Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94873
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻zh_TW
dc.contributor.advisorLiang-Hung Luen
dc.contributor.author張亦捷zh_TW
dc.contributor.authorYi-Chieh Changen
dc.date.accessioned2024-08-20T16:20:00Z-
dc.date.available2024-08-21-
dc.date.copyright2024-08-20-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation[1] S. Onoe, “1.3 Evolution of 5G mobile technology toward 1 2020 and beyond,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, pp. 23–28.
[2] B. Razavi, RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series), 2nd ed. USA: Prentice Hall Press, 2011.
[3] H.-H. Nguyen, H.-N. Nguyen, J.-S. Lee, and S.-G. Lee, “A Binary-Weighted Switching and Reconfiguration-Based Programmable Gain Amplifier,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 9, pp. 699–703, 2009.
[4] L.-S. Wang, P.-C. Ku, P.-T. Ko, C.-J. Chung, and L.-H. Lu, “A 40.4-dB Range, 0.73-dB Step, and 0.07-dB Error Programmable Gain Amplifier Using Gain Error Shifting Technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 7, pp. 1109–1113, 2019.
[5] Y. Yin, R. Zhang, H. Qi, S. Wang, S. Qiao, H. Zhang, and L. Liu, “Simultaneous Bandwidth-Extended and Precisely-Gain-Controlled dB-Linear PGA Based on Active Feedback and Binary-Weighted Switches,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 4729–4733, 2022.
[6] Y. Zhang, N. Jiang, F. Huang, X. Tang, and X. You, “A Fully Integrated 300-MHz Channel Bandwidth 256 QAM Transceiver With Self-Interference Suppression in Closely Spaced Channels at 6.5-GHz Band,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 11, pp. 4943–4954, 2018.
[7] M. Mikhemar, H. Darabi, and A. A. Abidi, “A Multiband RF Antenna Duplexer on CMOS: Design and Performance,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2067–2077, 2013.
[8] M. Mikhemar, H. Darabi, and A. Abidi, “A tunable integrated duplexer with 50dB isolation in 40nm CMOS,” in 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2009, pp. 386–387,387a.
[9] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-Driven Characterization of Full-Duplex Wireless Systems,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4296–4307, 2012.
[10] D.-J. van den Broek, E. A. M. Klumperink, and B. Nauta, “An In-Band Full-Duplex Radio Receiver With a Passive Vector Modulator Downmixer for Self-Interference Cancellation,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3003–3014, 2015.
[11] B. van Liempd, C. Lavin, S. Malotaux, C. Lav´ın, B. Debaillie, C. Palacios, J. R. Long, E. Klumperink, and J. Craninckx, “RF self-interference cancellation for full-duplex,” in 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014, pp. 526–531.
[12] K.-D. Chu, M. Katanbaf, T. Zhang, C. Su, and J. C. Rudell, “A broadband and deepTX self-interference cancellation technique for full-duplex and frequency-domain-duplex transceiver applications,” in 2018 IEEE International Solid-State Circuits Conference - (ISSCC), 2018, pp. 170–172.
[13] P.-Y. Chang, S.-H. Su, S. S. H. Hsu, W.-H. Cho, and J.-D. Jin, “An Ultra-LowPower Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197–199, 2012.
[14] Y.-L. Wei, S. S. H. Hsu, and J.-D. Jin, “A Low-Power Low-Noise Amplifier for K-Band Applications,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 116–118, 2009.
[15] G.-H. Park, J. H. Kim, and C. S. Park, “Low-Power Decibel-Linear ProgrammableGain Amplifier With Complementary Current-Switching Technique,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 5, pp. 1846–1855, 2023.
[16] Y.-R. Wu, Y.-K. Hsieh, P.-C. Ku, and L.-H. Lu, “A built-in gain calibration technique for RF low-noise amplifiers,” in 2014 IEEE 32nd VLSI Test Symposium (VTS), 2014, pp. 1–6.
[17] Y.-K. Hsieh, Y.-R. Wu, P.-C. Ku, and L.-H. Lu, “An Analog On-Line Gain Calibration Loop for RF Amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 8, pp. 2003–2012, 2015.
[18] Y.-C. Huang, H.-H. Hsieh, and L.-H. Lu, “A Build-in Self-Test Technique for RF Low-Noise Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1035–1042, 2008.
[19] K. Kawahara, Y. Umeda, K. Takano, and S. Hara, “A 0.0058-mm2 Inductor-Less CMOS Active Balun With Gain and Phase Errors Within -0.1 ± 0.2 dB and -0.18 ± 1.17° From DC to 8 GHz,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 6, pp. 2317–2330, 2023.
[20] H. Liu, X. Zhu, C. C. Boon, X. Yi, and L. Kong, “A 71 dB 150 µW VariableGain Amplifier in 0.18 µm CMOS Technology,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 5, pp. 334–336, 2015.
[21] J. Zhou, A. Chakrabarti, P. R. Kinget, and H. Krishnaswamy, “Low-Noise Active Cancellation of Transmitter Leakage and Transmitter Noise in Broadband Wireless Receivers for FDD/Co-Existence,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 3046–3062, 2014.
[22] J. Zhou, T.-H. Chuang, T. Dinc, and H. Krishnaswamy, “Integrated Wideband SelfInterference Cancellation in the RF Domain for FDD and Full-Duplex Wireless,” IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3015–3031, 2015.
[23] H. Khatri, P. S. Gudem, and L. E. Larson, “An Active Transmitter Leakage Suppression Technique for CMOS SAW-Less CDMA Receivers,” IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1590–1601, 2010.
