請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94826完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇大成 | zh_TW |
| dc.contributor.advisor | Ta-Chen Su | en |
| dc.contributor.author | 吳思穎 | zh_TW |
| dc.contributor.author | Sz-Ying Wu | en |
| dc.date.accessioned | 2024-08-19T17:09:41Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | Abdel-Salam, M. M. (2015). Investigation of PM2.5 and carbon dioxide levels in urban homes. J Air Waste Manag Assoc, 65(8), 930-936. doi:10.1080/10962247.2015.1040138
Abdel-Salam, M. M. M. (2021). Seasonal variation in indoor concentrations of air pollutants in residential buildings. J Air Waste Manag Assoc, 71(6), 761-777. doi:10.1080/10962247.2021.1895367 Al-Kindi, S. G., Brook, R. D., Biswal, S., & Rajagopalan, S. (2020). Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol, 17(10), 656-672. doi:10.1038/s41569-020-0371-2 Arar, M., & Jung, C. (2021). Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates. Int J Environ Res Public Health, 18(22). doi:10.3390/ijerph182212091 Azuma, K., Kagi, N., Yanagi, U., & Osawa, H. (2018). Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environ Int, 121(Pt 1), 51-56. doi:10.1016/j.envint.2018.08.059 Babatola, S. S. (2018). Global burden of diseases attributable to air pollution. J Public Health Afr, 9(3), 813. doi:10.4081/jphia.2018.813 Bartzis, J., Wolkoff, P., Stranger, M., Efthimiou, G., Tolis, E. I., Maes, F., . . . Fernandes, O. (2015). On organic emissions testing from indoor consumer products’ use. Journal of Hazardous Materials, 285, 37-45. doi:https://doi.org/10.1016/j.jhazmat.2014.11.024 Benton, D., Parker, P. Y., & Donohoe, R. T. (1996). The supply of glucose to the brain and cognitive functioning. J Biosoc Sci, 28(4), 463-479. doi:10.1017/s0021932000022537 Báez, A., Padilla, H., Garcı́a, R. o., Torres, M. d. C., Rosas, I., & Belmont, R. (2003). Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Science of The Total Environment, 302(1), 211-226. doi:https://doi.org/10.1016/S0048-9697(02)00344-3 Bootdee, S., Chantara, S., & Prapamontol, T. (2016). Determination of PM2.5 and polycyclic aromatic hydrocarbons from incense burning emission at shrine for health risk assessment. Atmospheric Pollution Research, 7(4), 680-689. doi:https://doi.org/10.1016/j.apr.2016.03.002 Breysse, P. N., Diette, G. B., Matsui, E. C., Butz, A. M., Hansel, N. N., & McCormack, M. C. (2010). Indoor air pollution and asthma in children. Proc Am Thorac Soc, 7(2), 102-106. doi:10.1513/pats.200908-083RM Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., . . . Kaufman, J. D. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378. doi:10.1161/CIR.0b013e3181dbece1 Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z. J., Badaloni, C., Beelen, R., . . . Peters, A. (2014). Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. Bmj, 348, f7412. doi:10.1136/bmj.f7412 Chen, J. K., Wu, C., & Su, T. C. (2021). Positive Association between Indoor Gaseous Air Pollution and Obesity: An Observational Study in 60 Households. Int J Environ Res Public Health, 18(21). doi:10.3390/ijerph182111447 Chen, T., Ge, J., & Luo, X. (2023). Effects of indoor temperature and its fluctuation on blood pressure and its variability. Int J Biometeorol, 67(8), 1279-1290. doi:10.1007/s00484-023-02469-5 Chuang, H. C., Ho, K. F., Lin, L. Y., Chang, T. Y., Hong, G. B., Ma, C. M., . . . Chuang, K. J. (2017). Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environ Int, 106, 91-96. doi:10.1016/j.envint.2017.06.008 Cincinelli, A., & Martellini, T. (2017). Indoor Air Quality and Health. Int J Environ Res Public Health, 14(11). doi:10.3390/ijerph14111286 Danet, S., Richard, F., Montaye, M., Beauchant, S., Lemaire, B., Graux, C., . . . Amouyel, P. (1999). Unhealthy effects of atmospheric temperature and pressure on the occurrence of myocardial infarction and coronary deaths. A 10-year survey: the Lille-World Health Organization MONICA project (Monitoring trends and determinants in cardiovascular disease). Circulation, 100(1), E1-7. doi:10.1161/01.cir.100.1.e1 Davis, R. E., McGregor, G. R., & Enfield, K. B. (2016). Humidity: A review and primer on atmospheric moisture and human health. Environmental Research, 144, 106-116. doi:https://doi.org/10.1016/j.envres.2015.10.014 Du, X., Jiang, Y., Li, H., Zhang, Q., Zhu, X., Zhou, L., . . . Kan, H. (2022). Traffic-related air pollution and genome-wide DNA methylation: A randomized, crossover trial. Sci Total Environ, 850, 157968. doi:10.1016/j.scitotenv.2022.157968 Fan, X., Liu, W., & Wargocki, P. (2019). Physiological and psychological reactions of sub-tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70. Indoor Air, 29(2), 215-230. doi:10.1111/ina.12523 Fenner, A., & Matz, J. (1976). CO2 breathing of children. Respiration, 33(3), 211-218. doi:10.1159/000193735 Fuks, K. B., Weinmayr, G., Foraster, M., Dratva, J., Hampel, R., Houthuijs, D., . . . Hoffmann, B. (2014). Arterial blood pressure and long-term exposure to traffic-related air pollution: an analysis in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Environ Health Perspect, 122(9), 896-905. doi:10.1289/ehp.1307725 Güneş, G., Yalçin, N., & Çolaklar, H. (2022). Investigation of indoor air quality in university libraries in terms of gaseous and particulate pollutants in Bartin, Turkey. Environ Monit Assess, 194(3), 200. doi:10.1007/s10661-022-09818-8 Goldberg, M. S., Wheeler, A. J., Burnett, R. T., Mayo, N. E., Valois, M. F., Brophy, J. M., & Giannetti, N. (2015). Physiological and perceived health effects from daily changes in air pollution and weather among persons with heart failure: a panel study. J Expo Sci Environ Epidemiol, 25(2), 187-199. doi:10.1038/jes.2014.43 Guo, M., Zhou, M., Li, B., Du, C., Yao, R., Wang, L., . . . Yu, W. (2022). Reducing indoor relative humidity can improve the circulation and cardiorespiratory health of older people in a cold environment: A field trial conducted in Chongqing, China. Sci Total Environ, 817, 152695. doi:10.1016/j.scitotenv.2021.152695 Ho, S. S. H., & Yu, J. Z. (2002). Concentrations of formaldehyde and other carbonyls in environments affected by incense burning. Journal of Environmental Monitoring, 4(5), 728-733. ISO. (1989). Ergonomics of thermal environments—determination of metabolic heat production. International Organization for Standardization, Geneva. Jansz, J. (2011). Theories and knowledge about sick building syndrome. In Sick building syndrome: in public buildings and workplaces (pp. 25-58): Springer. Ji, X. Z., Liu, S., Wang, W. Z., Zhao, Y. T., Li, L. Y., Zhang, W. L., . . . Guo, X. B. (2023). [Associations between indoor volatile organic compounds and nocturnal heart rate variability of young female adults: A panel study]. Beijing Da Xue Xue Bao Yi Xue Ban, 55(3), 488-494. doi:10.19723/j.issn.1671-167X.2023.03.015 Jin, L., Zhang, Y., & Zhang, Z. (2017). Human responses to high humidity in elevated temperatures for people in hot-humid climates. Building and Environment, 114, 257-266. doi:https://doi.org/10.1016/j.buildenv.2016.12.028 Jung, C. C., Su, H. J., & Liang, H. H. (2016). Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index. Sci Total Environ, 539, 271-276. doi:10.1016/j.scitotenv.2015.08.158 Justo Alonso, M., Moazami, T. N., Liu, P., Jørgensen, R. B., & Mathisen, H. M. (2022). Assessing the indoor air quality and their predictor variable in 21 home offices during the Covid-19 pandemic in Norway. Build Environ, 225, 109580. doi:10.1016/j.buildenv.2022.109580 Kajtár, L., & Herczeg, L. (2012). Influence of carbon-dioxide concentration on human well-being and intensity of mental work. QJ Hung. Meteorol. Serv, 116(2), 145-169. Kalamees, T., Korpi, M., Vinha, J., & Kurnitski, J. (2009). The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses. Building and Environment, 44(8), 1643-1650. doi:https://doi.org/10.1016/j.buildenv.2008.10.010 Kim, H., Kim, J., Kim, S., Kang, S. H., Kim, H. J., Kim, H., . . . Chae, I. H. (2017). Cardiovascular Effects of Long-Term Exposure to Air Pollution: A Population-Based Study With 900 845 Person-Years of Follow-up. J Am Heart Assoc, 6(11). doi:10.1161/jaha.117.007170 Kinuta, M., Hisamatsu, T., Fukuda, M., Taniguchi, K., Komukai, S., Nakahata, N., & Kanda, H. (2023). Associations of indoor and outdoor temperatures and their difference with home blood pressure: The Masuda Study. Hypertens Res, 46(1), 200-207. doi:10.1038/s41440-022-01059-z Kubo, K. (2016). Blood Supply. Adv Exp Med Biol, 920, 27-33. doi:10.1007/978-3-319-33943-6_3 Kubo, K., Ikebukuro, T., Tsunoda, N., & Kanehisa, H. (2008). Changes in oxygen consumption of human muscle and tendon following repeat muscle contractions. Eur J Appl Physiol, 104(5), 859-866. doi:10.1007/s00421-008-0841-4 Lai, H. K., Kendall, M., Ferrier, H., Lindup, I., Alm, S., Hänninen, O., . . . Nieuwenhuijsen, M. J. (2004). Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmospheric Environment, 38(37), 6399-6410. doi:https://doi.org/10.1016/j.atmosenv.2004.07.013 Lan, L., Wargocki, P., Wyon, D. P., & Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air, 21(5), 376-390. doi:10.1111/j.1600-0668.2011.00714.x Lederer, A. M., Fredriksen, P. M., Nkeh-Chungag, B. N., Everson, F., Strijdom, H., De Boever, P., & Goswami, N. (2021). Cardiovascular effects of air pollution: current evidence from animal and human studies. Am J Physiol Heart Circ Physiol, 320(4), H1417-h1439. doi:10.1152/ajpheart.00706.2020 Lee, S.-C., & Wang, B. (2004). Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmospheric Environment, 38(7), 941-951. doi:https://doi.org/10.1016/j.atmosenv.2003.11.002 Lei, T. H., & Wang, F. (2021). Looking ahead of 2021 Tokyo Summer Olympic Games: How Does Humid Heat Affect Endurance Performance? Insight into physiological mechanism and heat-related illness prevention strategies. J Therm Biol, 99, 102975. doi:10.1016/j.jtherbio.2021.102975 Li, Q., Jiang, J., Wang, S., Rumchev, K., Mead-Hunter, R., Morawska, L., & Hao, J. (2017). Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Sci Total Environ, 576, 347-361. doi:10.1016/j.scitotenv.2016.10.080 Li, Z., Wen, Q., & Zhang, R. (2017). Sources, health effects and control strategies of indoor fine particulate matter (PM(2.5)): A review. Sci Total Environ, 586, 610-622. doi:10.1016/j.scitotenv.2017.02.029 Lin, H., Guo, Y., Zheng, Y., Di, Q., Liu, T., Xiao, J., . . . Wu, F. (2017). Long-Term Effects of Ambient PM(2.5) on Hypertension and Blood Pressure and Attributable Risk Among Older Chinese Adults. Hypertension, 69(5), 806-812. doi:10.1161/hypertensionaha.116.08839 Liu, W., Zhong, W., & Wargocki, P. (2017). Performance, acute health symptoms and physiological responses during exposure to high air temperature and carbon dioxide concentration. Building and Environment, 114, 96-105. doi:https://doi.org/10.1016/j.buildenv.2016.12.020 Log, T. (2019). Modeling Indoor Relative Humidity and Wood Moisture Content as a Proxy for Wooden Home Fire Risk. Sensors (Basel), 19(22). doi:10.3390/s19225050 Lu, C., Deng, Q., Li, Y., Sundell, J., & Norbäck, D. (2016). Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China. Science of The Total Environment, 560-561, 186-196. doi:https://doi.org/10.1016/j.scitotenv.2016.04.033 Marchand, C., Bulliot, B., Le Calvé, S., & Mirabel, P. (2006). Aldehyde measurements in indoor environments in Strasbourg (France). Atmospheric Environment, 40(7), 1336-1345. doi:https://doi.org/10.1016/j.atmosenv.2005.10.027 McCormack, M. C., Breysse, P. N., Hansel, N. N., Matsui, E. C., Tonorezos, E. S., Curtin-Brosnan, J., . . . Diette, G. B. (2008). Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner-city Baltimore pre-school children. Environ Res, 106(2), 148-155. doi:10.1016/j.envres.2007.08.012 McGraw, K. E., Konkle, S. L., Riggs, D. W., Rai, S. N., DeJarnett, N., Xie, Z., . . . Bhatnagar, A. (2023). Exposure to Volatile Organic Compounds Is Associated with Hypertension in Black Adults: The Jackson Heart Study. Environ Res, 223, 115384. doi:10.1016/j.envres.2023.115384 Meade, R. D., Akerman, A. P., Notley, S. R., Kirby, N. V., Sigal, R. J., & Kenny, G. P. (2024). Effects of Daylong Exposure to Indoor Overheating on Thermal and Cardiovascular Strain in Older Adults: A Randomized Crossover Trial. Environ Health Perspect, 132(2), 27003. doi:10.1289/ehp13159 Mečiarová, Ľ., Vilčeková, S., Burdová, E. K., & Kiselák, J. (2017). Factors Effecting the Total Volatile Organic Compound (TVOC) Concentrations in Slovak Households. Int J Environ Res Public Health, 14(12). doi:10.3390/ijerph14121443 Mendell, M. J. (2007). Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. Indoor Air, 17(4), 259-277. doi:10.1111/j.1600-0668.2007.00478.x Missia, D. A., Demetriou, E., Michael, N., Tolis, E. I., & Bartzis, J. G. (2010). Indoor exposure from building materials: A field study. Atmospheric Environment, 44(35), 4388-4395. doi:https://doi.org/10.1016/j.atmosenv.2010.07.049 Mizukoshi, A., Kumagai, K., Yamamoto, N., Noguchi, M., Yoshiuchi, K., Kumano, H., & Yanagisawa, Y. (2010). A Novel Methodology to Evaluate Health Impacts Caused by VOC Exposures Using Real-Time VOC and Holter Monitors. International Journal of Environmental Research and Public Health, 7(12), 4127-4138. Retrieved from https://www.mdpi.com/1660-4601/7/12/4127 Moschandreas, D., & Vuilleumier, K. (1999). ETS levels in hospitality environments satisfying ASHRAE standard 62-1989:“ventilation for acceptable indoor air quality”. Atmospheric Environment, 33(26), 4327-4340. Mu, L., Liu, L., Niu, R., Zhao, B., Shi, J., Li, Y., . . . Zhang, Z. F. (2013). Indoor air pollution and risk of lung cancer among Chinese female non-smokers. Cancer Causes Control, 24(3), 439-450. doi:10.1007/s10552-012-0130-8 Muscatiello, N., McCarthy, A., Kielb, C., Hsu, W. H., Hwang, S. A., & Lin, S. (2015). Classroom conditions and CO2 concentrations and teacher health symptom reporting in 10 New York State Schools. Indoor Air, 25(2), 157-167. doi:10.1111/ina.12136 Narita, K., Hoshide, S., & Kario, K. (2022). Seasonal Variation in Day-by-Day Home Blood Pressure Variability and Effect on Cardiovascular Disease Incidence. Hypertension, 79(9), 2062-2070. doi:10.1161/hypertensionaha.122.19494 Oh, E., Choi, K. H., Kim, S. R., Kwon, H. J., & Bae, S. (2022). Association of indoor and outdoor short-term PM2.5 exposure with blood pressure among school children. Indoor Air, 32(3), e13013. doi:10.1111/ina.13013 Parati, G., Ochoa, J. E., Lombardi, C., & Bilo, G. (2013). Assessment and management of blood-pressure variability. Nat Rev Cardiol, 10(3), 143-155. doi:10.1038/nrcardio.2013.1 Pathak, U., Gupta, N. C., & Suri, J. C. (2020). Risk of COPD due to indoor air pollution from biomass cooking fuel: a systematic review and meta-analysis. Int J Environ Health Res, 30(1), 75-88. doi:10.1080/09603123.2019.1575951 Phung, D., Thai, P. K., Guo, Y., Morawska, L., Rutherford, S., & Chu, C. (2016). Ambient temperature and risk of cardiovascular hospitalization: An updated systematic review and meta-analysis. Sci Total Environ, 550, 1084-1102. doi:10.1016/j.scitotenv.2016.01.154 Rafiq, L., Naqvi, S. H. Z., Shahzad, L., & Ali, S. M. (2023). Exploring the links between indoor air pollutants and health outcomes in South Asian countries: a systematic review. Reviews on Environmental Health, 38(4), 741-752. doi:doi:10.1515/reveh-2022-0154 Rajagopalan, S., & Landrigan, P. J. (2021). Pollution and the heart. New England Journal of Medicine, 385(20), 1881-1892. Ramalho, O., Wyart, G., Mandin, C., Blondeau, P., Cabanes, P.-A., Leclerc, N., . . . Redaelli, M. (2015). Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Building and Environment, 93, 115-124. doi:https://doi.org/10.1016/j.buildenv.2015.03.018 Redlich, C. A., Sparer, J., & Cullen, M. R. (1997). Sick-building syndrome. The Lancet, 349(9057), 1013-1016. doi:https://doi.org/10.1016/S0140-6736(96)07220-0 Rehwagen, M., Schlink, U., & Herbarth, O. (2003). Seasonal cycle of VOCs in apartments. Indoor Air, 13(3). Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., . . . Fuster, V. (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol, 76(25), 2982-3021. doi:10.1016/j.jacc.2020.11.010 Rumchev, K., Soares, M., Zhao, Y., Reid, C., & Huxley, R. (2018). The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting. Int J Environ Res Public Health, 15(9). doi:10.3390/ijerph15092026 Saeki, K., Obayashi, K., Iwamoto, J., Tone, N., Okamoto, N., Tomioka, K., & Kurumatani, N. (2014). Stronger association of indoor temperature than outdoor temperature with blood pressure in colder months. J Hypertens, 32(8), 1582-1589. doi:10.1097/hjh.0000000000000232 Saeki, K., Obayashi, K., & Kurumatani, N. (2015). Short-term effects of instruction in home heating on indoor temperature and blood pressure in elderly people: a randomized controlled trial. J Hypertens, 33(11), 2338-2343. doi:10.1097/hjh.0000000000000729 Salthammer, T. (2022). TVOC - Revisited. Environment International, 167, 107440. doi:https://doi.org/10.1016/j.envint.2022.107440 Schweickert, A. J., & Arroyo, J. P. (2015). Back to Basics in Physiology: O2 and CO2 in the Respiratory and Cardiovascular Systems: Elsevier Science & Technology. Shimada, Y., & Matsuoka, Y. (2011). Analysis of indoor PM2.5 exposure in Asian countries using time use survey. Sci Total Environ, 409(24), 5243-5252. doi:10.1016/j.scitotenv.2011.08.041 Shiue, I., & Shiue, M. (2014). Indoor temperature below 18°C accounts for 9% population attributable risk for high blood pressure in Scotland. Int J Cardiol, 171(1), e1-2. doi:10.1016/j.ijcard.2013.11.040 Shriram, S., Ramamurthy, K., & Ramakrishnan, S. (2019). Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Building and Environment, 149, 58-67. doi:https://doi.org/10.1016/j.buildenv.2018.12.015 Silva, G. V., Martins, A. O., & Martins, S. D. S. (2021). Indoor Air Quality: Assessment of Dangerous Substances in Incense Products. Int J Environ Res Public Health, 18(15). doi:10.3390/ijerph18158086 Singh, A. (2018). WHO Housing and Health Guidelines. Singh, A., Devi, R., Kumar, Y., Kumar, P., & Upadhyay, R. (2014). Physiological changes and blood flow in Murrah buffaloes during summer and winter season. Journal of Buffalo Science, 3(2), 63-69. Snow, S., Boyson, A. S., Paas, K. H. W., Gough, H., King, M.-F., Barlow, J., . . . schraefel, m. c. (2019). Exploring the physiological, neurophysiological and cognitive performance effects of elevated carbon dioxide concentrations indoors. Building and Environment, 156, 243-252. doi:https://doi.org/10.1016/j.buildenv.2019.04.010 Tillett, T. (2012). Don't hold your breath: indoor CO2 exposure and impaired decision making. Environ Health Perspect, 120(12), A475. doi:10.1289/ehp.120-a475a Tsai, W. T. (2019). An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. Rev Environ Health, 34(1), 81-89. doi:10.1515/reveh-2018-0046 Tsao, T. M., Hwang, J. S., Chen, C. Y., Lin, S. T., Tsai, M. J., & Su, T. C. (2023). Urban climate and cardiovascular health: Focused on seasonal variation of urban temperature, relative humidity, and PM(2.5) air pollution. Ecotoxicol Environ Saf, 263, 115358. doi:10.1016/j.ecoenv.2023.115358 Umishio, W., Ikaga, T., Kario, K., Fujino, Y., Suzuki, M., Ando, S., . . . Murakami, S. (2021). Impact of indoor temperature instability on diurnal and day-by-day variability of home blood pressure in winter: a nationwide Smart Wellness Housing survey in Japan. Hypertens Res, 44(11), 1406-1416. doi:10.1038/s41440-021-00699-x Vehviläinen, T., Lindholm, H., Rintamäki, H., Pääkkönen, R., Hirvonen, A., Niemi, O., & Vinha, J. (2016). High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work. Journal of Occupational and Environmental Hygiene, 13(1), 19-29. doi:10.1080/15459624.2015.1076160 Wang, Q., Li, C., Guo, Y., Barnett, A. G., Tong, S., Phung, D., . . . Huang, C. (2017). Environmental ambient temperature and blood pressure in adults: A systematic review and meta-analysis. Science of The Total Environment, 575, 276-286. doi:https://doi.org/10.1016/j.scitotenv.2016.10.019 Wilson, T. E., Gao, Z., Hess, K. L., & Monahan, K. D. (2010). Effect of aging on cardiac function during cold stress in humans. Am J Physiol Regul Integr Comp Physiol, 298(6), R1627-1633. doi:10.1152/ajpregu.00099.2010 Wolkoff, P., Azuma, K., & Carrer, P. (2021). Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. Int J Hyg Environ Health, 233, 113709. doi:10.1016/j.ijheh.2021.113709 Wu, C. F., Shen, F. H., Li, Y. R., Tsao, T. M., Tsai, M. J., Chen, C. C., . . . Su, T. C. (2016). Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects. Sci Total Environ, 569-570, 300-305. doi:10.1016/j.scitotenv.2016.06.084 Yan, Y., Zhang, H., Kang, M., Lan, L., Wang, Z., & Lin, Y. (2022). Experimental study of the negative effects of raised bedroom temperature and reduced ventilation on the sleep quality of elderly subjects. Indoor Air, 32(11), e13159. doi:10.1111/ina.13159 Yeh, C. J., Chan, P., & Pan, W. H. (1996). Values of blood coagulating factors vary with ambient temperature: the Cardiovascular Disease Risk Factor Two-Township Study in Taiwan. Chin J Physiol, 39(2), 111-116. Zhang, Q., Du, X., Li, H., Jiang, Y., Zhu, X., Zhang, Y., . . . Kan, H. (2022). Cardiovascular effects of traffic-related air pollution: A multi-omics analysis from a randomized, crossover trial. J Hazard Mater, 435, 129031. doi:10.1016/j.jhazmat.2022.129031 Zhang, X., Wargocki, P., & Lian, Z. (2017). Physiological responses during exposure to carbon dioxide and bioeffluents at levels typically occurring indoors. Indoor Air, 27(1), 65-77. doi:10.1111/ina.12286 Zhang, Y., Chen, D., Shi, R., Kamijima, M., Sakai, K., Tian, Y., & Gao, Y. (2021). Indoor volatile organic compounds exposures and risk of childhood acute leukemia: a case-control study in shanghai. J Environ Sci Health A Tox Hazard Subst Environ Eng, 56(2), 190-198. doi:10.1080/10934529.2020.1861903 Zhang, Z., Guo, C., Lau, A. K. H., Chan, T. C., Chuang, Y. C., Lin, C., . . . Lao, X. Q. (2018). Long-Term Exposure to Fine Particulate Matter, Blood Pressure, and Incident Hypertension in Taiwanese Adults. Environ Health Perspect, 126(1), 017008. doi:10.1289/ehp2466 Zhao, H., Jivraj, S., & Moody, A. (2019). 'My blood pressure is low today, do you have the heating on?' The association between indoor temperature and blood pressure. J Hypertens, 37(3), 504-512. doi:10.1097/hjh.0000000000001924 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94826 | - |
| dc.description.abstract | 研究背景
過去研究表明PM2.5以及TVOC是高血壓顯著的危險因子之一,且室內環境空氣品質與疾病發生率以及死亡率的相關性較室外溫度更為顯著。不同季節居家空氣汙染物以及溫溼度對於健康之影響可能不同,人們在家中暴露到的環境因素對於其影響更為重要,因此本研究旨在探討夏天與冬天居家室內環境空氣品質以及溫溼度對於心血管健康之相關性,並區分為四種不同時序變化,包含即時、早晚變化、逐日早上變化以及逐日晚上變化,評估不同時序室內空氣品質以及溫溼度與相對應健康效應之相關性分析。亦將家中燒香頻率分組,探討不同燒香頻率之家戶,其空氣品質有無差異。 研究方法 本研究以臺灣北部某醫學中心心血管風險高之受試者及其家人為對象,不同季節各進行一週居家客廳室內空氣品質監測,共447人(392戶)參與2023年6至9月間進行的夏季監測,共372人(327戶)參與2023年11月底至2024年2月間進行的冬季監測。監測項目包含PM2.5濃度、TVOC濃度、CO2濃度、溫度以及相對濕度,每分鐘監測一筆,並收集受試者一週早晚量測之生理數值及量測時間點,生理數值包含兩手收縮壓、舒張壓、心跳、血氧飽和濃度以及兩耳的耳溫。 結果 夏天室內溫度以及相對濕度顯著高於冬天,而夏天室內PM2.5濃度以及TVOC濃度和冬天相比則顯著較低。本研究結果顯示冬天即時室內TVOC濃度與HR呈正相關。夏天與冬天即時室內溫度、早晚室內溫度變化以及逐日室內溫度變化皆與SBP以及DBP有顯著負相關,並與HR以及體溫有顯著正相關,且冬天室內溫度變化對於血壓以及HR之影響更為顯著。冬天即時室內溫度每降低1°C,SBP顯著上升0.74 mmHg、DBP顯著上升0.50 mmHg、HR顯著下降約0.17 bpm以及體溫顯著降低0.013°C。冬天晚上室內溫度和早上室內溫度相比,晚上每下降1°C,SBP增加0.837 mmHg、DBP增加0.546 mmHg、HR下降0.307 bpm以及體溫下降0.016°C。 夏天與冬天室內溫度對於SpO2的影響不同,夏天即時溫度以及逐日晚上溫度上升,SpO2顯著上升;冬天所有時序中,不論是即時室內溫度、早晚室內溫度變化以及逐日室內溫度變化,室內溫度上升,SpO2則顯著下降。另外,冬天室內CO2濃度變化與SpO2呈現顯著負相關,即時以及早晚變化皆有明顯之關係。 夏天與冬天逐日室內相對濕度變化與HR以及體溫有顯著正相關。夏天與冬天室內相對濕度對於血壓之影響不同;夏天SBP以及DBP隨著逐日早上室內相對濕度上升而有上升趨勢;冬天SBP以及DBP隨著即時室內相對濕度以及逐日室內相對濕度上升而下降趨勢。 關於家中燒香頻率之室內空氣品質差異,每天燒香至少一次之室內PM2.5濃度顯著較高,然而室內TVOC濃度、CO2濃度、溫度以及相對濕度和燒香頻率較少之家戶相比則無顯著差異。 結論 本研究的結果顯示冬天與夏天之室內溫度對於收縮壓以及舒張壓呈顯著負相關,且對於心跳速率以及體溫有顯著正關聯,且不論季節,夏天室內早晚溫差以及逐日溫差對於血壓以及心跳速率變化之影響與冬天室內溫差同樣重要。因此夏天與冬天,皆須將家中室內溫度以及室內相對濕度維持穩定,並降低室內相對濕度,以降低其對於血壓以及心跳速率變化幅度之影響。 | zh_TW |
| dc.description.abstract | Background
Previous studies have showed that PM2.5 and TVOC is one of the significant risk factors for hypertension, and the correlation between indoor air quality and the incidence and mortality rates of diseases is more significant than that of outdoor temperature. The impact of indoor air pollutants, temperature and relative humidity levels on health may vary across different seasons. Additionally, the environmental factors to which individuals are exposed indoors play a crucial role in influencing their health. Therefore, this study aims to investigate the relationship between indoor air quality, temperature and relative humidity levels on cardiovascular health during summer and winter. The analysis is categorized into four temporal variations, including real-time, diurnal differences, and day-by-day fluctuations, assessing the correlation between indoor air quality, temperature and relative humidity levels, and corresponding health effects. Furthermore, the study examines the differences in air quality among households with varying frequencies of incense burning. Methods The study involved participants with high cardiovascular risk and their family members from the medical center in northern Taiwan. Indoor air quality monitoring was conducted in living rooms for one week during different seasons. A total of 447 participants (392 households) were recruited for the summer survey from June to September in 2023, and 372 participants (327 households) were recruited for the winter survey from November in 2023 to February in 2024. Indoor air quality monitoring included PM2.5 concentration, TVOC concentration, CO2 concentration, temperature, and relative humidity, with data collected every minute. Additionally, measurements of blood pressure, heart rate, body temperature, and SpO2 from both sides were recorded by participants twice daily for one week, after awakening in the morning and before night sleep. Results Indoor temperature and relative humidity were significantly higher in summer compared to winter, while indoor PM2.5 and TVOC concentrations were notably lower in summer than in winter. The results showed a positive correlation between real-time indoor TVOC concentration and heart rate (HR) in winter. There were significant negative correlations between real-time indoor temperature, diurnal indoor temperature differences, daily indoor temperature fluctuations, and both systolic blood pressure (SBP) and diastolic blood pressure (DBP) in both summer and winter. Additionally, indoor temperature was positively correlated with HR and body temperature, with more pronounced effects observed in winter. A 1°C decrease in real-time indoor temperature during winter resulted in a significant increase in SBP by 0.74 mmHg, DBP by 0.50 mmHg, HR decreased by approximately 0.17 bpm, and a decrease in body temperature by 0.013°C. Compared with the indoor temperature in the morning in winter, for every 1°C decrease in indoor temperature at night, SBP increased by 0.837 mmHg, DBP increased by 0.546 mmHg, HR decreased by 0.307 bpm, and body temperature decreased by 0.016°C. The impact of indoor temperature on SpO2 varied between summer and winter. In summer, increases in real-time temperature and nightly temperature were associated with significant increases in SpO2. Conversely, in winter, indoor temperature increases across all temporal variations led to significant decreases in SpO2. In addition, indoor CO2 concentration changes in winter showed a significant negative correlation with SpO2, with a noticeable relationship between real-time and diurnal differences. Daily indoor relative humidity fluctuations were positively correlated with HR and body temperature in both summer and winter. However, the impact of relative humidity on blood pressure differed; in summer, there was a trend of increasing SBP and DBP with rising day-by-day indoor relative humidity in the morning, while in winter, SBP and DBP showed a decreasing trend with increasing real-time and day-by-day indoor relative humidity fluctuations. Regarding differences in indoor air quality based on the frequency of incense burning, households that burned incense at least once daily had significantly higher indoor PM2.5 concentrations. However, no significant differences were observed in indoor TVOC concentration, CO2 concentration, temperature, and relative humidity compared to households with lower incense burning frequencies. Conclusions The results of this study indicate a significant negative correlation between indoor temperature and both systolic and diastolic blood pressure during winter and summer, as well as a significant positive correlation with heart rate and body temperature. Regardless of the season, the impact of daily and diurnal temperature variations on blood pressure and heart rate is equally important. Therefore, it is essential to maintain stable indoor temperature and relative humidity levels during both summer and winter to minimize their effects on blood pressure and heart rate variations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:09:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T17:09:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
序言 II 摘要 III Abstract V 目次 VIII 表次 XI 附錄表 XIII 第一章 緒論 1 1.1 研究動機與重要性 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 室內空氣品質 4 2.2 懸浮微粒對於心血管健康之影響 4 2.3 室內揮發性有機化合物對於心血管健康之影響 5 2.4 室內二氧化碳對於心血管健康之影響 6 2.5 室內溫度對於心血管健康之影響 6 2.6 室內相對濕度對於心血管健康之影響 7 第三章 研究方法 8 3.1 研究設計與架構 8 3.2 研究對象與研究採樣策略 9 3.3 血壓、心跳、血氧飽和度與耳溫 9 3.4 家戶室內空氣品質監測 10 3.5 家中室內空氣品質研究問卷 10 3.6 資料統計與分析 12 3.6.1 描述性統計(Descriptive statistics) 12 3.6.2 成對樣本T檢定(Paired samples t-test) 12 3.6.3 雙因子變異數分析(Two-way Anova) 12 3.6.4 斯皮爾曼相關係數(Spearman correlation coefficient) 12 3.6.5 混合線性模型(Linear mixed-effect model) 13 3.6.6 簡單線性回歸(Simple linear regression) 14 3.6.7 多元線性回歸(Multiple linear regression) 14 第四章 研究結果 15 4.1 夏季 15 4.1.1 基本屬性及人口學變項之分布情形 15 4.1.2 家戶室內空氣品質 17 4.1.3 家戶不同燒香頻率之室內空氣品質差異分析 21 4.1.4 基本生理數值(血壓、心跳、血氧飽和度、體溫)之分布及差異 22 4.2 冬季 23 4.2.1 基本屬性及人口學變項之分布情形 23 4.2.2 家戶室內空氣品質 25 4.2.3 家戶不同燒香頻率之室內空氣品質差異分析 29 4.2.4 基本生理數值(血壓、心跳、血氧飽和度、體溫)之分布及差異 30 4.3 同季節空氣品質及其影響 31 4.3.1 不同時序之室內空氣品質相關性分析 31 4.3.2 夏天不同時序室內空氣品質對於心血管健康影響之混合線性模型分析 36 4.3.3 冬天不同時序室內空氣品質對於心血管健康影響之混合線性模型分析 48 4.4 不同季節空氣品質以及生理數值差異(同時參與兩個季節之族群) 61 4.4.1 不同季節家戶室內空氣品質差異分析 61 4.4.2 不同季節基本生理數值差異分析 62 第五章 討論 64 5.1 同時參與夏季與冬季之家戶室內空氣品質狀況分析 64 5.2 不同季節家中燒香頻率對於室內空氣品質之差異 66 5.3 居家室內PM2.5濃度對於心血管健康之相關性 66 5.4 居家室內TVOC濃度對於心血管功能之相關性 67 5.5 居家室內CO2濃度對於心血管健康之相關性 68 5.6 居家室內溫度對於心血管健康之相關性 69 5.7 居家室內相對溼度對於心血管健康之相關性及影響 72 5.8 研究限制 74 第六章 結論 76 參考文獻 79 附錄 88 附件 104 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 室內相對濕度 | zh_TW |
| dc.subject | 室內溫度 | zh_TW |
| dc.subject | 血壓 | zh_TW |
| dc.subject | 心跳 | zh_TW |
| dc.subject | 血氧飽和度 | zh_TW |
| dc.subject | 室內空氣品質 | zh_TW |
| dc.subject | Heart Rate | en |
| dc.subject | SpO2 | en |
| dc.subject | Blood Pressure | en |
| dc.subject | Indoor Relative Humidity | en |
| dc.subject | Indoor Temperature | en |
| dc.subject | Indoor Air Quality | en |
| dc.title | 室內環境空氣品質及溫濕度對於心血管健康的影響-關注夏季與冬季 | zh_TW |
| dc.title | Effects of Indoor Environmental Air Quality, Temperature and Relative Humidity on Cardiovascular Health: Focused on Summer and Winter | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳佳堃;詹長權;黃景祥;周崇光 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Kun Chen;Chang-Chuan Chan;Jing-Shiang Hwang;Charles C.-K. Chou | en |
| dc.subject.keyword | 室內空氣品質,室內溫度,室內相對濕度,血壓,心跳,血氧飽和度, | zh_TW |
| dc.subject.keyword | Indoor Air Quality,Indoor Temperature,Indoor Relative Humidity,Blood Pressure,Heart Rate,SpO2, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202402238 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
