請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94846完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙 | zh_TW |
| dc.contributor.advisor | Hsiu-Hsi Chen | en |
| dc.contributor.author | 楊旻融 | zh_TW |
| dc.contributor.author | Min-Jung Yang | en |
| dc.date.accessioned | 2024-08-19T17:28:30Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | Becker, M.H. The Health Belief Model and Personal Health Behavior. Health Education Monographs. 1974; 2, 324-508.
Barrett, P.,Baldry, D. Facilities management: Towards best practice. Oxford:Blackwell Science. 2003. Burton A, Aughterson H, Fancourt D, Philip KEJ. Factors shaping the mental health and well-being of people experiencing persistent COVID-19 symptoms or 'long COVID': qualitative study. BJPsych Open. 2022;8(2):e72. Creswell, J. W. Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). Sage Publications, Inc. 2007. Callan C, Ladds E, Husain L, Pattinson K, Greenhalgh T. 'I can't cope with multiple inputs': a qualitative study of the lived experience of 'brain fog' after COVID-19. BMJ Open. 2022;12(2):e056366. Colón-López, V., Valencia-Torres, I.M., Ríos, E.I. et al. Knowledge, Attitudes, and Beliefs About Colorectal Cancer Screening in Puerto Rico. J Canc Educ. 2023; 38, 552–561. Clusmann, J., Kolbinger, F.R., Muti, H.S. et al. The future landscape of large language models in medicine. Commun Med 3. 2023;141. Fossey E, Harvey C, Mcdermott F, Davidson L. Understanding and Evaluating Qualitative Research. Australian & New Zealand Journal of Psychiatry. 2002;36(6):717-732. Glaser, Barney G; Strauss, Anselm L. The discovery of grounded theory : strategies for qualitative research Goetz, J. P., & LeCompte, M. D. Ethnography and qualitative design in educational research. New York: Academic Press. 1984. Hoda, Rashina. Socio-Technical Grounded Theory for Software Engineering. IEEE Transactions on Software Engineering. 2021;48: 3808-3832. Harvey G, Carter-Snell C, Kanikwu M. Exploring the meaning of peer support used by undergraduate nursing students who have experienced clinical-related critical incidents: A hermeneutic study. Nurse Educ Today. 2024;132:106018. Issel, L. M. Health program planning and evaluation: A practical, systematic approach for community health: Jones & Bartlett Learning. 2004. Jones, M. & Alony, Irit. Guiding the Use of Grounded Theory in Doctoral Studies – An Example from the Australian Film Industry. International Journal of Doctoral Studies. 2011;6. 10.28945/1429. Kanjee Z, Crowe B, Rodman A. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA. 2023;330(1):78–80. Ku, L.-W. and Chen, H.-H. Mining opinions from the Web: Beyond relevance retrieval. J. Am. Soc. Inf. Sci. 2007; 58: 1838-1850. Lee P, Bubeck S, Petro J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N Engl J Med. 2023;388(13):1233-1239. Le Bonniec A, Mas S, Préau M, Cousson-Gélie F. Understanding barriers and facilitators to participation in colorectal cancer screening: A French qualitative study. Journal of Health Psychology. 2021;26(12):2260-2277. Leung L. Validity, reliability, and generalizability in qualitative research. J Family Med Prim Care. 2015;4(3):324-327. Lunt J, Hemming S, Burton K, Elander J, Baraniak A. What workers can tell us about post-COVID workability. Occup Med (Lond). 2024;74(1):15-23. Morse JM. Introducing the first Global Congress for Qualitative Health Research: What are we? What will we do--and why?. Qual Health Res. 2012;22(2):147-156. Morse JM, Stern PN, Corbin J, Bowers B, Charmaz K, Clarke AE, (eds.): Developing Grounded Theory: The Second Generation. 2009, Walnut Creek, CA, USA: Left Coast Press Matsagopane, Yaone & Tang, Xiaowei. How professional status influences Botswana teachers’ self-perceived professional identity: A social symbolic interaction perspective. Social Sciences & Humanities Open. 2023;8:100672. Norman K. Denzin, Yvonna S. Lincoln. The SAGE Handbook of Qualitative Research. Thousand Oaks :SAGE, 2011. Popay J, Rogers A, Williams G. Rationale and Standards for the Systematic Review of Qualitative Literature in Health Services Research. Qualitative Health Research. 1998;8(3):341-351. Patino CM, Ferreira JC. Internal and external validity: can you apply research study results to your patients?. J Bras Pneumol. 2018;44(3):183. Rosenstock IM. Historical Origins of the Health Belief Model. Health Education Monographs. 1974;2(4):328-335. Ratcliffe, M. Experiences of depression: A study in phenomenology. Oxford University Press. 2015. Raiaan, Mohaimenul & Hossain, Md. Saddam & Fatema, Kaniz & Fahad, Nur & Sakib, Sadman & Mim, Most. Marufatul Jannat & Ahmad, Jubaer & Ali, Mohammed Eunus & Azam, Sami. A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. 2023. Sbaraini, A., Carter, S.M., Evans, R.W. et al. How to do a grounded theory study: a worked example of a study of dental practices. BMC Med Res Methodol. 2011; 11, 128. Shorey S, Ang E, Yamina A, Tam C. Perceptions of public on the COVID-19 outbreak in Singapore: a qualitative content analysis. J Public Health (Oxf). 2020;42(4):665-671. Sirithumgul, Pornpat. Unlocking the Potential of ChatGPT: A Grounded Theory Exploration of its Impact on the Business Landscape. 2023. Zhang C, Ma N, Sun G. Using Grounded Theory to Identify Online Public Opinion in China to Improve Risk Management—The Case of COVID-19. International Journal of Environmental Research and Public Health. 2022; 19(22):14754. 陳昺麟 (2001). 社會科學質化研究之紮根理論實施程序及實例之介紹. 勤益學報, 19卷, 327-342. 陳向明. (2002). 社會科學質的硏究. 五南圖書出版股份有限公司. 王佳煌, 潘中道, 郭俊賢, 黃瑋瑩(2002). 當代社會研究法:質化與量化途徑. 台北:學富 潘淑滿. (2003). 質性研究理論與實務. 台北:心理出版社. 施文玲. (2006). 質性取向研究理論派典之探析. 網路社會學通訊期刊, 第52期. 林春只, 馬長齡, Jenny Abbey, Robert Thornton. (2006). 紮根理論於長期照護護理 人員工作範疇研究之應用. 長期照護雜誌10(2), 178-189 費小冬. (2008). 紮根理論研究方法論今紮根理論研究方法論:要素、研究程序和評批標准. 公共行政評論(3), 23-40. 李蘭. (2010). 健康行為的概念. 健康行為與健康教育. 台北市:巨流圖書公司. 林福岳. (2018). 以民族誌法進行台灣原住民傳播研究之回顧. 台灣原住民研究論叢(23), 73-92. 蔡春美. (2021). 健康醫療治理中護理人員實作的困境與矛盾:以大腸癌篩檢為例. (碩士論文), 私立南華大學. National Taiwan University Sentiment Dictionary (NTUSD). Retrieved from https://github.com/ntunlplab/NTUSD?tab=readme-ov-file#readme 衛生福利部統計處. (2023). 111年死因統計結果分析. Retrieved from https://www.mohw.gov.tw/cp-16-74869-1.html 衛生福利部國民健康署. (2024). 十大癌症發生率(86-110). Retrieved from https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_DetailData.aspx?sn=nLF9GdMD%2B%2Bv41SsobdVgKw%3D%3D&_trms=c9c5ff26bc2b0520.1699343881314 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94846 | - |
| dc.description.abstract | 質性研究為了解事件脈絡建立理論架構發展後續科學評估與介入之基礎。過往質性研究以訪談文稿運用沉浸式文本閱讀萃取訪談事件關鍵字與編碼建立受訪者對於訪談主題及相關陳述,並於彙整主題後形成理論基礎。人工智慧大型語言模型發展起始於自然語言處理技術(Natural Language Processing,NLP),由初始之字詞庫對照(Bag of Word)與n-gram 語詞分節摘取與字詞預測技術發展至詞頻權重(Term frequency-Inverse Document frequency,TF-IDF)矩陣化技術提高運算效率,並應用文字語詞語矩陣(Word2Vec及Term2Vec)技術結合遞迴神經網絡(Recurrent Neural Network,RNN)整合多種深度學習技術預訓練(Pre-train)與微調(Fine tune)發展成為目前應用如ChatGPT之大型語言模型(Large language model,LLM)。此過程亦與質性研究由訪談中萃取關鍵字詞形成脈絡思維並行,因此,使用LLM模式進行訪談應當非常有效率,而且可以節省時間及人力。
本研究運用大型語言模型ChatGPT進行質性研究包含訪談摘要生成以及關鍵字萃取、主題結構形成。並且以ChatGPT所萃取之關鍵字與文本主題進行包含情感分析、因素分析,與因素路徑分析。情感分析包含主題分佈分析,評估受訪者對於訪談主題之情感傾向語對於主題結構。所萃取之關鍵字則以TF-IDF形成詞頻權重矩陣進行因素分析,量化主要因素包含之關鍵字並形成因素路徑。 所使用質性研究評估之訪談資料為台灣癌症篩檢個案管理中心訪談以及某社區里長及工作人員新冠疫情防疫應變訪談。台灣癌症篩檢個案管理中心訪談為運用衛生福利部國民健康署 2014 年「癌症篩檢個案管理中心輔導計畫」3位訪談者於全台19處個案管理中心對57位管理中心成員以衛生計畫與評價循環模式設計半結構式問卷建立訪談逐字稿資料集。社區里長及工作人員新冠疫情防疫應變訪談則為2024年由社區免疫服務對4個社區里長以及新冠疫情期間里工作人員進行質性訪談形成之逐字稿。 研究以ChatGPT對所建立之訪談文稿資料集運用一致之提示詞包含訪談文稿摘要生成提示,以及由訪談文稿摘錄之主題,各主題摘取關鍵字編碼個數並彙整成資料表形成訪談逐字稿摘要以及萃取關鍵字、開放編碼與主題編碼數位資料庫。運用所摘取之關鍵字進行因素路徑分析。 癌症個案管理中心訪談文稿萃取關鍵字情感分析(Sentiment analysis)於19處縣市衛生局皆以正向情感高於負向情感。主題形成個案管理經歷與能力培育、個案管理中心規劃推行、工作規劃、跨部門資源整合服務合作、癌症篩檢與個案管理成效目標,以及民眾認知溝通與教育六大類面向,其中以個案管理經歷與能力培育以及個案管理中心規劃推行為訪談中最頻繁提及之主題類別。依據受訪談管理中心所屬區域(北、中、南、東)主題亦以此兩大類別主題出現頻次最高,部分縣市(縣市C、縣市J,以及縣市R)則以個案管理工作規畫為主要主題。跨部門資源整合服務合作則較頻繁出現於縣市G與縣市S訪談中。因素路徑分析顯示癌症篩檢個案管理訪談可形成人員與工作能力培養(因素1)、資源整合(因素2)、衛生局政策與目標(因素3)、困難個案管理實務(因素4)、陽性個案追蹤(因素5),以及民眾溝通(因素6)。北、中、南、東區癌症篩檢個案管理中新因素路徑以全國為主,並呈現各區特性因素。 社區里長與工作人員新冠疫情訪談萃取關鍵字進行情感分析於該社區以及四里皆以負向情感高於正向情感。訪談中提及之主題包含心理支持與調適、防疫措施推行、里長職責與社區互動、防疫資源整合、疫苗疑慮,以及政治與防疫影響六項主要主題類別。心理調適與支持及防疫措施推行相關主題在四里皆為訪談出現頻次第一或第二位。因素路徑分析顯示社區里長與工作人員新冠疫情訪談形成里長職責與民眾溝通(因素1)、抗體檢測協調(因素2)、心理支持與壓力(因素3)、防疫措施與封城(因素4)、政治與疫情(因素5)、防疫物資與社區衝擊(因素6)。 本研究運用大型語言模型ChatGPT對質性訪談逐字稿進行摘要以及文本分析,萃取關鍵字以及主題編碼,並建構影響因素網絡。本論文所提供ChatGPT應用於質性研究之脈絡評估架構可以做為未來質性研究分析LLM模式使用之參考。 | zh_TW |
| dc.description.abstract | Qualitative research aims to construct frameworks and networks of relevant factors for better understanding events through observations like interviews. This approach helps plan and administer evaluation and intervention. Conventionally, it relies on interview transcripts and well-trained personnel to extract keywords, coding, and themes, following a rigorous process to build perspectives from interview statements, supporting theory formation.
The development of large language models (LLMs) began with natural language processing (NLP) techniques, evolving from bag-of-words and n-grams to TF-IDF, and then to word matrices like Word2Vec for better computational efficiency. Recurrent neural networks (RNNs) further advanced NLP by improving sentence prediction. The integration of deep learning techniques for pre-training and fine-tuning led to the evolution of LLMs like ChatGPT. This progression parallels qualitative research, wherein keyword extraction and theme formation from unstructured transcripts support theory development. The qualitative research data were derived from interviews with staff members of the Taiwan Cancer Screening Center and interviews with community leaders and staff members from a community in Taiwan. The Taiwan Cancer Screening Case Management Centers Counseling project involved three interviewers who conducted semi-structured interviews for 57 members from 19 centers across Taiwan, resulting in a verbatim transcript dataset based on a semi-structured questionnaire. The COVID-19 pandemic response interviews were conducted in 2024 by the community COVID-19 services project, forming verbatim transcripts from qualitative interviews with leaders and staff from four communities in Taiwan. This study used ChatGPT for qualitative research tasks including interview summarization, keyword extraction, and theme coding. The extracted keywords were utilized for sentiment analysis, factor analysis, and pathway analysis. Sentiment analysis evaluated emotional tendencies in the interviews, while factor analysis quantified the keywords and connected them through pathway analysis. Sentiment analysis of keywords from the cancer screening case management center interviews shows higher positive sentiments across all 19 health bureaus. Key themes include case management experience and capacity building, project planning and administration, work arrangement, interdisciplinary resource integration, goals and effectiveness of cancer screening, and public awareness. The themes most frequently mentioned include case management experience and capacity building. Project planning and administration were also commonly noted in County C, County J, and County R. Interdisciplinary resource integration was notably mentioned in County G and County S. Pathway analysis identified six factors: personnel and work capacity building, resource integration, health bureau policies and goals, difficult case management, positive case management and tracking, and public communication. These patterns were consistent across North, Central, South, and East regions, with the keywords and factors supporting each theme reflecting regional characteristics. Sentiment analysis of the community leaders and staff for COVID-19 interviews reveals higher negative sentiments across all four communities. Key themes include psychological support and coping strategies, epidemic prevention measures, community leader obligations, public communication, resource integration, vaccine misinformation, and political impacts on prevention strategies. The most frequently mentioned themes are psychological adjustment and epidemic prevention measures. Pathway analysis identified six factors: community leader responsibilities and communication, antibody testing coordination, psychological support, epidemic measures and lockdowns, politics, and the impact of preventive supplies. This study applied ChatGPT to summarize qualitative interview transcripts and perform text analysis, extracting keywords and coding themes, constructing an influencing factor network. This study also provides a framework for assessing the context of qualitative research using ChatGPT. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:28:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T17:28:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 1
致謝 2 中文摘要 3 Abstract 6 第一章 前言 14 第二章 文獻探討 16 2.1 質性研究 16 2.2 質性研究在健康醫學領域發展與應用 19 2.3 紮根理論 20 2.4 文本分析與深度學習 25 2.5 人工智慧大型語言模型 27 2.6 COVID-19相關質性研究 29 2.7 癌篩檢相關質性研究:以大腸癌為例 31 第三章 材料與方法 38 3.1 質性訪談與文本建立 38 3.1.1 個案管理中心訪談文稿資料集 38 3.1.2 個案管理中心訪談文稿文本分析 40 3.1.3 社區新冠疫情防疫策略里長與工作人員訪談 43 3.2 人工智慧大型語言模型文本分析 45 3.2.1 大型語言模型文本分析提示詞設計 46 3.2.2 大型語言模型情感分析 78 3.2.3 大型語言模型質性研究因素與路徑分析 78 第四章 結果 80 4.1 癌症個案管理中心訪談文稿文本分析 80 4.1.1 服務模式 83 4.1.2 民眾 83 4.1.3 衛生醫療體系 85 4.1.4 知能 86 4.1.5 改善策略 87 4.2 癌症篩檢個案管理中心大型語言模型文本分析 89 4.2.1 文本摘要及訪談要點 89 4.2.2 大型語言模型情感分析 (Sentiment analysis) 90 4.2.3 訪談文本大型語言模型編碼與主題萃取 92 4.2.4 大型語言模型訪談逐字稿生成 105 4.2.5 大型語言模型因素分析 107 4.3 社區新冠肺炎防疫措施里長訪談大型語言分析 124 4.3.1 文本摘要及訪談要點 124 4.3.2 大型語言模型情感分析 (Sentiment analysis) 125 4.3.3 訪談文本大型語言模型編碼與主題萃取 127 4.3.4 大型語言模型因素分析 133 第五章 討論 136 5.1 癌症個案管理中心訪談文稿文本分析主要發現 136 5.2 癌症篩檢個案管理中心大型語言模型文本分析主要發現 136 5.3 社區新冠肺炎防疫措施里長訪談大型語言分析主要發現 138 5.4 研究優勢、限制和未來方向 139 第六章 結論 141 第七章 參考文獻 142 附錄一 癌症篩檢個案管理中心訪談逐字稿示例 146 附錄二 大型語言模型訪談逐字稿摘要整理示例 148 附錄三 癌症個案管理中心大型語言模型文本分析編碼與主題萃取結果示例 150 附錄四 癌症篩檢個案管理中心大型語言模型訪談逐字稿生成 151 附錄五 社區新冠肺炎防疫措施里長訪談大型語言模型文本分析示例 179 圖3.1 台灣個案管理中心訪談文稿文本分析流程架構 41 圖3.2 人工智慧大型語言模型文本分析流程 45 圖3.3 個案管理中心大型語言模型分析示例 54 圖3.4 社區里長訪談大型語言模型分析示例 71 圖4.1 癌症篩檢個案管理主題分佈 82 圖4.2 癌症篩檢個案管理理論模型 82 圖4.3 各縣市個案管理中心大型語言模型情感分析分佈 91 圖4.4 大型語言模型文本分析主軸編碼類別分佈 92 圖4.5 各縣市之主軸編碼類別分佈 93 圖4.6 各縣市之主軸編碼分佈 96 圖4.7 全國及各區癌症篩檢個案管理中心文本分析因素陡坡圖 108 圖4.8 全國及各區因素路徑分析 111 圖4.9 社區新冠肺炎防疫措施里長訪談大型語言模型情感分析分佈 126 圖4.10 大型語言模型文本分析主軸編碼類別分佈 127 圖4.11 社區新冠肺炎防疫措施里長訪談文本分析因素陡坡圖 133 圖4.12 社區新冠肺炎防疫措施里長訪談文本分析關鍵字路徑分析 134 表2.1 COVID-19相關質性研究摘要 34 表2.2 大腸癌篩檢相關質性研究摘要 36 表3.1 編碼流程範例原稿 42 表3.2 個案管理中心大型語言模型文本分析提示詞設計 48 表4.1 個案管理中心受訪者特性分佈 80 表4.2 編碼結果 81 表4.3 各縣市個案管理中心大型語言模型情感分析頻次和占比 90 表4.4 大型語言模型文本分析主軸編碼類別與占比 103 表4.5 全國及各區癌症篩檢個案管理中心文本分析因素主要關鍵字內容 119 表4.6 社區受訪者特性分佈 124 表4.7 社區新冠肺炎防疫措施里長訪談大型語言模型情感分析頻次和占比 125 表4.8 大型語言模型文本分析主軸編碼類別與占比 132 表4.9 社區新冠肺炎防疫措施里長訪談文本分析因素主要關鍵字內容 135 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | ChatGPT | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | 新冠肺炎 | zh_TW |
| dc.subject | 癌症篩檢個案管理 | zh_TW |
| dc.subject | 質性研究 | zh_TW |
| dc.subject | Qualitative research | en |
| dc.subject | Cancer screening case management | en |
| dc.subject | COVID-19 | en |
| dc.subject | ChatGPT | en |
| dc.subject | Large language model | en |
| dc.title | ChatGPT應用於質性研究: 以台灣個案管理中心癌症篩檢服務模式與社區新冠疫情為例 | zh_TW |
| dc.title | ChatGPT Applied to Qualitative Research: Two Illustrations with Taiwan Cancer Screening Case Management Centers and COVID-19 Response | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳祈玲;嚴明芳;莊紹源 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ling Chen;Ming-Fang Yen;Shao-Yuan Jhuang | en |
| dc.subject.keyword | 大型語言模型,ChatGPT,質性研究,癌症篩檢個案管理,新冠肺炎, | zh_TW |
| dc.subject.keyword | Large language model,ChatGPT,Qualitative research,Cancer screening case management,COVID-19, | en |
| dc.relation.page | 182 | - |
| dc.identifier.doi | 10.6342/NTU202403013 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
