Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94831
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建甫zh_TW
dc.contributor.advisorChien-Fu Chenen
dc.contributor.author陳柏勲zh_TW
dc.contributor.authorPo-Hsun Chenen
dc.date.accessioned2024-08-19T17:15:17Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] World Health Organization, "Global cancer burden growing, amidst mounting need for services," 2024.
[2] H. Sung et al., "Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA-Cancer J. Clin., vol. 71, no. 3, pp. 209-249, May 2021, doi: 10.3322/caac.21660.
[3] World Health Organization, "Colorectal cancer," 2023.
[4] K. M. Turner et al., "Extrachromosomal oncogene amplification drives tumor evolution and genetic heterogeneity," Nature, vol. 543, no. 7643, p. 122, Mar 2017, doi: 10.1038/nature21356.
[5] S. A. P. Pereira, P. J. Dyson, and M. Saraiva, "Miniaturized technologies for high-throughput drug screening enzymatic assays and diagnostics - A review," Trac-Trends Anal. Chem., Review vol. 126, p. 15, May 2020, Art no. 115862, doi: 10.1016/j.trac.2020.115862.
[6] D. A. Pereira and J. A. Williams, "Origin and evolution of high throughput screening," Br. J. Pharmacol., Review vol. 152, no. 1, pp. 53-61, Sep 2007, doi: 10.1038/sj.bjp.0707373.
[7] S. Sugiura, K. Hattori, and T. Kanamori, "Microfluidic Serial Dilution Cell-Based Assay for Analyzing Drug Dose Response over a Wide Concentration Range," Anal. Chem., vol. 82, no. 19, pp. 8278-8282, Oct 2010, doi: 10.1021/ac1017666.
[8] M. Hafner, M. Niepel, M. Chung, and P. K. Sorger, "Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs," Nat. Methods, vol. 13, no. 6, pp. 521, Jun 2016, doi: 10.1038/nmeth.3853.
[9] P. Juelg et al., "Automated serial dilutions for high-dynamic-range assays enabled by fill-level-coupled valving in centrifugal microfluidics," Lab Chip, vol. 19, no. 13, pp. 2205-2219, Jul 2019, doi: 10.1039/c9lc00092e.
[10] N. Kashaninejad, E. Moradi, and H. Moghadas, "Micro/nanofluidic devices for drug delivery," in Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications, Pt B, vol. 187, A. Pandya and V. Singh Eds., (Progress in Molecular Biology and Translational Science. San Diego: Elsevier Academic Press Inc, 2022, pp. 9-39.
[11] K. Bachal, S. Yadav, P. Gandhi, and A. Majumder, "Design and validation of a flowless gradient generating microfluidic device for high-throughput drug testing," Lab Chip, vol. 23, no. 2, pp. 261-271, Jan 2023, doi: 10.1039/d2lc00879c.
[12] A. H. Khan et al., "Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System," ACS Appl. Mater. Interfaces, vol. 13, no. 23, pp. 26735-26747, Jun 2021, doi: 10.1021/acsami.1c04771.
[13] X. Z. Niu, F. Gielen, J. B. Edel, and A. J. deMello, "A microdroplet dilutor for high-throughput screening," Nat. Chem., vol. 3, no. 6, pp. 437-442, Jun 2011, doi: 10.1038/nchem.1046.
[14] S. Jambovane, D. J. Kim, E. C. Duin, S. K. Kim, and J. W. Hong, "Creation of Stepwise Concentration Gradient in Picoliter Droplets for Parallel Reactions of Matrix Metalloproteinase II and IX," Anal. Chem., vol. 83, no. 9, pp. 3358-3364, May 2011, doi: 10.1021/ac103217p.
[15] K. Churski et al., "Rapid screening of antibiotic toxicity in an automated microdroplet system," Lab Chip, vol. 12, no. 9, pp. 1629-1637, 2012, doi: 10.1039/c2lc21284f.
[16] J. Avesar et al., "Nanoliter Cell Culture Array with Tunable Chemical Gradients," Anal. Chem., vol. 90, no. 12, pp. 7480-7488, Jun 2018, doi: 10.1021/acs.analchem.8b01017.
[17] A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, "Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor," Anal. Chem., vol. 71, no. 23, pp. 5340-5347, Dec 1999, doi: 10.1021/ac990504j.
[18] X. Wang, Z. M. Liu, and Y. Pang, "Concentration gradient generation methods based on microfluidic systems," RSC Adv., Review vol. 7, no. 48, pp. 29966-29984, 2017, doi: 10.1039/c7ra04494a.
[19] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of solution and surface gradients using microfluidic systems," Langmuir, vol. 16, no. 22, pp. 8311-8316, Oct 2000, doi: 10.1021/la000600b.
[20] S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, "Generation of gradients having complex shapes using microfluidic networks," Anal. Chem., vol. 73, no. 6, pp. 1240-1246, Mar 2001, doi: 10.1021/ac001132d.
[21] D. L. Englert, M. D. Manson, and A. Jayaraman, "Investigation of bacterial chemotaxis in flow-based microfluidic devices," Nat. Protoc., vol. 5, no. 5, pp. 864-872, 2010, doi: 10.1038/nprot.2010.18.
[22] M. Ebadi, K. Moshksayan, N. Kashaninejad, M. S. Saidi, and N. T. Nguyen, "A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications," Chem. Eng. Sci., vol. 212, p. 14, Feb 2020, Art no. 115339, doi: 10.1016/j.ces.2019.115339.
[23] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, "Design of pressure-driven microfluidic networks using electric circuit analogy," Lab Chip, Review vol. 12, no. 3, pp. 515-545, 2012, doi: 10.1039/c2lc20799k.
[24] I. Goswami, E. de Klerk, P. Carnese, M. Hebrok, and K. E. Healy, "Multiplexed microfluidic platform for stem-cell derived pancreatic islet β cells," Lab Chip, vol. 22, no. 22, pp. 4430-4442, Nov 2022, doi: 10.1039/d2lc00468b.
[25] H. H. Shi et al., "Rapid and steady concentration gradient generation platform for an antimicrobial susceptibility test," Chem. Eng. J., vol. 359, pp. 1327-1338, Mar 2019, doi: 10.1016/j.cej.2018.11.046.
[26] W. Y. Chu et al., "Partially miscible droplet microfluidics to enhance interfacial adsorption of hydrophilic nanoparticles for colloidosome synthesis," Chem. Eng. J., vol. 471, p. 9, Sep 2023, Art no. 144223, doi: 10.1016/j.cej.2023.144223.
[27] A. Y. Shourabi, N. Kashaninejad, and M. S. Saidi, "An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery," J. Sci., vol. 6, no. 2, pp. 280-290, Jun 2021, doi: 10.1016/j.jsamd.2021.02.009.
[28] J. Castillo-León and W. E. Svendsen, Lab-on-a-Chip devices and micro-total analysis systems: a practical guide. Springer, 2014.
[29] J. Y. S. Yoon, J. Park, H. Nam, S. Kim, and J. S. Jeon, "Multi-layered Microfluidic Drug Screening Platform Enabling Simultaneous Generation of Linear and Logarithmic Concentration Gradients," BioChip J. p. 12, 2024 May 2024, doi: 10.1007/s13206-024-00154-2.
[30] N. J. Kruger, "The Bradford Method For Protein Quantitation," in Protein Protocols Handbook, Third Edition, J. M. Walker Ed., (Springer Protocols Handbooks. Totowa: Humana Press Inc, 2009, pp. 17-24.
[31] B. Iovine, M. L. Iannella, F. Nocella, M. R. Pricolo, and M. A. Bevilacqua, "Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production," Cancer Lett., vol. 315, no. 2, pp. 122-128, Feb 2012, doi: 10.1016/j.canlet.2011.07.021.
[32] M. Yamada, T. Hirano, M. Yasuda, and M. Seki, "A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing," Lab Chip, vol. 6, no. 2, pp. 179-184, Feb 2006, doi: 10.1039/b514054d.
[33] Y. Lin, "Numerical characterization of simple three-dimensional chaotic micromixers," Chem. Eng. J., vol. 277, pp. 303-311, Oct 2015, doi: 10.1016/j.cej.2015.04.123.
[34] M. S. H. Akash and K. Rehman, "Ultraviolet-Visible (UV-VIS) Spectroscopy," in Essentials of Pharmaceutical Analysis, M. S. H. Akash and K. Rehman Eds. Singapore: Springer Nature Singapore, 2020, pp. 29-56.
[35] P. H. M. Buzzetti et al., "Complete experimental and theoretical characterization of nonlinear concentration gradient generator microfluidic device for analytical purposes," Microchim. Acta, vol. 189, no. 1, p. 9, Jan 2022, Art no. 11, doi: 10.1007/s00604-021-05110-7.
[36] S. Shahrivari et al., "Toxicity of trastuzumab for breast cancer spheroids: Application of a novel on-a-chip concentration gradient generator," Biochem. Eng. J., vol. 187, p. 9, Nov 2022, Art no. 108590, doi: 10.1016/j.bej.2022.108590.
[37] L. Kelland, "The resurgence of platinum-based cancer chemotherapy," Nat. Rev. Cancer, Review vol. 7, no. 8, pp. 573-584, Aug 2007, doi: 10.1038/nrc2167.
[38] J. L. Sebaugh, "Guidelines for accurate EC50/IC50 estimation," Pharm. Stat., vol. 10, no. 2, pp. 128-134, Mar-Apr 2011, doi: 10.1002/pst.426.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94831-
dc.description.abstract癌症藥物篩選中的藥物稀釋過程往往複雜且耗時,傳統的人工稀釋方法不僅勞動密集且易受稀釋誤差累積的影響。本研究開發了一個藥物高通量篩選之微流體裝置,應用於結腸腫瘤藥物篩選,可以簡易、快速並精準生成特定之藥物濃度梯度。微流體裝置以流體在低雷諾數條件下呈現的層流特性,利用 Hagen-Poiseuille 方程式進行設計,透過改變梯度流道中混合點兩側的流道長度比例,調配兩流體混合的體積比,實現了對濃度梯度生成的精確控制且克服流速變化對擴散混合的限制,加速藥物篩選流程。實驗中,我們使用牛血清白蛋白溶液 (Bovine Serum Albumin,BSA) 作為模擬實際藥品稀釋的樣品,透過布拉德福蛋白質定量法 (Bradford protein assay) 分析微流體裝置產生之稀釋濃度值,以此來驗證微流體裝置的功能性。最終,利用微流體裝置稀釋化療藥物 (Oxaliplatin) 產生多個藥物濃度,進行人類結腸腫瘤細胞 (HCT-116) 的藥物毒性測試。結果顯示,微流體裝置可以在高入口注入流率條件下,於30秒內快速達到穩定狀態,並精確生成濃度梯度及控制輸出至96孔盤之體積量。微流體裝置可精準生成 1/3×~1/300× 之稀釋倍率,其生成之 BSA 濃度梯度與目標之濃度最大誤差小於 6%,輸出至各個孔洞間的液體體積誤差於 5% 以內。在結腸腫瘤藥物毒性測試中,透過微流體裝置稀釋方法與受過專業訓練的研究人員進行人工稀釋方法所得到的 IC50 誤差值僅為 2.45%。本研究開發的藥物高通量篩選微流體裝置可以在短時間內精準地生成目標之濃度,顯著提升了藥物篩選的效率和操作的便利性,在未來可結合細胞晶片技術,進一步研究藥物對特定病理狀態細胞的影響,推動個體化醫療和精準治療的發展。zh_TW
dc.description.abstractIn cancer drug screening, the dilution process of drugs is often complex and time-consuming. Traditional manual dilution methods are labor-intensive and susceptible to cumulative dilution errors. This study develops a microfluidic device for colorectal cancer drug high-throughput screening. The device simplifies, accelerates, and accurately generates specific drug concentration gradients. The microfluidic device leverages the laminar flow characteristics of fluids under low Reynolds number conditions and is designed using the Hagen-Poiseuille equation. The volumetric ratio of the two mixing fluids can be adjusted by varying the channel length ratio on both sides of the merging points in the gradient channel, achieving precise control over the concentration gradient generation. This design overcomes the limitations of diffusion mixing due to flow rate variations, thus expediting the drug screening process. The experiments used bovine serum albumin (BSA) solution as a sample to simulate actual drug dilution. The dilution concentrations produced by the microfluidic device were analyzed using the Bradford protein assay to validate its functionality. Ultimately, the microfluidic device was used to dilute the chemotherapy drug Oxaliplatin to produce multiple drug concentrations for cytotoxicity testing on human colon tumor cells (HCT-116). The results showed that the microfluidic device could rapidly reach a stable state within 30 seconds under high inlet flow rates. The device could accurately generate dilution ratios ranging from 1/3× to 1/300×, with the generated BSA concentration gradient having a maximum deviation of less than 6% from the target concentration and the volume deviation of the liquid output to each well within 5%. In the colorectal cancer drug cytotoxicity test, the deviation of IC50 between the microfluidic device dilution method and the manual dilution method performed by professionally trained researchers was only 2.45%.
The microfluidic device developed in this study can accurately generate the target concentrations quickly, significantly enhancing the efficiency and convenience of drug screening. In the future, this device can be integrated with cell chip technology to further study drugs' effects on cells in specific pathological states, promoting the development of personalized medicine and precision therapy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:15:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T17:15:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 ix
第一章、前言與文獻回顧 1
1.1 結腸癌對公衛之影響 1
1.2 高通量藥物篩選 1
1.3 傳統藥物稀釋方法的挑戰 2
1.4 以微流體方法進行藥物稀釋 2
1.4.1 靜態擴散方法 3
1.4.2 動態液滴方法 4
1.4.3 動態層流方法 5
1.5 本研究開發之裝置 8
第二章、實驗設計與實驗流程 9
2.1 實驗試劑與耗材 9
2.2 實驗儀器 9
2.3 微流體裝置製作 10
2.3.1 微流體裝置設計與加工 10
2.3.2 濃度梯度生成原理與數學模型 12
2.4 實驗溶液配置 16
2.4.1 檸檬酸緩衝溶液 (Citrate buffer) 配置 16
2.4.2 1× 牛血清白蛋白溶液 (1× BSA solution) 配置 16
2.4.3 Bradford protein assay 標準曲線之標準品配置 16
2.4.4 1× 細胞毒性藥物溶液 (1× Oxaliplatin solution) 配置 16
2.5 實驗步驟 17
2.5.1 濃度梯度生成流道設計數值模擬 17
2.5.2 引入被動式混合器 17
2.5.3 微流體裝置流場可視化及濃度梯度生成定量分析 18
2.5.4 不同注入流率下之濃度梯度生成 18
2.5.5 Y 型預混合層之功能驗證 19
2.5.6 96 孔盤分流出口之濃度及體積量一致性 19
2.5.7 微流體裝置之可擴充性驗證 20
2.5.8 結腸腫瘤藥物毒性實驗 20
第三章、實驗結果與討論 22
3.1 微流體裝置流道設計 23
3.1.1 濃度梯度生成流道設計數值模擬 23
3.1.2 引入被動式混合器 26
3.2 微流體裝置流場可視化及濃度梯度生成定量分析 28
3.3 牛血清白蛋白溶液注入微流體裝置功能驗證 30
3.3.1 不同注入流率下之濃度梯度生成 30
3.3.2 Y 型預混合層之功能驗證 32
3.3.3 96 孔盤分流出口之濃度及體積量一致性 34
3.4 微流體裝置之可擴充性驗證 36
3.5 結腸腫瘤藥物毒性實驗 38
第四章、結論與未來展望 40
參考文獻 41
-
dc.language.isozh_TW-
dc.subject藥物高通量篩選zh_TW
dc.subject微流體裝置zh_TW
dc.subject結腸腫瘤zh_TW
dc.subject濃度梯度生成zh_TW
dc.subject藥物稀釋zh_TW
dc.subjectdrug dilutionen
dc.subjectconcentration gradient generationen
dc.subjectcolorectal canceren
dc.subjecthigh-throughput screeningen
dc.subjectmicrofluidic deviceen
dc.title結腸腫瘤藥物高通量篩選之微流體裝置研發zh_TW
dc.titleMicrofluidic Device for Colorectal Cancer Drug High-Throughput Screeningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇裕家;林子恩;游佳欣zh_TW
dc.contributor.oralexamcommitteeYu-Chia Su;Tzu-En Lin;Jia-Shing Yuen
dc.subject.keyword微流體裝置,藥物高通量篩選,藥物稀釋,濃度梯度生成,結腸腫瘤,zh_TW
dc.subject.keywordmicrofluidic device,high-throughput screening,drug dilution,concentration gradient generation,colorectal cancer,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202403614-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved