Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94835Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張瀚 | zh_TW |
| dc.contributor.advisor | Han Chang | en |
| dc.contributor.author | 莊子毅 | zh_TW |
| dc.contributor.author | TZU-I Chuang | en |
| dc.date.accessioned | 2024-08-19T17:19:22Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-19 | - |
| dc.identifier.citation | [1] Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 21, 1145–1153, 2013.
[2] Bedson, J. & Croft, P. R. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet. Disord. 9, 116, 2008. [3] Finan, P.H.qpslcm@ikd Buenaver, L.F.qpslcm@ikd Bounds, S.C.qpslcm@ikd Hussain, S.qpslcm@ikd Park, R.J.qpslcm@ikd Haque, U.J.qpslcm@ikd Campbell, C.M.qpslcm@ikd Haythornthwaite, J.A.qpslcm@ikd Edwards, R.R.qpslcm@ikd Smith, M.T. Discordance between pain and radiographic severity in knee osteoarthritis: Findings from quantitative sensory testing of central sensitization. Arthritis Rheum. 65, 363–372, 2013. [4] Guermazi A, Zaim S, Taouli B, et al. MR findings in knee osteoarthritis. Eur Radiol. 13:1370–86, 2003. [5] Wenham CY, Conaghan PG. Imaging the painful osteoarthritic knee joint: what have we learned? Nat Clin Pract Rheumatol. 5:149–58, 2009. [6] Felson, D. T. et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 134, 541–549, 2001. [7] Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage, 19:990–1002, 2011. [8] Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage, 12:177–190, 2004. [9] Riccardo Scodellaro, Ajinkya Kulkarni, Frauke Alves, and Matthias Schröter. Training Convolutional Neural Networks with the Forward-Backward Algorithm. https://doi.org/10.48550/arXiv.2312.14924, 2023. [10] Xie, B.qpslcm@ikd Zhang, Q. Deep Filtering with DNN, CNN and RNN. arXiv, 2021qpslcm@ikd arXiv:2112.12616v1, 2021. [11] A. Tack, A. Mukhopadhyay, and S. Zachow, Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative, Osteoarthritis Cartilage, vol. 26, pp. 680–688. doi: 10.1016/j.joca.2018.02.907, 2018. [12] B. Norman, V. Pedoia, S. Majumdar, Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry, Radiology, vol. 288, no. 1, pp. 177-185. doi: 10.1148/radiol.2018172322, 2018. [13] F. Ambellan, A. Tack, M. Ehlke, S. Zachow, Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative, Med Image Anal, vol. 52, pp. 109-118. doi: 10.1016/j.media.2018.11.009, 2019. [14] S. Gaj, M. Yang, K. Nakamura, X. Li, Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks, Magn Reson Med, vol. 84, no. 1, pp. 437-449. doi: 10.1002/mrm.28111, 2020. [15] M. Byra, M. Wu, X. Zhang, H. Jang, Y.-J. Ma, E. Y. Chang, S. Shah, J. Du, "Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning," Magn Reson Med, vol. 83, no. 3, pp. 1109-1122. doi: 10.1002/mrm.27969, 2020. [16] G. H. Chang, D. T. Felson, S. Qiu, A. Guermazi, T. D. Capellini, V. B. Kolachalama, "Assessment of knee pain from MR imaging using a convolutional Siamese network," Eur Radiol, vol. 30, no. 6, pp. 3538-3548. doi: 10.1007/s00330-020-06658-3, 2020. [17] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models. IEEE Transactions on Pattern Analysis, 2021. [18] H. Gm, M. K. Gourisaria, M. Pandey, and S. S. Rautaray, A comprehensive survey and analysis of generative models in machine learning, Comput. Sci. Rev., vol. 38, Nov. 2020, Art. no. 100285. [19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020 [20] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv:1411.1784 [21] Hamidreza Gholamrezaei, Alireza Koochali, Andreas Dengel and Sheraz Ahmed. 2023 Class Conditional Time Series Generation with Structured Noise Space GAN. arXiv:2312.12946 [22] T. Kadeethum, D. O’Malley, Y. Choi, H.S. Viswanathan, N. Bouklas, H. Yoon, Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties, 2021, arXiv preprint arXiv:2111.14984 [23] Y. Skandarani, P.-M. Jodoin, A. Lalande, "GANs for Medical Image Synthesis: An Empirical Study," J Imaging, vol. 9, no. 3, Art. no. 69, Mar. 2023. doi: 10.3390/jimaging9030069. [24] Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain., Fuzziness Knowl.-Based Syst. 6, 107–116, 1998. [25] Hu, Y., Huber, A., Anumula, J., and Liu, S.-C. (2018). Overcoming the vanishing gradient problem in plain recurrent networks. arXiv. arXiv:1801.06105. [26] Zhang, K.: On mode collapse in generative adversarial networks. In: International Conference on Artificial Neural Networks, pp. 563–574. Springer, 2021 [27] Haozhe Liu, Bing Li, Haoqian Wu, Hanbang Liang, Yawen Huang, Yuexiang Li, Bernard Ghanem, and Yefeng Zheng. Combating mode collapse in gans via manifold entropy estimation. arXiv preprint arXiv:2208.12055, 2022 [28] Akash Srivastava, Lazar Valkoz, Chris Russell, U. Michael Gutmann, and A. Charles Sutton. 2017. VEEGAN: Reducing mode collapse in GANs using implicit variational learning. In Neural Information Processing Systems. 3310–3320. [29] D. Bang and H. Shim. 2018. MGGAN: Solving mode collapse using manifold guided training. arXiv Preprint arXiv1804.04391, 2018. [30] Barratt, S., Sharma, R., 2018. A note on the inception score. arXiv preprint arXiv: 1801.01973. [31] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. [32] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410, 2019. [33] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat GANs on image synthesis. In Advances in Neural Information Processing Systems, Vol. 34. 8780–8794. [34] Mazé F, Ahmed F. Diffusion models beat GANs on topology optimization. In: Proceedings of the AAAI conference on artificial intelligence. 2023. [35] Gustav Müller-Franzes, Jan Moritz Niehues, Firas Khader, Soroosh Tayebi Arasteh, Christoph Haarburger, Christiane Kuhl, Tianci Wang, Tianyu Han, Sven Nebelung, Jakob Nikolas Kather, et al. 2022. Diffusion Probabilistic Models beat GANs on Medical Images. arXiv preprint arXiv:2212.07501, 2022. [36] T. Luo, Z. Mo and S. J. Pan, "Fast Graph Generation via Spectral Diffusion," in IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2023.3344758. [37] Junde Wu, Huihui Fang, Yu Zhang, Yehui Yang, and Yanwu Xu. Medsegdiff: Medical image segmentation with diffusion probabilistic model. arXiv preprint arXiv:2211.00611, 2022. [38] Fahim Ahmed Zaman, Mathews Jacob, Amanda Chang, Kan Liu, Milan Sonka, and Xiaodong Wu. Surf-CDM: Score-Based Surface Cold-Diffusion Model For Medical Image Segmentation. arXiv arXiv:2312.12649, 2023 [39] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. DiffusionDet: Diffusion model for object detection. arXiv preprint arXiv:2211.09788, 2022. [40] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. NeurIPS, 2020. [41] J. Shlens, Notes on Kullback-Leibler divergence and likelihood theory, 2014. arXiv preprint arxiv:1404.2000. [42] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in Proc. 18th Int. Conf. Med. Image Comput. Comput.-Assist. Interv., 2015, pp. 234-241. [43] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016, pp. 87.1–87.12. [44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. arXiv:1706.03762, 2017. [45] Valérie Castin, Pierre Ablin, and Gabriel Peyré. Understanding the Regularity of Self-Attention with Optimal Transport. arXiv preprint. arXiv:2312.14820. 2023 [46] J. Shlens, Notes on Kullback-Leibler divergence and likelihood theory, 2014. arXiv preprint arxiv:1404.2000. [47] Luo Calvin. 2022. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970, 2022. [48] Song Jiaming, Meng Chenlin, and Ermon Stefano. 2020. Denoising diffusion implicit models. In International Conference on Learning Representations. [49] Salimans Tim and Ho Jonathan. 2021. Progressive distillation for fast sampling of diffusion models. In International Conference on Learning Representations. [50] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network., arXiv:1503.02531, 2015. [51] Rombach Robin, Blattmann Andreas, Lorenz Dominik, Esser Patrick, and Ommer Bj?rn. 2022. High-resolution image synthesis with latent diffusion models. In IEEE Conference on Computer Vision and Pattern Recognition. 10684-10695. [52] Nichol Alexander Quinn and Dhariwal Prafulla. Improved denoising diffusion probabilistic models. In International Conference on Machine Learning. 8162-8171, 2021. [53] Nevitt, M., D. Felson, and Gayle Lester. "The osteoarthritis initiative." Protocol for the cohort study 1, 2006. [54] Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations. [55] Dimitri A. Kessler, James W. MacKay, Stephen M. McDonnell, Robert L. Janiczek, Martin J. Graves, Joshua D. Kaggie, Fiona J. Gilbert, Segmentation of knee MRI data with convolutional neural networks for semi-automated three-dimensional surface-based analysis of cartilage morphology and composition, Osteoarthritis Imaging, Volume 2, Issue 2, 2022, 100010, ISSN 2772-6541, https://doi.org/10.1016/j.ostima.2022.100010. [56] Dice, Lee R. (1945). "Measures of the Amount of Ecologic Association Between Species." Ecology. 26 (3): 297-302. Doi:10.2307/1932409. JSTOR 1932409. [57] Ugur Demir and Gozde Unal. Patch-based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422, 2018. [58] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2337-2346, 2019. [59] Bernard Spiegl. Contrastive unpaired translation using focal loss for patch classification. arXiv preprint arXiv:2109.12431, 2021. [60] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration with neural networks. IEEE Transactions on computational imaging, 3(1):47–57, 2016. [61] Kingma, D. P.qpslcm@ikd Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [62] Saharia Chitwan, Chan William, Chang Huiwen, Lee Chris, Ho Jonathan, Salimans Tim, Fleet David, and Norouzi Mohammad. 2022. Palette: Image-to-image diffusion models. In Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings. 1–10. [63] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, The unreasonable effectiveness of deep features as a perceptual metric, in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 586–595. [64] D. Danier, F. Zhang, and D. Bull, FloLPIPS: A bespoke video quality metric for frame interpoation, 2022, arXiv:2207.08119. [65] Wang Z., Bovik A.C. A universal image quality index. IEEE Signal Process. Lett., 9 (3), pp. 81-84, 2022 [66] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, volume 2, pages 1398-1402. Ieee, 2003. [67] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2016), pp. 2818-2826. [68] Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Fei-Fei Li. 2009. ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition. 248–255. [69] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 658-666, 2019. [70] L. McInnes, J. Healy, and J. Melville, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, arXic, arXiv:1802.03426, 2018. [71] Mai, H., Le, T. C., Chen, D., Winkler, D. A. & Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 122, 13478–13515, 2022. [72] Kattenborn, T.qpslcm@ikd Leitloff, J.qpslcm@ikd Schiefer, F.qpslcm@ikd Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [73] Y. Su, D. Yuan, D. G. Chen, R. H. Ng, K. Wang, J. Choi, S. Li, S. Hong, R. Zhang, J. Xie, S. A. Kornilov, K. Scherler, A. J. Pavlovitch-Bedzyk, S. Dong, C. Lausted, I. Lee, S. Fallen, C. L. Dai, P. Baloni, B. Smith, V. R. Duvvuri, K. G. Anderson, J. Li, F. Yang, C. J. Duncombe, D. J. McCulloch, C. Rostomily, P. Troisch, J. Zhou, S. Mackay, Q. DeGottardi, D. H. May, R. Taniguchi, R. M. Gittelman, M. Klinger, T. M. Snyder, R. Roper, G. Wojciechowska, K. Murray, R. Edmark, S. Evans, L. Jones, Y. Zhou, L. Rowen, R. Liu, W. Chour, H. A. Algren, W. R. Berrington, J. A. Wallick, R. A. Cochran, M. E. Micikas, C. J. Petropoulos, H. R. Cole, T. D. Fischer, W. Wei, D. S. B. Hoon, N. D. Price, N. Subramanian, J. A. Hill, J. Hadlock, A. T. Magis, A. Ribas, L. L. Lanier, S. D. Boyd, J. A. Bluestone, H. Chu, L. Hood, R. Gottardo, P. D. Greenberg, M. M. Davis, J. D. Goldman, J. R. Heath, Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae. Cell, 2022. [74] Dorjsembe, Z., Pao, H.K., Odonchimed, S., Xiao, F.: Conditional diffusion models for semantic 3d medical image synthesis. arXiv preprint arXiv:2305.18453, 2023. [75] Karras Tero, Aittala Miika, Aila Timo, and Laine Samuli. 2022. Elucidating the design space of diffusion-based generative models. arXiv preprint arXiv:2206.00364, 2022 [76] Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning (eds. Daumé, H. III & Singh, A.) 1597–1607 PMLR, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94835 | - |
| dc.description.abstract | 退化性關節炎(OA)是一種常見影響膝關節的疾病,可能導致病患的疼痛、嚴重的行動不便,甚至嚴重的OA有時需要進行關節置換手術。OA造成疼痛的成因複雜,可能源自於膝關節的腫脹、骨質弱化和軟骨磨損等變化。並且疼痛受個體感知因素影響,個體對疼痛的感知並不相同,使得臨床上難以將個體回報的疼痛指數與影像連結起來。因此,透過深度學習模型將醫學影像與OA疼痛連結具有臨床重要性,其中磁振造影 (Magnetic Resonance Imaging, MRI)膝關節影像能提供最全面的資訊。基於上述原因,本研究利用生成式模型針對MRI影像進行兩個不同方向的OA研究。
第一個研究提出兩階段生成對抗網路(Generative Adversarial Networks, GAN)針對OA與軟骨磨損的關係進行研究,透過生成模型合成OA患者軟骨未磨損前的MRI影像進一步討同個OA病患軟骨磨損前後的差異。實驗結果顯示,正常股骨軟骨平均體積與脛骨軟骨平均體積分別較OA患者大3.3%及4.5%,股骨軟骨平均包覆股骨長度與脛骨軟骨平均包覆脛骨長度較OA患者長1.2%及3%。 第二個研究提出兩階段對比式生成對抗網路 (Contrastive GAN) 及生成擴散模型 (Diffusion Model) 探討骨內病變 (Bone Marrow Lesions, BML) 與積水(effusion) 對OA病患造成疼痛貢獻,並量化此貢獻。 第一階段的對比式生成對抗網路負責篩選出所有可能造成疼痛貢獻之區域,同時模型存在一投影層 (projection layer) 透過對比式學習,模型學習度量OA病患的疼痛程度。第二階段的生成擴散模型負責學習消除MRI膝關節影像指定區域的病變。其中,為了解決二維模型缺乏三維生理結構連續性,例如: 肌肉、骨骼及病變,的生成能力,以及解決三維生成模型過於龐大,耗費計算資源的問題,提出具創新性的雙編碼器生成擴散模型。透過提出的兩階段式生成模型,獨立控制生成消除單一或多個病變的MRI影像模擬病患病變修復後的情況,並經由第一階段對比式生成對抗網路的投影層藉由均勻流形逼近和投影 (Uniform Manifold Approximation and Projection, UMAP) 技術量化病變對OA病患的疼痛貢獻。 實驗結果顯示,提出的兩階段模型在影像所有採用的生成品質度量上包含Fréchet Inception Distance (FID), Inception Score (IS), Structural Similarity Index Measure (SSIM), Multi-Scale Structural Similarity Index Measure (MS-SSIM), Learned Perceptual Image Patch Similarity (LPIPS) 以及Flow difference-weighted LPIPS (FloLPIPS) 上超越2維最先進 (state-of-the-art, SOTA) 的模型及三維最先進的模型。值得一提的是,透過UMAP量化單獨消除BML或effusion的任務上顯示,消除effusion對疼痛減緩的貢獻較為顯著,未來可以成為臨床上治療的依據。 | zh_TW |
| dc.description.abstract | Osteoarthritis (OA) is a prevalent condition impacting knee joints, often leading to significant pain and mobility restrictions. In severe cases, it may necessitate joint replacement surgery. The origins of OA pain are complex, involving knee joint changes such as swelling, bone weakening, and cartilage loss. Since pain perception varies individually, linking patient-reported pain with imaging findings is challenging. Thus, employing deep learning models to correlate medical imaging with OA pain is clinically significant, particularly MRI providing comprehensive knee joint information. Given these considerations, this study employs generative models in MRI to undertake two distinct research directions pertaining to OA.
The first research involves a two-stage Generative Adversarial Network (GAN) to explore the relationship between OA and cartilage erosion. By generating MRI images of OA patients prior to cartilage erosion, the study quantifies differences in cartilage conditions. Results show average femur and tibia cartilage volumes in normal conditions are 3.3% and 4.5% larger, respectively, compared to those with OA. Additionally, the average coverage lengths of femur and tibia cartilages are 1.2% and 3%, respectively, longer in normal conditions. The second research proposes a two-stage Contrastive GAN and a Diffusion Model to explore and quantify the contributions of Bone Marrow Lesions (BML) and effusion to OA pain. The first stage involves a Contrastive GAN that selects regions potentially contributing to pain, with a projection layer utilizing contrastive learning to measure pain severity in OA patients. The second stage, the diffusion model, learns to eliminate specific lesions from MRI knee images. To address the challenge of generating 3D anatomical continuity in 2D models, such as muscles, bones, and lesions, and to overcome the computational demands of 3D models, an innovative dual-encoder diffusion model is introduced. This two-stage model independently controls the generation of MRI images with single or multiple lesion eliminations, simulating and quantifying lesion contributions to OA pain. It employs dimensional reduction techniques, notably Uniform Manifold Approximation and Projection (UMAP). UMAP is a dimensional reduction technique that can find the translation between topological spaces and simplicial sets. The model uses UMAP in conjunction with the projection layer from the first-stage Contrastive GAN. Experimental results show that this two-stage model surpasses both 2D and 3D state-of-the-art models in all employed image quality metrics. Notably, the task of UMAP analysis involving the isolated elimination of BML or effusion indicates that the removal of effusion significantly contributes to pain alleviation, providing a potential basis for future clinical treatment strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:19:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T17:19:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Osteoarthritis and pain symptoms 1 1.2 Deep Learning 2 1.3 Generative Adversarial Networks 5 1.3.1 Conditional Generative Adversarial Networks (cGANs) 6 1.3.2 Challenge of Training GANs 7 1.4 Diffusion Models 9 1.4.1 Architecture and Algorithm 12 1.4.2 Training Process 13 1.4.3 Challenges of Training Diffusion Models 15 Chapter 2 Disease Progression Associated with Cartilage Degradation with Generative Adversarial Networks 17 2.1 DESS Images Data Preprocessing 18 2.2 Pretrained Segmentation Model 19 2.3 First Stage Mask-to-Mask Translation Model 22 2.3.1 Training 22 2.3.2 Model Architecture 24 2.4 Second Stage Mask-Guided Image-to-Image Translation Network 26 2.4.1 Training 26 2.4.2 Model Architecture 27 2.5 Evaluation Metrics 29 2.6 Results 29 2.6.1 Quantitative Results 29 2.6.2 Generated Images Comparison 30 Chapter 3 Pain Associated with Effusion and Bone Marrow Lesions (BML) 33 3.1 IW-TSE images data preprocessing 36 3.2 First stage GAN model 39 3.2.1 GAN with global contrastive learning 39 3.2.2 Domain Translation and Lobal contrastive learning 40 3.3 Second stage diffusion model 41 3.3.1 Training of the diffusion model 42 3.3.2 Conditional image generation 44 3.3.3 Model Architecture 45 3.3.4 Inference of the diffusion model 47 3.4 Evaluation Metrics 48 3.4.1 Image Quality 48 3.4.2 Quantifying Anatomic Consistency in Imaging 49 3.4.3 Uniform Manifold Approximation and Projection (UMAP) for Data Interpretation 50 3.5 Results 52 3.5.1 Image Quality 52 3.5.2 Quantifying Anatomic Consistency in Imaging 53 3.5.3 Visualization of Generated Images Comparison 55 3.5.4 Results of Uniform Manifold Approximation and Projection (UMAP) for Data Interpretation 57 Chapter 4 Discussion 62 4.1 Disease Progression with Cartilage Degradation 62 4.1.1 Necessity of Two Stage Model Training Pipeline 62 4.1.2 Comparison of Generator Architecture 63 4.1.3 Comparison of Different Patch Size in PatchGAN Discriminator 64 4.2 Pain Associated with Effusion and Bone Marrow Lesions (BML) 65 4.2.1 Computation Time 65 4.2.2 Parameters Settings 66 4.2.3 Generation Results 67 REFERENCE 68 | - |
| dc.language.iso | en | - |
| dc.subject | 骨關節炎 | zh_TW |
| dc.subject | 磁振造影 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 擴散機率模型 | zh_TW |
| dc.subject | 可解釋性模型 | zh_TW |
| dc.subject | Osteoarthritis | en |
| dc.subject | Explainable AI | en |
| dc.subject | Diffusion Model | en |
| dc.subject | Generative Adversarial Networks (GAns) | en |
| dc.subject | Deep Learning | en |
| dc.subject | Magnetic Resonance Imaging (MRI) | en |
| dc.title | 生成模型於MRI膝關節影像之應用 | zh_TW |
| dc.title | The Application of Generative Models in MRI Knee Joint Image. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃宣銘;朱麗安 | zh_TW |
| dc.contributor.oralexamcommittee | Hsuan-Ming Huang;Li-An Chu | en |
| dc.subject.keyword | 骨關節炎,磁振造影,深度學習,生成對抗網路,擴散機率模型,可解釋性模型, | zh_TW |
| dc.subject.keyword | Osteoarthritis,Magnetic Resonance Imaging (MRI),Deep Learning,Generative Adversarial Networks (GAns),Diffusion Model,Explainable AI, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202400284 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-19 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫療器材與醫學影像研究所 | - |
| Appears in Collections: | 醫療器材與醫學影像研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 3.18 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