[24] T. Zhang, A. R. Suvarna, V. Bhagavatula, and J. C. Rudell, “An Integrated CMOS Passive Self-Interference Mitigation Technique for FDD Radios,” IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1176–1188, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94873-
dc.description.abstract下世代的無線通訊發展中,更高的資料傳輸量是主要追求的目標,為了盡可能地提高頻譜使用效率以達到更高的資料通行量,分頻雙工的傳輸方法被廣泛運用於無線通訊系統。然而,分頻雙工的傳輸系統所面臨的自干擾問題是此類系統的一大挑戰。因此,如何在提高資料量的同時減緩自干擾問題,並降低額外設計成本是本篇的設計目的。
本篇提出的自干擾消除接收機,利用晶片內部的前饋路徑,以兩路消除的方式將干擾訊號做主動式消除,有別於被動式濾波的方法並能與之相結合,透過控制兩路徑訊號的傳輸時間,達到自干擾消除的效果。消除路徑設計於第一級低雜訊放大器之後,降低其對整體系統雜訊的影響,透過使用低功耗的混頻器及基頻放大器,讓消除路徑所需的成本大幅降低。
這個由 0.18 微米 CMOS 製程實作之自干擾消除接收機,應用於分頻雙工系統,操作於 5G NR Upper 6 GHz (6.425 – 7.125 GHz) 頻段,由晶片量測結果可驗證所提出電路的功能性,面對最高 -20 dBm 的干擾訊號,在訊號帶寬 120 MHz,200 MHz的頻率間距下,達到 32 dB 的自干擾消除效果,在 1.8 V 的電源供應下,消耗 24.1 mW 的功耗。
zh_TW
dc.description.abstractIn the development of next-generation wireless communication, achieving higher data transmission rates is a primary goal. To maximize spectrum efficiency and achieve higher data throughput, frequency-division duplexing (FDD) transmission methods are widely used in wireless communication systems. However, the self-interference problem faced by FDD transmission systems is a major challenge. Therefore, the aim of this work is to mitigate self-interference issues while increasing data rates and minimizing additional design costs.
The proposed self-interference cancellation receiver utilizes an on-chip feedforward path to actively cancel interference signals in a dual-path manner, distinguishing itself from passive filtering methods and allowing for integration with them. By controlling the transmission time of signals in both paths, the desired self-interference cancellation effect is achieved. The cancellation path is designed after the first-stage low-noise amplifier, reducing its impact on the overall system noise. Through the use of low-power mixers and baseband amplifiers, the cost of the cancellation path is significantly reduced.
The proposed self-interference cancellation receiver for FDD operation, implemented in a 0.18 $um$ CMOS process, operates in the 5G NR Upper 6 GHz (6.425 – 7.125 GHz) band. Chip measurement results validate the functionality of the proposed circuit. In the presence of interference signals up to -20 dBm, it achieves a self-interference cancellation of 32 dB with signal bandwidths of 120 MHz and frequency offset of 200 MHz. With a 1.8 V power supply, it consumes 24.1 mW of DC power.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:20:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-20T16:20:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsApproval i
Acknowledgement iii
Chinese Abstract v
Abstract vii
List of Figures xi
List of Tables xv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Introduction to SIC Receiver 5
2.1 Receiver for Wireless Communication System . . . . . . . . . . . . . . . 5
2.1.1 Heterodyne Receivers . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Direct Conversion Receivers . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Low-IF Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Receiver Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Low Noise Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Variable Gain Amplifiers . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 On-Chip Transformers . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Fundamentals of Self-Interference Cancellation . . . . . . . . . . . . . . 15
2.3.1 Full-Duplex and Frequency-Division Duplexing . . . . . . . . . . 15
2.3.2 Self-Interference Problem . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Self-Interference Cancellation . . . . . . . . . . . . . . . . . . . 18
3 Proposed SIC Receiver 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 System Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Low Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Self-Interference Cancellation Path . . . . . . . . . . . . . . . . 41
3.4.3 Automatic Gain Control Loop . . . . . . . . . . . . . . . . . . . 45
3.4.4 Transmission Gate and RF Buffer . . . . . . . . . . . . . . . . . 51
3.4.5 RF Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.6 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.7 LO Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.8 Variable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 Generic Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 SIC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Experimental Results 71
4.1 PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Measurement Setups and Experimental Results . . . . . . . . . . . . . . 74
4.2.1 DC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Generic Receiver Measurement . . . . . . . . . . . . . . . . . . 75
4.2.3 SIC Receiver Measurement . . . . . . . . . . . . . . . . . . . . 81
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Conclusion 87
Reference 91
-
dc.language.isoen-
dc.subject前饋技術zh_TW
dc.subject互補式金屬氧化物半導體zh_TW
dc.subject接收機zh_TW
dc.subject自干擾消除zh_TW
dc.subject分頻雙工zh_TW
dc.subjectfrequency-division duplexing (FDD)en
dc.subjectselfinterference cancellation (SIC)en
dc.subjectreceiveren
dc.subjectfeedforward techniqueen
dc.subjectCMOSen
dc.title應用於分頻雙工通訊系統之 CMOS 自干擾消除接收機zh_TW
dc.titleA CMOS Self-Interference Cancellation Receiver for Frequency-Division Duplexing Communication Systemsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳怡然;陳巍仁zh_TW
dc.contributor.oralexamcommitteeYi-Jan Chen;Wei-Zen Chenen
dc.subject.keyword互補式金屬氧化物半導體,前饋技術,分頻雙工,自干擾消除,接收機,zh_TW
dc.subject.keywordCMOS,feedforward technique,frequency-division duplexing (FDD),selfinterference cancellation (SIC),receiver,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202403856-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved