請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94860完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊健志 | zh_TW |
| dc.contributor.advisor | Chien-Chih Yang | en |
| dc.contributor.author | 蔡秉叡 | zh_TW |
| dc.contributor.author | Bing-Ruei Tsay | en |
| dc.date.accessioned | 2024-08-20T16:11:50Z | - |
| dc.date.available | 2024-08-21 | - |
| dc.date.copyright | 2024-08-20 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | Agrawal, S., Rai, S., Mahato, P., Ali, A., & Mukherjee, S. (2024). Assemble-Disassemble-Reassemble Dynamics in Copper Nanocluster-Based Superstructures. The Journal of Physical Chemistry Letters, 15(18), 4880–4889.
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). The Shape and Structure of Proteins. In Molecular Biology of the Cell. 4th edition. Garland Science. Anand, U., Dey, A., Chandel, A. K. S., Sanyal, R., Mishra, A., Pandey, D. K., De Falco, V., Upadhyay, A., Kandimalla, R., Chaudhary, A., Dhanjal, J. K., Dewanjee, S., Vallamkondu, J., & Pérez de la Lastra, J. M. (2022). Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases, 10(4), 1367–1401. Ardolino, L., & Joshua, A. (2019). Immune checkpoint inhibitors in malignancy. Australian Prescriber, 42(2), 62–67. Bah, A., & Forman-Kay, J. D. (2016). Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. The Journal of Biological Chemistry, 291(13), 6696–6705. Banani, S. F., Lee, H. O., Hyman, A. A., & Rosen, M. K. (2017). Biomolecular condensates: Organizers of cellular biochemistry. Nature Reviews. Molecular Cell Biology, 18(5), 285–298. Belk, J. A., Daniel, B., & Satpathy, A. T. (2022). Epigenetic regulation of T cell exhaustion. Nature Immunology, 23(6), 848–860. Brangwynne, C. P., Tompa, P., & Pappu, R. V. (2015). Polymer physics of intracellular phase transitions. Nature Physics, 11(11), 899–904. Brocca, S., Samalíková, M., Uversky, V. N., Lotti, M., Vanoni, M., Alberghina, L., & Grandori, R. (2009). Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins, 76(3), 731–746. Chen, D., & Simons, M. (2021). Emerging roles of PLCγ1 in endothelial biology. Science Signaling, 14(694), eabc6612. Cheng, Y., Shao, Z., Chen, L., Zheng, Q., Zhang, Q., Ding, W., Zhang, M., Yu, Q., & Gao, D. (2021). Role, function and regulation of the thymocyte selection-associated high mobility group box protein in CD8+ T cell exhaustion. Immunology Letters, 229, 1–7. Darling, A. L., Zaslavsky, B. Y., & Uversky, V. N. (2019). Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers, 11(6), 990. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., & Obradovic, Z. (2001). Intrinsically disordered protein. Journal of Molecular Graphics & Modelling, 19(1), 26–59. Dyson, H. J. (2016). Making Sense of Intrinsically Disordered Proteins. Biophysical Journal, 110(5), 1013–1016. Franco, F., Jaccard, A., Romero, P., Yu, Y.-R., & Ho, P.-C. (2020). Metabolic and epigenetic regulation of T-cell exhaustion. Nature Metabolism, 2(10), 1001–1012. Fuxreiter, M., Tóth-Petróczy, Á., Kraut, D. A., Matouschek, A. T., Lim, R. Y. H., Xue, B., Kurgan, L., & Uversky, V. N. (2014). Disordered Proteinaceous Machines. Chemical Reviews, 114(13), 6806–6843. Graether, S. P. (2018). Troubleshooting Guide to Expressing Intrinsically Disordered Proteins for Use in NMR Experiments. Frontiers in Molecular Biosciences, 5, 118. Han, J., Wan, M., Ma, Z., & He, P. (2022). The TOX subfamily: All-round players in the immune system. Clinical and Experimental Immunology, 208(3), 268–280. Hemmings, B. A., & Restuccia, D. F. (2012). PI3K-PKB/Akt pathway. Cold Spring Harbor Perspectives in Biology, 4(9), a011189. Horsley, V., & Pavlath, G. K. (2002). Nfat: Ubiquitous regulator of cell differentiation and adaptation. Journal of Cell Biology, 156(5), 771–774. Humphrey, M. B., Lanier, L. L., & Nakamura, M. C. (2005). Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunological Reviews, 208, 50–65. Iyer, S. S., & Cheng, G. (2012). Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Critical Reviews in Immunology, 32(1), 23–63. Jiang, W., He, Y., He, W., Wu, G., Zhou, X., Sheng, Q., Zhong, W., Lu, Y., Ding, Y., Lu, Q., Ye, F., & Hua, H. (2020). Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Frontiers in Immunology, 11, 622509. Karin, M. (1999). How NF-kappaB is activated: The role of the IkappaB kinase (IKK) complex. Oncogene, 18(49), 6867–6874. Kavazović, I., Han, H., Balzaretti, G., Slinger, E., Lemmermann, N. A. W., ten Brinke, A., Merkler, D., Koster, J., Bryceson, Y. T., de Vries, N., Jonjić, S., Klarenbeek, P. L., Polić, B., Eldering, E., & Wensveen, F. M. (2020). Eomes broadens the scope of CD8 T-cell memory by inhibiting apoptosis in cells of low affinity. PLoS Biology, 18(3), e3000648. Khan, O., Giles, J. R., McDonald, S., Manne, S., Ngiow, S. F., Patel, K. P., Werner, M. T., Huang, A. C., Alexander, K. A., Wu, J. E., Attanasio, J., Yan, P., George, S. M., Bengsch, B., Staupe, R. P., Donahue, G., Xu, W., Amaravadi, R. K., Xu, X., … Wherry, E. J. (2019). TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature, 571(7764), 211–218. Knox, J. J., Cosma, G. L., Betts, M. R., & McLane, L. M. (2014). Characterization of T-bet and eomes in peripheral human immune cells. Frontiers in Immunology, 5, 217. Lebendiker, M., Maes, M., & Friedler, A. (2015). A screening methodology for purifying proteins with aggregation problems. Methods in Molecular Biology (Clifton, N.J.), 1258, 261–281. Lee, J., Cho, H., & Kwon, I. (2022). Phase separation of low-complexity domains in cellular function and disease. Experimental & Molecular Medicine, 54(9), 1412–1422. Li, F., Liu, H., Zhang, D., Ma, Y., & Zhu, B. (2022). Metabolic plasticity and regulation of T cell exhaustion. Immunology, 167(4), 482–494. Li, J., He, Y., Hao, J., Ni, L., & Dong, C. (2018). High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Frontiers in Immunology, 9, 2981. Li, J., Lee, Y., Li, Y., Jiang, Y., Lu, H., Zang, W., Zhao, X., Liu, L., Chen, Y., Tan, H., Yang, Z., Zhang, M. Q., Mak, T. W., Ni, L., & Dong, C. (2018). Co-inhibitory Molecule B7 Superfamily Member 1 Expressed by Tumor-Infiltrating Myeloid Cells Induces Dysfunction of Anti-tumor CD8+ T Cells. Immunity, 48(4), 773-786.e5. Liang, C., Huang, S., Zhao, Y., Chen, S., & Li, Y. (2021). TOX as a potential target for immunotherapy in lymphocytic malignancies. Biomarker Research, 9(1), 20. Lim, A. R., Rathmell, W. K., & Rathmell, J. C. (2020). The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. eLife, 9, e55185. Liu, J., Chen, Z., Li, Y., Zhao, W., Wu, J., & Zhang, Z. (2021). PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12, 731798. Llaó-Cid, L., Roessner, P. M., Chapaprieta, V., Öztürk, S., Roider, T., Bordas, M., Izcue, A., Colomer, D., Dietrich, S., Stilgenbauer, S., Hanna, B., Martín-Subero, J. I., & Seiffert, M. (2021). EOMES is essential for antitumor activity of CD8+ T cells in chronic lymphocytic leukemia. Leukemia, 35(11), 3152–3162. Manukian, S., Lindberg, G. E., Punch, E., Mudiyanselage, S. P. D., & Gage, M. J. (2022). pH-Dependent Compaction of the Intrinsically Disordered Poly-E Motif in Titin. Biology, 11(9), 1302. Martinez, G. J., Pereira, R. M., Äijö, T., Kim, E. Y., Marangoni, F., Pipkin, M. E., Togher, S., Heissmeyer, V., Zhang, Y. C., Crotty, S., Lamperti, E. D., Ansel, K. M., Mempel, T. R., Lähdesmäki, H., Hogan, P. G., & Rao, A. (2015). The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity, 42(2), 265–278. McLane, L. M., Banerjee, P. P., Cosma, G. L., Makedonas, G., Wherry, E. J., Orange, J. S., & Betts, M. R. (2013). Differential localization of T-bet and Eomes in CD8 T cell memory populations. Journal of Immunology, 190(7), 3207–3215. McLane, L. M., Ngiow, S. F., Chen, Z., Attanasio, J., Manne, S., Ruthel, G., Wu, J. E., Staupe, R. P., Xu, W., Amaravadi, R. K., Xu, X., Karakousis, G. C., Mitchell, T. C., Schuchter, L. M., Huang, A. C., Freedman, B. D., Betts, M. R., & Wherry, E. J. (2021). Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 T cells. Cell Reports, 35(6), 109120. Mubashira, K., Pramanik, U., Khamari, L., & Mukherjee, S. (2022). Monitoring the effect of SDS on the solvation dynamics and structural conformation of β-casein. Journal of Chemical Sciences, 134(4), 105. Naito, T., Tanaka, H., Naoe, Y., & Taniuchi, I. (2011). Transcriptional control of T-cell development. International Immunology, 23(11), 661–668. Oduah, E. I., Linhardt, R. J., & Sharfstein, S. T. (2016). Heparin: Past, Present, and Future. Pharmaceuticals, 9(3), 38. Oldfield, C. J., & Dunker, A. K. (2014). Intrinsically disordered proteins and intrinsically disordered protein regions. Annual Review of Biochemistry, 83, 553–584. Onuchic, J. N., & Wolynes, P. G. (2004). Theory of protein folding. Current Opinion in Structural Biology, 14(1), 70–75. Ostroumov, D., Duong, S., Wingerath, J., Woller, N., Manns, M. P., Timrott, K., Kleine, M., Ramackers, W., Roessler, S., Nahnsen, S., Czemmel, S., Dittrich-Breiholz, O., Eggert, T., Kühnel, F., & Wirth, T. C. (2021). Transcriptome Profiling Identifies TIGIT as a Marker of T-Cell Exhaustion in Liver Cancer. Hepatology, 73(4), 1399–1418. Parkin, J., & Cohen, B. (2001). An overview of the immune system. The Lancet, 357(9270), 1777–1789. Pearce, E. L., Mullen, A. C., Martins, G. A., Krawczyk, C. M., Hutchins, A. S., Zediak, V. P., Banica, M., DiCioccio, C. B., Gross, D. A., Mao, C.-A., Shen, H., Cereb, N., Yang, S. Y., Lindsten, T., Rossant, J., Hunter, C. A., & Reiner, S. L. (2003). Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science, 302(5647), 1041–1043. P-ohler, J. R., Norman, D. G., Bramham, J., Bianchi, M. E., & Lilley, D. M. (1998). HMG box proteins bind to four-way DNA junctions in their open conformation. The EMBO Journal, 17(3), 817. Prole, D. L., & Taylor, C. W. (2019). Structure and Function of IP3 Receptors. Cold Spring Harbor Perspectives in Biology, 11(4), a035063. Rusnak, F., & Mertz, P. (2000). Calcineurin: Form and function. Physiological Reviews, 80(4), 1483–1521. Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. Shergold, A. L., Millar, R., & Nibbs, R. J. B. (2019). Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacological Research, 145, 104258. Shimizu, K., Sato, Y., Kawamura, M., Nakazato, H., Watanabe, T., Ohara, O., & Fujii, S.-I. (2019). Eomes transcription factor is required for the development and differentiation of invariant NKT cells. Communications Biology, 2, 150. Shin, Y., & Brangwynne, C. P. (2017). Liquid phase condensation in cell physiology and disease. Science, 357(6357), eaaf4382. Smith-Garvin, J. E., Koretzky, G. A., & Jordan, M. S. (2009). T cell activation. Annual Review of Immunology, 27, 591–619. Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., Wu, W., Han, L., & Wang, S. (2022). The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Frontiers in Immunology, 13, 964442. Tenchov, R., & Zhou, Q. A. (2022). Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infectious Diseases, 8(3), 422–432. Tzavlaki, K., & Moustakas, A. (2020). TGF-β Signaling. Biomolecules, 10(3), 487. Uversky, V. N. (2019). Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Frontiers in Physics, 7. Wang, J., Cao, Z., Zhao, L., & Li, S. (2011). Novel Strategies for Drug Discovery Based on Intrinsically Disordered Proteins (IDPs). International Journal of Molecular Sciences, 12(5), 3205–3219. Wherry, E. J. (2011). T cell exhaustion. Nature Immunology, 12(6), 492–499. Wohl, S., Jakubowski, M., & Zheng, W. (2021). Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins. The Journal of Physical Chemistry Letters, 12(28), 6684–6691. Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews. Molecular Cell Biology, 16(1), 18–29. Yu, M., Peng, Z., Qin, M., Liu, Y., Wang, J., Zhang, C., Lin, J., Dong, T., Wang, L., Li, S., Yang, Y., Xu, S., Guo, W., Zhang, X., Shi, M., Peng, H., Luo, X., Zhang, H., Zhang, L., … Sun, S. (2021). Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Molecular Cell, 81(6), 1216-1230.e9. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94860 | - |
| dc.description.abstract | TOX (thymocyte selection-associated HMG-box protein) 和 Eomes (eomesodermin) 是 參與 T 細胞發育及耗竭重要轉錄因子,亦對免疫反應調節非常重要。透過對 TOX 和 Eomes 蛋白質一級結構的分析,發現分別有 79% 和 55% 區域被預測為本質無序區域 (intrinsically disordered regions,IDRs)。IDRs 特性是缺乏穩定三級結構,因具有高度 機動性,可促進蛋白質之間交互作用,已知在細胞功能中具有重要作用。然而,TOX 和 Eomes 中 IDRs 具體功能迄今尚未被充分了解。因,本研究利用大腸桿菌和人類胚 胎腎臟細胞進行重組蛋白 TOX 和 Eomes 的表現。將帶有 His 標記的重組蛋白 His-TOX 和 His-Eomes 表現於大腸桿菌中,藉由西方墨點法觀察到 His-TOX 出現於 55 kDa 和 72 kDa 的兩個色帶,His-Eomes 則在 72 kDa 和 100 kDa 間出現一個色帶。接著,以 HisTrap 管柱和肝素管柱對 His-TOX 進行純化。由於 TOX 的 IDRs 特性,導致純化過程重組蛋 白 His-TOX 易於降解,單一親合管柱純化方法難以獲得高純度蛋白質,故另外採用煮 沸法或增加不同管柱以改善純化效果。外,質譜分析確認 His-TOX 的二條色帶 55 kDa 和 72 kDa 對人類 TOX 序列覆蓋率均為 37%。72 kDa 色帶亦含有大腸桿菌的伴侶 蛋白 (chaperon protein DnaK),其序列覆蓋率為 57%。有趣的是,研究發現部分純化的 重組蛋白 His-TOX,若降低其緩衝液鹽濃度會呈現白色混濁,並且該混濁情況仍可恢 復成清澈狀態。差異干涉對比顯微鏡 (differential interference contrast microscope,DIC) 觀察結果顯示,大腸桿菌所表現之部分純化重組蛋白 His-TOX 可能發生液-液相分離 (liquid-liquid phase separation,LLPS)。外,使用帶有 eGFP (enhance green fluorescent protein) 標記的重組蛋白 eGFP-TOX 和 Eomes-eGFP 在人類胚胎腎臟細胞中的表達,發 現細胞內出現小點 (puncta),進一支持其發生 LLPS 的可能性。本研究結果支持重組 蛋白 TOX 和 Eomes 於體外 (in vitro) 條件可能形成 LLPS,本文同時討論 LLPS 的生理 意義及其基於 TOX 和 Eomes LLPS 特性的潛在治療策略。 | zh_TW |
| dc.description.abstract | TOX (thymocyte selection-associated HMG-box protein) and Eomes (eomesodermin) are crucial transcription factors involved in T cell development and exhaustion as well as in the regulation of immune responses. Analysis of the primary structures of TOX and Eomes proteins suggests that 79% and 55% of their regions are predicted to be intrinsically disordered regions (IDRs), respectively. IDRs are characterized by a lack of stable tertiary structure, conferring high mobility that facilitates protein-protein interactions, and are known to play important roles in cellular function. However, the specific functions of the IDRs in TOX and Eomes have not been fully understood. This study utilizes heterologous expression systems, in Escherichia coli (E. coli) and human embryonic kidney cells, to give information about recombinant TOX and Eomes proteins. First, we expressed His-tagged recombinant proteins, His-TOX and His- Eomes, in E. coli. It was observed that recombinant His-TOX was identified in two protein bands corresponding to 55 kDa and 72 kDa by Western blot, while recombinant His-Eomes was identified in a single expression protein band between 72 kDa and 100 kDa. Next, we used HisTrap and heparin columns for purification of His-TOX. Due to the IDR characteristics of TOX, proteins tended to degrade during purification, making it challenging to obtain high- purity protein with a single affinity column. Additional methods such as boiling method or using multiple columns were therefore applied to improve the purification efficiency. We found that both 55 kDa and 72 kDa bands of His-TOX covered 37% of the human TOX sequence under mass spectropetry analysis. The 72 kDa band with a sequence coverage of 57% contained chaperone protein DnaK. It is interesting to note that the partially purified recombinant His- TOX exhibited reversible white particles upon decreasing buffer salt concentration. Differential interference contrast microscopy (DIC) indicated that partially purified His-TOX expressed in E. coli might undergo liquid-liquid phase separation (LLPS). Expressing eGFP- tagged recombinant proteins (eGFP-TOX and Eomes-eGFP) in human embryonic kidney cells also resulted in the formation of puncta which further support the potential occurrence of LLPS. Our results support the presence of the potential formation of LLPS from recombinant TOX and Eomes proteins in vitro. The physiological significance and the implications of novel therapeutic strategy based on the LLPS properties of TOX and Eomes are discussed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:11:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-20T16:11:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
目次 I 縮寫表 III 摘要 V ABSTRACT VI 第一章 緒論 1 1.1 免疫系統中T細胞 (T CELL) 的活化機制 1 1.2 T細胞耗竭 (T CELL EXHAUSTION) 2 1.3 T 細胞耗竭之重要轉錄因子 - THYMOCYTE SELECTION-ASSOCIATED HMG-BOX PROTEIN (TOX) 3 1.4 T 細胞耗竭之重要轉錄因子 - EOMESODERMIN (EOMES) 3 1.5 TOX和EOMES一級結構分析 4 1.6 本質無序蛋白質 (INTRINSICALLY DISORDERED PROTEIN,IDPS) 5 1.7 IDPS純化之挑戰 6 1.8 液-液相分離 (LIQUID-LIQUID PHASE SEPARATION,LLPS) 7 1.9 免疫檢查點抑制劑 (IMMUNE CHECKPOINT INHIBITOR) 8 1.10 動機與目標 9 第二章 材料與方法 10 2.1 實驗材料 10 2.1.1 載體 10 2.1.2 表現質體 11 2.1.3 菌株 12 2.1.4 細胞 13 2.2 實驗藥品 14 2.2.1 一般化學藥品 14 2.2.2 培養基 14 2.3 儀器設備 15 2.4 實驗方法 16 2.4.1 DNA相關操作方法 16 2.4.1.1 轉形作用 16 2.4.1.2 質體DNA小量製備 16 2.4.1.3 質體DNA中量製備 17 2.4.2 蛋白質相關操作方法 17 2.4.2.1 重組蛋白質之小量表現條件篩選 17 2.4.2.2 重組蛋白質之大量表現及破菌 18 2.4.2.3 重組蛋白質之快速蛋白質液相層析法 18 2.4.2.4 蛋白質電泳檢定 19 2.4.2.5 蛋白質免疫轉印法 21 2.4.2.6 蛋白質緩衝液置換 22 2.4.2.7 蛋白質混濁度檢測 22 2.4.2.8 差異干涉對比顯微鏡 (differential interference contrast microscope,DIC) 觀測 22 2.4.3 細胞相關實驗方法 23 2.4.3.1 細胞培養 23 2.4.3.2 細胞冷凍與解凍 23 2.4.3.3 細胞繼代 23 2.4.3.4 細胞計數 23 2.4.3.5 細胞轉染 24 2.4.3.6 細胞裂解 24 2.4.3.7 螢光顯微鏡觀測 24 第三章 結果 25 3.1 重組TOX和EOMES在大腸桿菌表現系統之研究 25 3.1.1 TOX和Eomes之胺基酸組成分析及預測 25 3.1.2 pET15b_TOX和pET15b_Eomes的建構 25 3.1.3 pET15b_TOX和pET15b_Eomes表現條件測試 26 3.2 重組蛋白HIS-TOX 純化與特性之探討 27 3.2.1 重組蛋白His-TOX的HisTrap 管柱純化 27 3.2.2 重組蛋白His-TOX之身份鑑定 28 3.2.3 重組蛋白His-TOX的肝素 (heparin) 管柱純化 29 3.2.4 重組蛋白His-TOX於置換緩衝液時之特性變化 30 3.3 重組蛋白EGFP-TOX和EOMES-EGFP於人類胚胎腎臟細胞之研究 33 3.3.1 pcDNA3.1_N_eGFP_TOX和pcDNA3.1_C_eGFP_Eomes的建構 33 3.3.2 pcDNA3.1_N_eGFP_TOX和pcDNA3.1_C_eGFP_Eomes於人類胚胎腎臟細胞 (HEK293A) 之轉染 33 第四章 討論 35 4.1 TOX和EOMES序列胺基酸特性 35 4.2 重組蛋白 HIS-TOX 以HISTRAP管柱純化後之變化 35 4.3 重組蛋白HIS-TOX純化後色帶之質譜分析 36 4.4 鹽對重組蛋白HIS-TOX溶解度造成之影響 38 4.5 重組蛋白HIS-TOX以化學試劑測試之影響 39 4.6 重組蛋白EGFP-TOX和EOMES-EGFP於人類胚胎腎臟細胞中之行為 40 第五章 未來展望 41 第六章 參考資料 43 第七章 圖片與表格 51 第八章 附錄 81 口試問答摘要 94 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 本質無序蛋白質/區域 | zh_TW |
| dc.subject | T 細胞耗竭 | zh_TW |
| dc.subject | 轉錄因子 | zh_TW |
| dc.subject | 液-液相分 離 | zh_TW |
| dc.subject | 異質蛋白表現 | zh_TW |
| dc.subject | heterologous protein expression | en |
| dc.subject | intrinsically disordered proteins/regions | en |
| dc.subject | T cell exhaustion | en |
| dc.subject | transcription factor | en |
| dc.subject | TOX | en |
| dc.subject | Eomes | en |
| dc.subject | liquid-liquid phase separation | en |
| dc.title | TOX和Eomes異源蛋白表達及分子特徵研究 | zh_TW |
| dc.title | Heterologous Protein Expression and Molecular Characterization of TOX and Eomes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許駿;陳佩燁;廖憶純;黃楓婷 | zh_TW |
| dc.contributor.oralexamcommittee | Chiun Hsu;Rita P.-Y. Chen;Yi-Chun Liao;Feng-Ting Huang | en |
| dc.subject.keyword | 本質無序蛋白質/區域,T 細胞耗竭,轉錄因子,液-液相分 離,異質蛋白表現, | zh_TW |
| dc.subject.keyword | intrinsically disordered proteins/regions,T cell exhaustion,transcription factor,TOX,Eomes,liquid-liquid phase separation,heterologous protein expression, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202401964 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 29.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
