterol regulatory element binding protein 1c (SREBP1c)、acetyl CoA carboxylase (ACC) 和 fatty acid synthase (FAS) 的mRNA 及蛋白質的表現量 (P<0.05),因而會減少細胞脂質生合成的作用,最終達到減少細胞脂質堆積的效果。另一方面,rhamnocitrin和ombuin 的處理能夠顯著的降低棕櫚酸所誘導的細胞 ROS含量 (P<0.05),減少細胞的氧化壓力。此外,rhamnocitrin和ombuin 能夠透過增加 AMPK 的活性,增加nuclear factor kappa-B (NF-κB) 的抑制因子IκB的表現,顯著抑制 NF-κB 活性,因而降低其下游促發炎因子tumor necrosis factor-α (TNFα)、interleukin 6 (IL-6) 和 interleukin-1β (IL-1β) 的表現量 (p<0.05),顯示此等處理也可降低細胞的發炎反應。
綜上所述,rhamnocitrin和ombuin 透過活化 AMPK 的活性,調節脂質代謝和發炎反應相關基因的表現,促進脂質分解和抑制脂質生合成的作用,最終達到減少細胞脂質堆積和發炎的效果。
zh_TW
dc.description.abstractNonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide, ranging from simple steatosis to inflammatory non-alcoholic steatohepatitis (NASH), and even progresses into cirrhosis or liver cancer. Natural flavonoids can achieve hepatoprotective effects by improving inflammation, oxidative stress, and lipid metabolism. Rhamnocitrin and ombuin are two common flavonoids found in plants. Recent studies have indicated their outstanding effects as anti-inflammatory and antioxidant bioactivities, but their effects on NAFLD are relatively understudied. Therefore, this study aims to investigate the effects of rhamnocitrin and ombuin on simulated NAFLD fatty liver cells, particularly for their mechanisms in reducing hepatic lipid accumulation and exerting antioxidant and anti-inflammatory effects.
This study explored the effects of rhamnocitrin and ombuin on cellular lipid metabolism and inflammatory responses. Human liver cancer cell lines SK-HEP-1 and HepG2, as well as primary chicken hepatocytes, were induced with 500 µM oleic acid for lipid accumulation. After treatment with various concentrations of rhamnocitrin and ombuin, the cells were subjected to Oil red O staining and triglyceride content measurement. Further analysis of lipid metabolism-related genes expression were conducted to understand the mechanisms by which rhamnocitrin and ombuin affect cellular lipid accumulation. In another aspect, cells were induced with 100 µM palmitic acid to trigger oxidative stress and inflammatory responses. After treatment with different concentrations of rhamnocitrin and ombuin, ROS production was measured, and the expressions of inflammation-related genes were analyzed to understand how rhamnocitrin and ombuin affect cellular inflammatory responses.
The results showed that treatment with rhamnocitrin and ombuin significantly reduced the stained area in Oil red O staining (P<0.05) and significantly decreased the total triglyceride content induced by oleic acid (P<0.05). Further molecular mechanism studies revealed that rhamnocitrin and ombuin significantly increased the expression of β-oxidation related genes peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase 1a (CPT1a) at mRNA and protein levels (P<0.05) by activating AMP-activated protein kinase (AMPK), indicating an increase in cellular fatty acid oxidation. These treatments also reduced the mRNA and protein levels of de novo lipogenesis genes, sterol regulatory element-binding protein 1c (SREBP1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) (P<0.05), thereby decreasing lipid biosynthesis and ultimately reducing cellular lipid accumulation. Moreover, treatment with rhamnocitrin and ombuin significantly reduced palmitic acid-induced cellular ROS generation (P<0.05) to decrease cellular oxidative stress. Additionally, rhamnocitrin and ombuin increased the expression of the inhibitor of NF-κB (IκB) by activating AMPK, to inhibit nuclear factor kappa-B (NF-κB) activity and thus reduce the expression of downstream pro-inflammatory cytokines, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), and interleukin-1β (IL-1β) (P<0.05), indicating a reduction in cellular inflammatory responses.
