請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙 | zh_TW |
| dc.contributor.advisor | Hsiu-Hsi Chen | en |
| dc.contributor.author | 楊長融 | zh_TW |
| dc.contributor.author | Chang-Jung Yang | en |
| dc.date.accessioned | 2024-08-19T17:26:28Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | 1. Taiwan Centers for Disease Control. Prevention and control of COVID-19 in Taiwan. (https://www.cdc.gov.tw/en/category/page/0vq8rsAob_9HCi5GQ5jH1Q) (2020)
2. Taiwan Centers for Disease Control. COVID-19 vaccination plan. (https://www.cdc.gov.tw/Category/Page/V_XD8H6OSUpaTIMWgopkNg) (2021) 3. 許瑜真、周玉民、石雅莉、林宜平、張雅姿、楊靖慧:臺灣COVID-19疫苗取得與運用之政策評析。疫情報導2022;38(16);196-207 4. Falsey AR, Sobieszczyk ME, Hirsch I, et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 Vaccine. N Engl J Med. 2021;385(25):2348-2360. doi:10.1056/NEJMoa2105290 5. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416. doi:10.1056/NEJMoa2035389 6. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi:10.1056/NEJMoa2034577 7. Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine. 2016;34(4):413-423. doi:10.1016/j.vaccine.2015.11.062 8. Borobia AM, Carcas AJ, Pérez-Olmeda M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial [published correction appears in Lancet. 2021 Aug 14;398(10300):582]. Lancet. 2021;398(10295):121-130. doi:10.1016/S0140-6736(21)01420-3 9. Hillus D, Schwarz T, Tober-Lau P, et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. Lancet Respir Med. 2021;9(11):1255-1265. doi:10.1016/S2213-2600(21)00357-X 10. Liao SH, Chang WJ, Hsu CY, et al. Evaluating correlates of protection for mix-match vaccine against COVID-19 VOCs with potential of evading immunity. Vaccine. 2022;40(47):6864-6872. doi:10.1016/j.vaccine.2022.10.011 11. Moreira ED Jr, Kitchin N, Xu X, et al. Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine. N Engl J Med. 2022;386(20):1910-1921. doi:10.1056/NEJMoa2200674 12. Munro APS, Janani L, Cornelius V, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial [published correction appears in Lancet. 2021 Dec 18;398(10318):2246]. Lancet. 2021;398(10318):2258-2276. doi:10.1016/S0140-6736(21)02717-3 13. Atmar RL, Lyke KE, Deming ME, et al. Homologous and Heterologous Covid-19 Booster Vaccinations. N Engl J Med. 2022;386(11):1046-1057. doi:10.1056/NEJMoa2116414 14. Chalkias S, Harper C, Vrbicky K, et al. A Bivalent Omicron-Containing Booster Vaccine against Covid-19. N Engl J Med. 2022;387(14):1279-1291. doi:10.1056/NEJMoa2208343 15. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022;114:252-260. doi:10.1016/j.ijid.2021.11.009 16. Zeng B, Gao L, Zhou Q, Yu K, Sun F. Effectiveness of COVID-19 vaccines against SARS-CoV-2 variants of concern: a systematic review and meta-analysis. BMC Med. 2022;20(1):200. Published 2022 May 23. doi:10.1186/s12916-022-02397-y 17. Nordström P, Ballin M, Nordström A. Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: A nationwide cohort study. Lancet Reg Health Eur. 2021;11:100249. doi:10.1016/j.lanepe.2021.100249 18. Au WY, Cheung PP. Effectiveness of heterologous and homologous covid-19 vaccine regimens: living systematic review with network meta-analysis. BMJ. 2022;377:e069989. Published 2022 May 31. doi:10.1136/bmj-2022-069989 19. Tan CY, Chiew CJ, Pang D, et al. Effectiveness of bivalent mRNA vaccines against medically attended symptomatic SARS-CoV-2 infection and COVID-19-related hospital admission among SARS-CoV-2-naive and previously infected individuals: a retrospective cohort study. Lancet Infect Dis. 2023;23(12):1343-1348. doi:10.1016/S1473-3099(23)00373-0 20. Arbel R, Peretz A, Sergienko R, et al. Effectiveness of a bivalent mRNA vaccine booster dose to prevent severe COVID-19 outcomes: a retrospective cohort study. Lancet Infect Dis. 2023;23(8):914-921. doi:10.1016/S1473-3099(23)00122-6 21. Hsu CY, Chang JC, Chen SL, et al. Primary and booster vaccination in reducing severe clinical outcomes associated with Omicron Naïve infection. J Infect Public Health. 2023;16(1):55-63. doi:10.1016/j.jiph.2022.11.028 22. Lee CY, Kuo HW, Liu YL, Chuang JH, Chou JH. Population-Based Evaluation of Vaccine Effectiveness against SARS-CoV-2 Infection, Severe Illness, and Death, Taiwan. Emerg Infect Dis. 2024;30(3):478-489. doi:10.3201/eid3003.230893 23. A. Venmani. Comparison of regression models on estimation of vaccine efficacy in anti-leprosy vaccination trial-a large prospective vaccination trial. AIP conference proceedings. Published online January 1, 2019. doi:https://doi.org/10.1063/1.5112333. 24. Jachno K, Heritier S, Wolfe R. Impact of a non-constant baseline hazard on detection of time-dependent treatment effects: a simulation study. BMC Med Res Methodol. 2021;21(1):177. Published 2021 Aug 28. doi:10.1186/s12874-021-01372-0 25. Fintzi J, Follmann D. Assessing vaccine durability in randomized trials following placebo crossover. Stat Med. 2021;40(27):5983-6007. doi:10.1002/sim.9001 26. Ngwa JS, Cabral HJ, Cheng DM, et al. A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the Framingham Heart Study. BMC Med Res Methodol. 2016;16(1):148. Published 2016 Nov 3. doi:10.1186/s12874-016-0248-6 27. Tanner KT, Sharples LD, Daniel RM, Keogh RH. Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2020;184(1):3-30. doi:https://doi.org/10.1111/rssa.12611 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94844 | - |
| dc.description.abstract | 評估COVID-19疫苗效益對於防疫政策建議相當重要,然而由於多種SARS-CoV-2變異株的演化、不同時期開發的多樣化疫苗(包括阿斯特捷利康、BNT、莫德納、高端以及次世代疫苗,如:BA.1和BA.4/5等)、三劑以上的追加劑接種、接種不同基礎劑和追加劑疫苗組合的時間窗口機會(即同源和混合類型)以及從感染或COVID-19嚴重疾病中獲得的抗體和細胞介導免疫保護力衰弱,此五種與COVID-19相關的動態變化因素,導致評估COVID-19疫苗效益變得相當棘手,而此五種因素在台灣從萬華首次爆發的Alpha關注變異株開始一直到Omicron關注變異株爆發期間有所體現。為處理這五種複雜時間相關動態問題,本論文提出時間相依Cox比例風險模型進行評估。並將模型應用於台灣社區COVID-19世代追蹤數據,該數據包含個人基本資料、個人疫苗接種史以及發生COVID-19感染及其疾病進展完整訊息。本論文藉由時間相依Cox比例風險模型處理複雜且動態發展影響因素,正確評估各種疫苗組合之效益後,呈現一系列比較各種疫苗廠牌(包括同源和混合類型)對於預防感染、中/重症及死亡效益,並進一步提供不同年齡層在各種疫苗廠牌上效益進行比較。利用此評估效益結果,有助於未來新興傳染病疫苗施打政策參考。 | zh_TW |
| dc.description.abstract | Evaluation of COVID-19 vaccine effectiveness is critically important for informing public health policy. However, this task is unprecedentedly intractable on the grounds of five reasons. These include multiple SARS-Cov-2 variants evolution, the development of various vaccines with different timelines (including AstraZeneca, BNT, Moderna, Medigen, next generation vaccine like BA.1 and BA.4/.5 and so on), booster vaccinations with more than three doses, the time window opportunity to receive different combinations of primary and booster vaccinations, namely the homologous and the mixed type, and the waning of antibody and cell-mediated immune protection from infection or the severity of COVID-19 disease. All the five dynamic factors related to COVID-19 vaccine have been noted in Taiwan scenario from the first outbreak of Alpha Variant of Concern (VOC) in Wanhua until Omicron VOC spread over the Taiwan island.
To accommodate five complex time-related dynamic issues, the present thesis proposes the time-dependent Cox proportional hazards model for evaluating the effectiveness of COVID-19 vaccine. This model is applied to a community-based COVID-19 cohort data in Taiwan, which includes comprehensive information on individuals' vaccination histories and the timing of COVID-19 infections and disease progression. Leveraging the time-dependent Cox proportional hazards model enables this thesis to accurately access the benefits of various vaccine combinations, accounting for complex and dynamically evolving influencing factors. It presents a series of results comparing the effectiveness of various vaccine brands (including homologous and mixed types) in preventing infection, moderate to severe disease, and mortality. Furthermore, the thesis provides comparisons of vaccine effectiveness across different age groups. The results of this evaluation offer new insights into future vaccination policies for emerging infectious diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:26:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T17:26:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv 圖次 vii 表次 viii 第一章 研究背景 1 1.1 新冠肺炎世界大流行 1 1.2 台灣COVID-19病毒流行株演化 1 1.3 台灣疫苗接種策略 1 1.4 研究目的 3 第二章 文獻探討 4 2.1 COVID-19疫苗保護效益評估 4 2.1.1 COVID-19疫苗效力評估研究 4 2.1.2 國際經驗:COVID-19疫苗有效性評估研究 5 2.1.3 台灣經驗:COVID-19疫苗有效性評估研究 6 2.2疫苗效益評估方法 7 2.2.1 傳統估計方法與迴歸模型 7 2.2.2 非比例風險對模型影響 8 2.2.3 疫苗效益衰減及接種狀態變化 9 2.2.4 時間相依變量 10 2.2.5 動態預測模型 11 第三章 材料與方法 13 3.1 資料來源 13 3.2 研究設計 13 3.33 統計分析 17 3.3.1 時間相依寇斯比例風險迴歸模型 (Time-dependent Cox proportional hazards regression model) 17 3.33.2 卜瓦松回歸模型 20 第四章 研究結果 21 4.1 研究族群 21 4.2 時間相依寇斯模型評估疫苗對預防感染效益評估 25 4.2.1 Overall 25 4.2.2 年齡分層分析 27 4.2.2.1 完成基礎劑接種 27 4.2.2.2 完成三劑接種 27 4.2.2.3 完成四劑接種 27 4.3 疫苗對預防中症、重症以及死亡效益評估 38 4.3.1 中症 38 4.3.2 重症 39 4.3.3 死亡 39 第五章 討論 45 5.1 新型傳染病疫苗效益評估 45 5.2 未來方法學發展 45 5.3 限制 46 5.4 結論 47 參考文獻 48 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | COVID-19疫苗效益 | zh_TW |
| dc.subject | COVID-19 Vaccine Effectiveness | en |
| dc.title | COVID-19同質及混合疫苗統計模型效益分析 | zh_TW |
| dc.title | Statistical Models for Evaluating Effectiveness of Homologous and Mixed COVID-19 Vaccine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 嚴明芳;莊紹源;陳祈玲 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Fang Yen;Shao-Yuan Chuang;Chi-Ling Chen | en |
| dc.subject.keyword | COVID-19疫苗效益, | zh_TW |
| dc.subject.keyword | COVID-19 Vaccine Effectiveness, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202402884 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
