Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94843Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 高淑芬 | zh_TW |
| dc.contributor.advisor | Shur-Fen Gau | en |
| dc.contributor.author | 陳皓芊 | zh_TW |
| dc.contributor.author | Hao-Chien Chen | en |
| dc.date.accessioned | 2024-08-19T17:25:53Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | Reference
1. Posar A, Resca F, Visconti P. Autism according to diagnostic and statistical manual of mental disorders 5(th) edition: The need for further improvements. J Pediatr Neurosci. 2015;10(2):146-148. 2. Lord C, Brugha TS, Charman T, et al. Autism spectrum disorder. Nature Reviews Disease Primers. 2020;6(1):5. 3. Hsu S-W, Chiang P-H, Lin L-P, Lin J-D. Disparity in autism spectrum disorder prevalence among Taiwan National Health Insurance enrollees: Age, gender and urbanization effects. Research in Autism Spectrum Disorders. 2012;6(2):836-841. 4. Chen YL, Chen WJ, Lin KC, Shen LJ, Gau SS. Prevalence of DSM-5 mental disorders in a nationally representative sample of children in Taiwan: methodology and main findings. Epidemiol Psychiatr Sci. 2019;29:e15. 5. Zeidan J, Fombonne E, Scorah J, et al. Global prevalence of autism: A systematic review update. Autism Res. 2022;15(5):778-790. 6. Talantseva OI, Romanova RS, Shurdova EM, et al. The global prevalence of autism spectrum disorder: A three-level meta-analysis. Front Psychiatry. 2023;14:1071181. 7. Goldani AA, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychiatry. 2014;5:100. 8. Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Molecular Psychiatry. 2023;28(12):4995-5008. 9. Edgar JC. Identifying electrophysiological markers of autism spectrum disorder and schizophrenia against a backdrop of normal brain development. Psychiatry Clin Neurosci. 2020;74(1):1-11. 10. Parellada M, Andreu-Bernabeu Á, Burdeus M, et al. In Search of Biomarkers to Guide Interventions in Autism Spectrum Disorder: A Systematic Review. Am J Psychiatry. 2023;180(1):23-40. 11. Smith AM, Natowicz MR, Braas D, et al. A Metabolomics Approach to Screening for Autism Risk in the Children's Autism Metabolome Project. Autism Res. 2020;13(8):1270-1285. 12. Glinton KE, Elsea SH. Untargeted Metabolomics for Autism Spectrum Disorders: Current Status and Future Directions. Front Psychiatry. 2019;10:647. 13. West KA, Yin X, Rutherford EM, et al. Multi-angle meta-analysis of the gut microbiome in Autism Spectrum Disorder: a step toward understanding patient subgroups. Sci Rep. 2022;12(1):17034. 14. Brister D, Rose S, Delhey L, et al. Metabolomic Signatures of Autism Spectrum Disorder. Journal of Personalized Medicine. 2022;12(10):1727. 15. Mostafa GA, Al-Ayadhi LY. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. J Neuroinflammation. 2012;9:201. 16. Siracusano M, Arturi L, Riccioni A, Noto A, Mussap M, Mazzone L. Metabolomics: Perspectives on Clinical Employment in Autism Spectrum Disorder. Int J Mol Sci. 2023;24(17). 17. Mussap M, Siracusano M, Noto A, et al. The Urine Metabolome of Young Autistic Children Correlates with Their Clinical Profile Severity. Metabolites. 2020;10(11):476. 18. Rangel-Huerta OD, Gomez-Fernández A, de la Torre-Aguilar MJ, et al. Metabolic profiling in children with autism spectrum disorder with and without mental regression: preliminary results from a cross-sectional case-control study. Metabolomics. 2019;15(7):99. 19. Akshoomoff N, Corsello C, Schmidt H. The Role of the Autism Diagnostic Observation Schedule in the Assessment of Autism Spectrum Disorders in School and Community Settings. Calif School Psychol. 2006;11:7-19. 20. Chang JC, Lai MC, Chien YL, Cheng CY, Wu YY, Gau SS. Psychometric properties of the Mandarin version of the Autism Diagnostic Observation Schedule-Generic. J Formos Med Assoc. 2023;122(7):574-583. 21. Booker KW, Starling L. *Test Review: Social Responsiveness Scale by J. N. Constantino and C. P. Gruber. Assessment for Effective Intervention. 2011;36(3):192-194. 22. Gau SS, Liu LT, Wu YY, Chiu YN, Tsai WC. Psychometric properties of the Chinese version of the social responsiveness scale. Res Autism Spectr Disord. 2013;7:349-360. 23. Gau SS, Shang CY, Liu SK, et al. Psychometric properties of the Chinese version of the Swanson, Nolan, and Pelham, version IV scale - parent form. Int J Methods Psychiatr Res. 2008;17(1):35-44. 24. Hall CL, Guo B, Valentine AZ, et al. The Validity of the SNAP-IV in Children Displaying ADHD Symptoms. Assessment. 2020;27(6):1258-1271. 25. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of autism and developmental disorders. 1994;24(5):659-685. 26. Lord C, Rutter M, DiLavore P, Risi S. Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services. 2001. 27. Gau SS, Chong MY, Chen TH, Cheng AT. A 3-year panel study of mental disorders among adolescents in Taiwan. Am J Psychiatry. 2005;162(7):1344-1350. 28. Orvaschel H. Schizophrenia and Affective Disorders Schedule for Children—Epidemiological Version (KSADS-E). Unpublished manuscript, Nova University. 1995. 29. Polanczyk GV, Eizirik M, Aranovich V, et al. Interrater agreement for the schedule for affective disorders and schizophrenia epidemiological version for school-age children (K-SADS-E). Brazilian Journal of Psychiatry. 2003;25(2):87-90. 30. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th ed. Arlington, VA, US: American Psychiatric Publishing, Inc.; 1994. 31. World Health O. The ICD-10 classification of mental and behavioural disorders : clinical descriptions and diagnostic guidelines. In. Geneva: World Health Organization; 1992. 32. Shur-Fen Gau S, Lin Y-J, Tai-Ann Cheng A, Chiu Y-N, Tsai W-C, Soong W-T. Psychopathology and symptom remission at adolescence among children with attention-deficit–hyperactivity disorder. Australian & New Zealand Journal of Psychiatry. 2010;44(4):323-332. 33. Chang J-C, Lai M-C, Tai Y-M, Gau SS-F. Mental health correlates and potential childhood predictors for the wish to be of the opposite sex in young autistic adults. Autism. 2021:13623613211024098. 34. Lord C, Rutter M, DiLavore P, Risi S. Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services. 1999. 35. Lord C, Risi S, Lambrecht L, et al. The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of autism and developmental disorders. 2000;30(3):205-223. 36. Chang JC, Lai MC, Chien YL, Cheng CY, Wu YY, Gau SS. Psychometric properties of the Mandarin version of the autism diagnostic observation schedule-generic. Journal of the Formosan Medical Association = Taiwan yi zhi. 2023. 37. Lo YC, Chen YJ, Hsu YC, Chien YL, Gau SS, Tseng WI. Altered frontal aslant tracts as a heritable neural basis of social communication deficits in autism spectrum disorder: A sibling study using tract-based automatic analysis. Autism Res. 2019;12(2):225-238. 38. Chang J-C, Lai M-C, Chang S-S, Gau SS-F. Factors mediating pre-existing autism diagnosis and later suicidal thoughts and behaviors: A follow-up cohort study. Autism.0(0):13623613231223626. 39. Chien Y-L, Tai Y-M, Chiu Y-N, Tsai W-C, Gau SS-F. The mediators for the link between autism and real-world executive functions in adolescence and young adulthood. Autism. 2024;28(4):881-895. 40. Constantino JN, Gruber CP, Services WP. Social Responsiveness Scale (SRS). Western Psychological Services; 2007. 41. Gau SS-F, Liu L-T, Wu Y-Y, Chiu Y-N, Tsai W-C. Psychometric properties of the Chinese version of the Social Responsiveness Scale. Research in Autism Spectrum Disorders. 2013;7(2):349-360. 42. Chen H-I, Chien Y-L, Liao H-M, et al. Dosage of copy number variation at 22q11. 2 mediates changes in cognition, social function and brain structure in autism spectrum disorder. Journal of the Formosan Medical Association. 2016;115(7):577-582. 43. Zhou B, Zhou H, Wu L, et al. Assessing the Accuracy of the Modified Chinese Autism Spectrum Rating Scale and Social Responsiveness Scale for Screening Autism Spectrum Disorder in Chinese Children. Neuroscience Bulletin. 2017;33(2):168-174. 44. Havdahl KA, von Tetzchner S, Huerta M, Lord C, Bishop SL. Utility of the Child Behavior Checklist as a Screener for Autism Spectrum Disorder. Autism Res. 2016;9(1):33-42. 45. Arias AA, Rea MM, Adler EJ, Haendel AD, Van Hecke AV. Utilizing the Child Behavior Checklist (CBCL) as an Autism Spectrum Disorder Preliminary Screener and Outcome Measure for the PEERS® Intervention for Autistic Adolescents. J Autism Dev Disord. 2022;52(5):2061-2074. 46. Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols. 2011;6(7):1060-1083. 47. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009;81(16):6656-6667. 48. Li T, Zhang T, Gao H, et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biol. 2021;41:101886. 49. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779-787. 50. Nagler M, Nägele T, Gilli C, et al. Eco-Metabolomics and Metabolic Modeling: Making the Leap From Model Systems in the Lab to Native Populations in the Field. Front Plant Sci. 2018;9:1556. 51. Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. STITCH 4: integration of protein–chemical interactions with user data. Nucleic Acids Research. 2013;42(D1):D401-D407. 52. Courraud J, Ernst M, Svane Laursen S, Hougaard DM, Cohen AS. Studying Autism Using Untargeted Metabolomics in Newborn Screening Samples. J Mol Neurosci. 2021;71(7):1378-1393. 53. Kuwabara H, Yamasue H, Koike S, et al. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One. 2013;8(9):e73814. 54. Maier S, Düppers AL, Runge K, et al. Increased prefrontal GABA concentrations in adults with autism spectrum disorders. Autism Res. 2022;15(7):1222-1236. 55. Barone R, Alaimo S, Messina M, et al. A Subset of Patients With Autism Spectrum Disorders Show a Distinctive Metabolic Profile by Dried Blood Spot Analyses. Front Psychiatry. 2018;9:636. 56. Osredkar J, Baškovič B, Finderle P, et al. Relationship between Excreted Uremic Toxins and Degree of Disorder of Children with ASD. Int J Mol Sci. 2023;24(8). 57. Wang T, Shan L, Du L, et al. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry. 2016;25(4):341-350. 58. Yu X, Qian-Qian L, Cong Y, Xiao-Bing Z, Hong-Zhu D. Reduction of essential amino acid levels and sex-specific alterations in serum amino acid concentration profiles in children with autism spectrum disorder. Psychiatry Research. 2021;297:113675. 59. Randazzo M, Prato A, Messina M, et al. Neuroactive Amino Acid Profile in Autism Spectrum Disorder: Results from a Clinical Sample. Children (Basel). 2023;10(2). 60. Khanh vinh quốc L, Lan Thi Hoàng N. The Role of Thiamine in Autism. American Journal of Psychiatry and Neuroscience. 2013;1(2):22-37. 61. Robea M-A, Luca A-C, Ciobica A. Relationship between Vitamin Deficiencies and Co-Occurring Symptoms in Autism Spectrum Disorder. Medicina. 2020;56(5):245. 62. Schupp CW, Simon D, Corbett BA. Cortisol responsivity differences in children with autism spectrum disorders during free and cooperative play. J Autism Dev Disord. 2013;43(10):2405-2417. 63. Ohtsubo T, Mizoguchi Y, Aita C, et al. Relationship between serum cortisol levels, stereotypies, and the presence of autism spectrum disorder in patients with severe intellectual disability. Scientific Reports. 2024;14(1):7139. 64. Timperio AM, Gevi F, Cucinotta F, et al. Urinary Untargeted Metabolic Profile Differentiates Children with Autism from Their Unaffected Siblings. Metabolites. 2022;12(9). 65. Morris SM. Arginine Metabolism: Boundaries of Our Knowledge123. The Journal of Nutrition. 2007;137(6):1602S-1609S. 66. Amara A, Frainay C, Jourdan F, et al. Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front Mol Biosci. 2022;9:841373. 67. Zhao H, Mao X, Zhu C, et al. GABAergic System Dysfunction in Autism Spectrum Disorders. Front Cell Dev Biol. 2021;9:781327. 68. Saavedra JM. β-Phenylethylamine, Phenylethanolamine, Tyramine and Octopamine. In: Trendelenburg U, Weiner N, eds. Catecholamines II. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989:181-210. 69. Russell-Jones G. Functional Vitamin B2 Deficiency in Autism. Journal of Pediatrics, Perinatology and Child Health. 2022;06. 70. Dodd D, Spitzer MH, Van Treuren W, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648-652. 71. Likhitweerawong N, Thonusin C, Boonchooduang N, et al. Profiles of urine and blood metabolomics in autism spectrum disorders. Metab Brain Dis. 2021;36(7):1641-1671. 72. Mehra A, Arora G, Sahni G, et al. Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. J Tradit Complement Med. 2023;13(2):135-149. 73. Aguayo E, Martínez-Sánchez A, Fernández-Lobato B, Alacid F. L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. Applied Sciences. 2021;11(7):3293. 74. Zhang Y, Li N, Li C, et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Translational Psychiatry. 2020;10(1):4. 75. Napolitano A, Schiavi S, La Rosa P, et al. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry. 2022;13:889636. 76. Nickel K, Menke M, Endres D, et al. Altered markers of mitochondrial function in adults with autism spectrum disorder. 2023. 77. Quillet J-C, Siani-Rose M, McKee R, Goldstein B, Taylor M, Kurek I. A machine learning approach for understanding the metabolomics response of children with autism spectrum disorder to medical cannabis treatment. Scientific Reports. 2023;13(1):13022. 78. Aslam M, Azam M. Phytochemicals And Nutraceuticals as A Promising Drug Candidate in Autism Spectrum Disorder: Phytochemicals and Nutraceuticals. DIET FACTOR (Journal of Nutritional & Food Sciences). 2022:05-09. 79. Hours C, Recasens C, Baleyte JM. ASD and ADHD Comorbidity: What Are We Talking About? Front Psychiatry. 2022;13:837424. 80. Tung YH, Lin HY, Chen CL, et al. Whole Brain White Matter Tract Deviation and Idiosyncrasy From Normative Development in Autism and ADHD and Unaffected Siblings Link With Dimensions of Psychopathology and Cognition. Am J Psychiatry. 2021;178(8):730-743. 81. Parrella N-F, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. Journal of Psychiatric Research. 2024;169:113-125. 82. Bigliassi M, Filho E. Functional significance of the dorsolateral prefrontal cortex during exhaustive exercise. Biol Psychol. 2022;175:108442. 83. Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci. 2021;15:664781. 84. Lenz KM, Nugent BM, McCarthy MM. Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci. 2012;6:26. 85. Hessl D, Glaser B, Dyer-Friedman J, Reiss AL. Social behavior and cortisol reactivity in children with fragile X syndrome. J Child Psychol Psychiatry. 2006;47(6):602-610. 86. Lee KE, Kang YS. Characteristics of (L)-citrulline transport through blood-brain barrier in the brain capillary endothelial cell line (TR-BBB cells). J Biomed Sci. 2017;24(1):28. 87. Savino R, Carotenuto M, Polito AN, et al. Analyzing the Potential Biological Determinants of Autism Spectrum Disorder: From Neuroinflammation to the Kynurenine Pathway. Brain Sci. 2020;10(9). 88. Dai S, Lin J, Hou Y, Luo X, Shen Y, Ou J. Purine signaling pathway dysfunction in autism spectrum disorders: Evidence from multiple omics data. Front Mol Neurosci. 2023;16:1089871. 89. Lin J, de Rezende VL, de Aguiar da Costa M, de Oliveira J, Gonçalves CL. Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations. Pharmacology Biochemistry and Behavior. 2023;223:173522. 90. Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens. 2022;11(12). 91. Menees KB, Otero BA, Tansey MG. Microbiome influences on neuro-immune interactions in neurodegenerative disease. Int Rev Neurobiol. 2022;167:25-57. 92. Ganci M, Suleyman E, Butt H, Ball M. The role of the brain-gut-microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain Behav. 2019;9(11):e01408. 93. Patricia JJ, Dhamoon AS. Physiology, Digestion. In: StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Amit Dhamoon declares no relevant financial relationships with ineligible companies.: StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC.; 2023. 94. Morton JT, Jin D-M, Mills RH, et al. Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nature Neuroscience. 2023;26(7):1208-1217. 95. Eicher TP, Mohajeri MH. Overlapping Mechanisms of Action of Brain-Active Bacteria and Bacterial Metabolites in the Pathogenesis of Common Brain Diseases. Nutrients. 2022;14(13). 96. Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci. 2022;23(19). 97. Zheng Y, Bek MK, Prince NZ, et al. The Role of Bacterial-Derived Aromatic Amino Acids Metabolites Relevant in Autism Spectrum Disorders: A Comprehensive Review. Front Neurosci. 2021;15:738220. 98. Liu D, Bu D, Li H, Wang Q, Ding X, Fang X. Intestinal metabolites and the risk of autistic spectrum disorder: A two-sample Mendelian randomization study. Front Psychiatry. 2022;13:1034214. 99. Peralta-Marzal LN, Prince N, Bajic D, et al. The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. Int J Mol Sci. 2021;22(18). 100. Dong L, Tan J, Zhong Z, Tang Y, Qin W. Altered serum metabolic profile in patients with IgA nephropathy. Clinica Chimica Acta. 2023;549:117561. 101. Guo K, Figueroa-Romero C, Noureldein MH, et al. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. Brain. 2023;147(2):665-679. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94843 | - |
| dc.description.abstract | 背景
代謝體學研究在精神疾病研究中越來越重要,因其更接近患者之行為表現。自閉症類群障礙症(ASD)是一種廣泛研究的神經發展障礙,但其病理生理機制仍然未知。透過分析生理與行為表現的關聯性,代謝體學研究可以為ASD的病理生理機制提供新見解,且此類型研究仍不足。本研究旨在比較ASD患者與典型發展控制組(TDC)之間的代謝體,並探索ASD中代謝物與臨床量表之間的關聯。 方法 研究對象包括2019年至2023年間招募的242名ASD患者和80名TDC。透過Swanson, Nolan and Pelham, version IV(SNAP-IV)、Social Responsiveness Scale(SRS)、Children Behavior Checklist(CBCL)和Autism Diagnostic Observation Schedule(ADOS)測量行為表型。使用非標靶超高效液相色譜/質譜(UHPLC/MS)分析血漿樣本。若變量重要性(VIP)值≥1,p≤0.05,且變化倍數≥1.05或≤0.95,則該代謝物被認為具有統計學意義。使用MetaboAnalyst 6.0進行網絡分析。 結果 共21種顯著代謝物符合以下標準:(1)變化倍數≥1.05和≤0.95,(2)p值≤0.05,(3)VIP分數>1。網絡分析進一步確定了與代謝調控和途徑動態顯著互動的五種代謝物——GABA、phenylethylamine、 citrulline、glutaric acid和cortisol,這些代謝物與不同行為相關:GABA增加與過動、衝動和固化行為相關;phenylethylamine減少與創造力減退相關;cortisol減少與語言和溝通障礙相關;glutaric acid增加與思維問題相關;citrulline減少與社交問題相關。 結論 本研究探索與ASD不同行為表現相關的關鍵代謝物,並展示了代謝體學如何幫助發現新的ASD生物標記,後將代謝體與特定臨床特徵聯繫起來,為未來的臨床和研究應用奠定基礎。 | zh_TW |
| dc.description.abstract | Background
Metabolomic is the study of downstream products closer to behavioral expressions and has increasing importance in mental disorder research. Autism spectrum disorder (ASD) is a widely studied neurodevelopmental disorder; however, its pathophysiological mechanisms remain largely unknown. By providing crucial information linking physiological and behavioral manifestations, metabolomics research may provide new insights into the pathophysiological mechanisms behind ASD behaviors. Research exploring metabolomics and its connections with clinical phenotypes in individuals with ASD is notably lacking. This study aimed to compare the metabolomic profiles between ASD individuals and typically developing controls (TDC) and explore the associations between identified metabolites and clinical measures in ASD. Methods Participants included 242 ASD patients and 80 TDCs, recruited from 2019 to 2023. Behavioral phenotypes were measured using the Swanson, Nolan, and Pelham, version IV (SNAP-IV), Social Responsiveness Scale (SRS), Children Behavior Checklist (CBCL), and Autism Diagnostic Observation Schedule (ADOS). Plasma samples were analyzed by untargeted ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). Metabolites were considered statistically significant if variable importance in projection (VIP) ≥ 1, p ≤ 0.05, and fold change ≥ 1.05 or ≤ 0.95. Network analysis was performed on MetaboAnalyst 6.0. Results A total of 21 significant metabolites met the following criteria: (1) a fold change ≥ 1.05 and ≤ 0.95, (2) a p-value ≤ 0.05 , and 3) a VIP score > 1. Network analysis further identified five metabolites—GABA, phenylethylamine, citrulline, glutaric acid, and cortisol with significant interactions related to metabolic regulation and pathway dynamics. Distinct behaviors correlated with these metabolites: upregulated GABA was associated with hyperactivity, impulsivity, and oppositional behaviors; downregulated phenylethylamine was linked to decreased creativity impairments; downregulated cortisol was related to deficits in language and communication; upregulated glutaric acid was correlated with thought problems; and downregulated citrulline was connected with social problems. Conclusion The study identified key metabolites linked to distinct behavioral phenotypes in ASD and demonstrated how metabolomics can help discover novel ASD biomarkers and connect metabolic profiles to specific clinical features, setting the stage for future clinical and research applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:25:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T17:25:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 1
中文摘要 2 英文摘要 3 第一章 Introduction 7 1.1 The clinical complexity of Autism spectrum disorder (ASD) urges the need for researches 7 1.2 Metabolomics: Bridging genetic information and clinical phenotypes in ASD research 7 1.3 Metabolomic analysis implicate the underlying mechanisms of ASD 7 1.4 Correlation analysis with behavioral assessment tools reinforces the holistic view of ASD 8 1.5 Study aim: investigating the metaboloic profile and the associations with clinical measures 8 第二章 Method 10 2.1 Participants and procedures 10 2.2 Clinical Measures 10 2.3 Metabolomic preparation 12 2.4 Metabolomic analysis 13 2.5 Statistical analyses 13 第三章 Reults 15 3.1 Participant characteristics 15 3.2 Plasma Metabolites 15 3.3 Correlation analyses of metabolites with clinical behaviors 15 第四章 Discussion 16 4.1 21 plasma metabolites were significant different in expression between ASD and TDC 17 4.2 Network analysis revealed five key metabolites—GABA, glutaric acid, phenylethylamine, cortisol, and citrulline—with important roles in the metabolic network 17 4.3 Potential novel metabolites that were not highlited through network analysis 18 4.4 Integrating metabolomic biomarkers and behavioral phenyotype associations 18 4.5 Divergency with previous correlation analysis 20 4.6 Metabolite results potentially link the interaction of metabolome and microbiota 20 4.7 Methodological Limitations 21 4.8 Future study directions 22 第五章 Conclusion 23 參考文獻 24 | - |
| dc.language.iso | en | - |
| dc.subject | 臨床量表 | zh_TW |
| dc.subject | 代謝體網絡分析 | zh_TW |
| dc.subject | 代謝體學 | zh_TW |
| dc.subject | 自閉症類群障礙症 | zh_TW |
| dc.subject | 血漿代謝體 | zh_TW |
| dc.subject | autism spectrum disorder | en |
| dc.subject | metabolome | en |
| dc.subject | network analysis | en |
| dc.subject | clinical measures | en |
| dc.subject | plasma metabolites | en |
| dc.title | 自閉症類群障礙症患者血漿代謝體特徵與臨床表現關聯性研究 | zh_TW |
| dc.title | Investigating Plasma Metabolic Profiles and Their Associations with Clinical Measures in Individuals with Autism Spectrum Disorder | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭錦樺;張以承 | zh_TW |
| dc.contributor.oralexamcommittee | CHING-HUA KUO;Yi-Cheng Chang | en |
| dc.subject.keyword | 自閉症類群障礙症,臨床量表,代謝體網絡分析,代謝體學,血漿代謝體, | zh_TW |
| dc.subject.keyword | autism spectrum disorder,metabolome,network analysis,clinical measures,plasma metabolites, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202403126 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 分子醫學研究所 | - |
| dc.date.embargo-lift | 2029-08-02 | - |
| Appears in Collections: | 分子醫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 1.76 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