In conclusion, rhamnocitrin and ombuin activated AMPK signaling, regulated the expression of genes related to lipid metabolism and inflammatory responses, promoted β-oxidation, and inhibited de novo lipogenesis, ultimately reducing cellular lipid accumulation and inflammation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:20:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-20T16:20:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
目次 VI
圖次 IX
表次 XII
Figure content XIII
Table content XVI
壹、 文獻探討 1
一、 非酒精性脂肪肝病 1
(一) 非酒精性脂肪肝病 1
(二) 診斷與臨床表現 1
(三) 盛行率及高風險族群 3
(四) 病理機制 4
(五) 治療方法與困境 7
二、 家禽脂肪肝病 10
(一) 家禽脂肪肝病的起源與現況 10
(二) 家禽肝臟的脂肪代謝 10
(三) 病理症狀 11
(四) 致病因素 11
(五) 家禽與人類脂肪肝的關聯性 13
三、 脂肪肝病的研究模式 14
(一) 人類非酒精性脂肪肝病細胞模式 14
(二) 家禽脂肪肝病細胞模式 15
四、 Rhamnocitrin 和 Ombuin保護非酒精性脂肪肝病的潛在效果 16
(一) Rhamnocitrin 的生物活性 16
(二) Ombuin 的生物活性 17
五、 研究目的 18
貳、 試驗材料與方法 19
一、 試驗設計 19
二、 人類肝癌細胞培養與處理 19
三、 雞隻初代肝臟細胞培養與處理 20
四、 細胞存活率試驗 22
五、 細胞總三酸甘油酯測定 22
六、 細胞油紅染色 23
(一) 油紅染色 (Oil red O staining) 23
(二) 磺胺多巴酚B (Sulforhodamine B, SRB)細胞含量測定法 23
七、 活性氧物質 (ROS) 測定 23
八、 RNA 萃取與即時定量 PCR 分析 24
(一) 細胞 RNA 萃取 24
(二) 即時定量 PCR (Real-time PCR) 24
九、 西方墨點法(Western blotting) 25
十、 統計分析 26
參、 試驗結果 28
一、 試驗一:Rhamnocitrin 和 ombuin 對人類肝癌細胞脂肪堆積之影響 28
(一) 細胞存活率試驗與處理劑量 28
(二) 紅油染色 32
(三) 三酸甘油酯含量 39
(四) 脂質代謝相關基因表現 42
(五) AMPK 訊息傳導路徑及脂質代謝相關蛋白質表現 49
二、 試驗二:Rhamnocitrin 和 ombuin 對人類肝癌細胞氧化壓力及發炎反應之影響 59
(一) 細胞存活率試驗 59
(二) 活性氧物質含量 61
(三) 發炎反應相關基因表現 68
(四) AMPK 及 NF-κB 訊息傳導路徑 75
三、 試驗三: Rhamnocitrin 和 ombuin 對雞隻初代肝臟細胞脂肪堆積之影響 85
(一) 細胞存活率試驗 85
(二) 紅油染色 87
(三) 三酸甘油酯含量 91
(四) 脂質代謝相關基因表現及 AMPK 訊息傳導路徑 92
四、 試驗四: Rhamnocitrin 和 ombuin 對雞隻初代肝臟細胞氧化壓力及發炎反應之影響 100
(一) 細胞存活率試驗 100
(二) 活性氧物質含量 100
(三) 發炎反應相關基因表現及 AMPK 訊息傳導路徑 104
肆、 討論 109
一、 Rhamnocitrin 和 ombuin 緩解 NAFLD 細胞模式之脂肪堆積 109
(一) 脂質合成 109
(二) 脂質氧化 111
(三) AMPK 對脂質代謝的調節 112
二、 Rhamnocitrin 和 ombuin 緩解 NAFLD 細胞模式之氧化壓力及發炎反應 115
(一) 氧化壓力及發炎反應 115
(二) AMPK 對發炎反應的調節 116
三、 二甲雙胍 (Metformin) 119
伍、 結論 122
陸、 參考文獻 123
-
dc.language.isozh_TW-
dc.subjectrhamnocitinzh_TW
dc.subject非酒精性脂肪肝zh_TW
dc.subject發炎zh_TW
dc.subject脂質堆積zh_TW
dc.subjectombuinzh_TW
dc.subjectNAFLDen
dc.subjectrhamnocitrinen
dc.subjectombuinen
dc.subjectlipid accumulationen
dc.subjectinflammationen
dc.titleRhamnocitrin 和 Ombuin降低肝臟細胞脂肪堆積下之抗氧化抗發炎的作用機制zh_TW
dc.titleThe mechanisms of rhamnocitrin and ombuin against lipid accumulation-induced oxidative stress and inflammation in hepatocytesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林原佑;游玉祥;陳洵一zh_TW
dc.contributor.oralexamcommitteeYuan-Yu Lin;Yu-Hsiang Yu ;Shuen-Ei Chenen
dc.subject.keyword非酒精性脂肪肝,rhamnocitin,ombuin,脂質堆積,發炎,zh_TW
dc.subject.keywordNAFLD,rhamnocitrin,ombuin,lipid accumulation,inflammation,en
dc.relation.page135-
dc.identifier.doi10.6342/NTU202403189-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2025-08-31-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
13.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved