Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor俞松良zh_TW
dc.contributor.advisorSung-Liang Yuen
dc.contributor.author盛琪雅zh_TW
dc.contributor.authorChi-Ya Shenen
dc.date.accessioned2024-08-19T17:33:01Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation1. Siegel, R.L., A.N. Giaquinto, and A. Jemal, Cancer statistics, 2024. CA Cancer J Clin, 2024. 74(1): p. 12-49.
2. Thai, A.A., et al., Lung cancer. Lancet, 2021. 398(10299): p. 535-554.
3. Lahiri, A., et al., Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer, 2023. 22(1): p. 40.
4. Guo, Q., et al., Current treatments for non-small cell lung cancer. Front Oncol, 2022. 12: p. 945102.
5. Araghi, M., et al., Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int, 2023. 23(1): p. 162.
6. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 28.
7. Blomberg, O.S., L. Spagnuolo, and K.E. de Visser, Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech, 2018. 11(10).
8. Janssen, L.M.E., et al., The immune system in cancer metastasis: friend or foe? Journal for ImmunoTherapy of Cancer, 2017. 5(1): p. 79.
9. Lei, X., et al., Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Letters, 2020. 470: p. 126-133.
10. Bied, M., et al., Roles of macrophages in tumor development: a spatiotemporal perspective. Cellular & Molecular Immunology, 2023. 20(9): p. 983-992.
11. Gao, J., Y. Liang, and L. Wang, Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy. Front Immunol, 2022. 13: p. 888713.
12. Heo, Y.J., et al., Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes. Mol Cells, 2021. 44(7): p. 433-443.
13. Omenn, G.S., et al., The 2023 Report on the Proteome from the HUPO Human Proteome Project. J Proteome Res, 2024. 23(2): p. 532-549.
14. Wong, G.W., et al., A family of Acrp30/adiponectin structural and functional paralogs. Proc Natl Acad Sci U S A, 2004. 101(28): p. 10302-7.
15. Nguyen, T.M.D., Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med, 2020. 11: p. 136.
16. Kishore, U., et al., C1q and tumor necrosis factor superfamily: modularity and versatility. Trends in Immunology, 2004. 25(10): p. 551-561.
17. Kopp, A., et al., Effects of the new adiponectin paralogous protein CTRP-3 and of LPS on cytokine release from monocytes of patients with type 2 diabetes mellitus. Cytokine, 2010. 49(1): p. 51-7.
18. Peterson, J.M., Z. Wei, and G.W. Wong, C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J Biol Chem, 2010. 285(51): p. 39691-701.
19. Yamauchi, T., et al., Adiponectin receptors: A review of their structure, function and how they work. Best Practice & Research Clinical Endocrinology & Metabolism, 2014. 28(1): p. 15-23.
20. Schanbacher, C., et al., Complement 1q/Tumor Necrosis Factor-Related Proteins (CTRPs): Structure, Receptors and Signaling. Biomedicines, 2023. 11(2).
21. Petersen, P.S., et al., CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress. Am J Physiol Endocrinol Metab, 2017. 312(4): p. E309-e325.
22. Li, K., et al., CTRP7 Is a Biomarker Related to Insulin Resistance and Oxidative Stress: Cross-Sectional and Intervention Studies In Vivo and In Vitro. Oxid Med Cell Longev, 2022. 2022: p. 6877609.
23. Uhlén, M., et al., Tissue-based map of the human proteome. Science, 2015. 347(6220): p. 1260419.
24. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60.
25. Huang, C.Y., et al., Inhibition of Alternative Cancer Cell Metabolism of EGFR Mutated Non-Small Cell Lung Cancer Serves as a Potential Therapeutic Strategy. Cancers (Basel), 2020. 12(1).
26. Győrffy, B., Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation (Camb), 2024. 5(3): p. 100625.
27. Chen, Y.J., et al., Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell, 2020. 182(1): p. 226-244.e17.
28. Xu, J., et al., Targeting the insulin-like growth factor-1 receptor in MTAP-deficient renal cell carcinoma. Signal Transduction and Targeted Therapy, 2019. 4(1): p. 2.
29. Shen, C.-Y., et al., Tissue Proteogenomic Landscape Reveals the Role of Uncharacterized SEL1L3 in Progression and Immunotherapy Response in Lung Adenocarcinoma. Journal of Proteome Research, 2023. 22(4): p. 1056-1070.
30. Mootha, V.K., et al., PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 2003. 34(3): p. 267-273.
31. Subramanian, A., et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 2005. 102(43): p. 15545-15550.
32. Newman, A.M., et al., Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology, 2019. 37(7): p. 773-782.
33. Yuan, A., et al., Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Sci Rep, 2015. 5: p. 14273.
34. Kuo, I.Y., et al., Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. Journal of Biomedical Science, 2022. 29(1): p. 56.
35. Gillette, M.A., et al., Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell, 2020. 182(1): p. 200-225.e35.
36. Wang, J. and W. Pan, The Biological Role of the Collagen Alpha-3 (VI) Chain and Its Cleaved C5 Domain Fragment Endotrophin in Cancer. Onco Targets Ther, 2020. 13: p. 5779-5793.
37. Chen, P., M. Cescon, and P. Bonaldo, Collagen VI in cancer and its biological mechanisms. Trends in Molecular Medicine, 2013. 19(7): p. 410-417.
38. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012. 196(4): p. 395-406.
39. Liu, W., et al., Role of COL6A3 in colorectal cancer. Oncol Rep, 2018. 39(6): p. 2527-2536.
40. Madhavan, S.M. and J.F. O'Toole, The biology of APOL1 with insights into the association between APOL1 variants and chronic kidney disease. Clin Exp Nephrol, 2014. 18(2): p. 238-42.
41. Lin, J., et al., Oncogene APOL1 promotes proliferation and inhibits apoptosis via activating NOTCH1 signaling pathway in pancreatic cancer. Cell Death & Disease, 2021. 12(8): p. 760.
42. Le, L.N.-H., et al., Apolipoprotein L1 is a tumor suppressor in clear cell renal cell carcinoma metastasis. Frontiers in Oncology, 2024. 14.
43. Li, L., et al., Comparative Analysis of CTRP-Mediated Effects on Cardiomyocyte Glucose Metabolism: Cross Talk between AMPK and Akt Signaling Pathway. Cells, 2021. 10(4).
44. Reilly, S.M. and A.R. Saltiel, Adapting to obesity with adipose tissue inflammation. Nature Reviews Endocrinology, 2017. 13(11): p. 633-643.
45. Kawai, T., M.V. Autieri, and R. Scalia, Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol, 2021. 320(3): p. C375-c391.
46. Chait, A. and L.J. den Hartigh, Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020. 7.
47. Cai, Z., Y. Huang, and B. He, New Insights into Adipose Tissue Macrophages in Obesity and Insulin Resistance. Cells, 2022. 11(9).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94849-
dc.description.abstract肺癌是全球癌症相關死亡的首要原因,突顯出對新型預後標誌與治療靶點的迫切需求。人類蛋白質組計畫 (Human Proteome Project) 旨在系統性地建立人類蛋白質體資訊,為疾病的診斷與治療提供更多可能。肺癌的高死亡率促使我們進行研究,而完成蛋白質組圖譜的目標激勵我們探索功能未知蛋白在癌症進展中的作用,這一探索為基於蛋白的精準醫療鋪展了道路。通過分析台灣癌症登月計畫(Taiwan Cancer Moonshot)所提供的大規模組織蛋白基因體學數據,我們篩選出一個位於四號染色體的功能未知蛋白,其稱作C1q and TNF-related protein 7(C1QTNF7),該蛋白在我們的肺腺癌研究族群中出現異常表現,然而其於癌症進程中的角色仍然有待探索。

藉由分析台灣癌症登月計畫的研究族群,我們發現C1QTNF7之蛋白表現在86%的肺腺癌患者腫瘤組織中顯著下調,並與患者的整體存活期、復發率、病理分化、腫瘤期數等臨床病理特徵均密切相關,C1QTNF7高表現的患者,傾向具有較佳的臨床結果,暗示其可能的臨床應用前景。為了闡明C1QTNF7之調控機制,我們建立了C1QTNF7過度表現(overexpression)與敲落 (knockdown) 之穩定肺癌細胞株,以免疫螢光染色觀察其細胞內定位,並透過收集條件培養基(conditioned medium),驗證C1QTNF7的分泌蛋白特性。接著,我們從RNA定序分析結果中,選擇具有顯著變化的差異表現基因(differentially expressed genes)進行路徑分析,發現富集的路徑主要涉及腫瘤轉移與免疫訊息傳遞。我們利用體外功能性實驗,進一步驗證了C1QTNF7對腫瘤細胞爬行與侵襲能力的抑制效果。此外,為了探討C1QTNF7與免疫訊息傳遞的關聯性,我們利用肺腺癌研究族群進行免疫細胞富集預測分析,並建立Jurkat T細胞共同培養模型、THP-1細胞衍生的巨噬細胞分化模型、與植入人類周邊血單核細胞的免疫系統擬人化小鼠模型,發現體外系統中C1QTNF7對上述兩類免疫細胞之活化與分化存在顯著影響。

總而言之,我們的研究結果揭露了C1QTNF7在肺腺癌中的腫瘤抑制活性,C1QTNF7可能在腫瘤微環境中的腫瘤轉移和免疫調節執行重要功能。以上發現為深入研究C1QTNF7的分子訊息網絡提供了更深的見解,C1QTNF7的免疫介導作用也突顯了其在肺腺癌預後和治療策略之應用潛力。
zh_TW
dc.description.abstractLung cancer remains the primary contributor to cancer-associated mortality, highlighting the unmet need for novel prognostic markers and therapeutic strategies. The Human Proteome Project is dedicated to systematically characterizing human proteome, providing advancements in disease diagnosis and treatment. The significant fatality rate of lung cancer prompts our research. At the same time, the essential goal of completing the human proteome map drives our investigation into the involvement of uncharacterized proteins in cancer progression. This exploration paves the way for protein-driven precision medicine. By leveraging the tissue proteogenomic data from the Taiwan Cancer Moonshot cohort, we identified an uncharacterized protein, complement 1q and tumor necrosis factor-related protein 7 (C1QTNF7) encoded from chromosome 4. C1QTNF7 was found to be dysregulated in the lung adenocarcinoma cohort; nevertheless, its contribution to cancer progression remains to be elucidated.

In our study, C1QTNF7 was significantly downregulated in 86% of the tumor samples compared with paired normal tissues adjacent to the tumor (NAT). In the follow-up analysis of the Taiwan Cancer Moonshot cohort, clinicopathological characteristics of the 89 patients revealed that C1QTNF7 expression was associated with overall survival, recurrence, pathology differentiation, and tumor stage. Patients with high C1QTNF7 expression demonstrated favorable clinical outcomes, suggesting the potential prognostic value of C1QTNF7. To uncover the regulatory mechanisms of C1QTNF7, we established C1QTNF7-overexpressing and C1QTNF7-knockdown stable lung cancer cell lines. Immunofluorescence staining was performed to characterize the intracellular localization of C1QTNF7, and the conditioned medium was collected to validate its role as a secreted protein.

Furthermore, the differentially expressed genes identified by RNA sequencing analysis were subjected to pathway enrichment analysis. The analysis revealed an enrichment in metastasis- and immune signaling-related pathways. Upon further validation by in vitro functional assays, C1QTNF7 inhibited tumor cell migration and invasion. Additionally, to explore the correlation between C1QTNF7 and immune signaling, we estimated the immune infiltrated profiles of lung adenocarcinoma cohorts, as well as established Jurkat T cell co-culture, macrophage differentiation, and peripheral blood mononuclear cell-derived humanized mouse models. Our findings revealed that C1QTNF7 regulated T cell activation and macrophage differentiation in vitro.

In conclusion, our study unveiled the tumor suppressive activity of C1QTNF7 in lung adenocarcinoma. C1QTNF7 may exert a crucial influence on tumor metastasis and immune modulation within the tumor microenvironment. These findings provide insights for delving deeper into the molecular signaling network of C1QTNF7. The immune-mediated role of C1QTNF7 also highlights promising prognostic and therapeutic strategies for lung adenocarcinoma.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:33:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T17:33:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書...i
誌謝...ii
中文摘要...iii
Abstract...v
Abbreviation...viii
List of Figures...xiv
List of Tables...xvii
List of Appendices...xviii
Chapter I: Introduction...1
1.1 Lung cancer...1
1.2 Immune regulation of metastasis...1
1.3 The Human Proteome Project...3
1.4 C1QTNF7...4
Chapter II: Materials and Methods...7
2.1 Reagents and antibodies...7
2.2 Plasmid constructs and primers...8
2.3 Cell culture...9
2.4 Transfection and lentivirus transduction...10
2.5 Patient tumor specimens...11
2.6 Survival analysis...11
2.7 Real-time quantitative RT-PCR...12
2.8 Western blot analysis...12
2.9 Conditioned medium preparation...13
2.10 Immunofluorescence staining...13
2.11 Brefeldin A treatment...14
2.12 RNA sequencing (RNA-seq) and data processing...14
2.13 Pathway enrichment analysis...15
2.14 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay...15
2.15 Anchorage-dependent colony formation assay...15
2.16 Transwell migration and invasion assays...16
2.17 Wound-healing assay...16
2.18 Estimation of infiltrated immune populations...17
2.19 Jurkat T cell co-culture assay...17
2.20 Enzyme-linked immunosorbent assay (ELISA)...18
2.21 Macrophage differentiation assay...18
2.22 In vivo animal experiments...19
2.23 Statistical analysis...20
Chapter III: Results...21
3.1 Evaluation of the clinical significance of uPE1 protein C1QTNF7 in lung adenocarcinoma...21
3.2 Identification of C1QTNF7 characteristics in lung cancer cells...23
3.3 Analysis of C1QTNF7-mediated signaling pathways...24
3.4 Characterization of the C1QTNF7-regulated cancerous phenotype...25
3.5 Investigation of the role of C1QTNF7 in immune signaling...27
3.6 Elucidation of the immunomodulatory effects of C1QTNF7 in the tumor microenvironment...28
Chapter IV: Discussion...30
Figures...34
Tables...70
References...77
Appendices...84
-
dc.language.isoen-
dc.subject非小細胞肺癌zh_TW
dc.subject補體C1q/腫瘤壞死因子相關蛋白7zh_TW
dc.subject染色體中心人類蛋白質體計畫zh_TW
dc.subject未知功能蛋白存在等級1zh_TW
dc.subjectChromosome-centric Human Proteome Projecten
dc.subjectComplement 1q and Tumor Necrosis Factor-related Protein 7en
dc.subjectnon-small cell lung canceren
dc.subjectuPE1en
dc.title以蛋白基因體學探討C1QTNF7在肺腺癌中的免疫介導腫瘤抑制活性zh_TW
dc.titleProteogenomic Characterization: the Immune-mediated Tumor Suppressive Activity of C1QTNF7 in Lung Adenocarcinomaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳玉如;蘇剛毅;潘思樺zh_TW
dc.contributor.oralexamcommitteeYu-Ju Chen;Kang-Yi Su;Szu-Hua Panen
dc.subject.keyword染色體中心人類蛋白質體計畫,補體C1q/腫瘤壞死因子相關蛋白7,非小細胞肺癌,未知功能蛋白存在等級1,zh_TW
dc.subject.keywordChromosome-centric Human Proteome Project,Complement 1q and Tumor Necrosis Factor-related Protein 7,non-small cell lung cancer,uPE1,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202401845-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
dc.date.embargo-lift2026-09-01-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved