Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王姻麟zh_TW
dc.contributor.advisorYin-Lin Wangen
dc.contributor.author華芳瑩zh_TW
dc.contributor.authorFang-Ying Huaen
dc.date.accessioned2024-08-19T17:05:00Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationNasseh, I. and W. Al-Rawi, Cone Beam Computed Tomography. Dent Clin North Am, 2018. 62(3): p. 361-391.
Oh, S.H., et al., Detection of Dental Caries and Cracks with Quantitative Light-Induced Fluorescence in Comparison to Radiographic and Visual Examination: A Retrospective Case Study. Sensors (Basel), 2021. 21(5).
Strassler, H.E. and M.L. Pitel, Using fiber-optic transillumination as a diagnostic aid in dental practice. Compend Contin Educ Dent, 2014. 35(2): p.80-8.
Litzenburger, F., et al., Diagnostic validity of early proximal caries detection using near-infrared imaging technology on 3D range data of posterior teeth. Clin Oral Investig, 2022. 26(1): p. 543-553.
He, L.H. and M.V. Swain, Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater, 2008. 1(1): p. 18-29.
Xu, J., et al., Advanced materials for enamel remineralization. Front Bioeng Biotechnol, 2022. 10: p. 985881.
Colston, B.W., Jr., et al., Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt, 1998. 37(16): p. 3582-5.
Featherstone, J.D., The science and practice of caries prevention. J Am Dent Assoc, 2000. 131(7): p. 887-99.
Loesche, W.J., Role of Streptococcus mutans in human dental decay. Microbiol Rev, 1986. 50(4): p. 353-80.
Selwitz, R.H., A.I. Ismail, and N.B. Pitts, Dental caries. Lancet, 2007. 369(9555): p. 51-9.
Marsh, P.D., Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health, 2006. 6 Suppl 1(Suppl 1): p. S14.
Kutsch, V.K. and D.A. Young, New directions in the etiology of dental caries disease. J Calif Dent Assoc, 2011. 39(10): p. 716-21.
Takahashi, N. and B. Nyvad, The role of bacteria in the caries process: ecological perspectives. J Dent Res, 2011. 90(3): p. 294-303.
Featherstone, J.D., Remineralization, the natural caries repair process--the need for new approaches. Adv Dent Res, 2009. 21(1): p. 4-7.
Buzalaf, M.A., et al., pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci, 2010. 18(4): p. 316-34.
Young, D.A., et al., The American Dental Association Caries Classification System for clinical practice: a report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc, 2015. 146(2): p. 79-86.
Macey, R., et al., Visual or visualtactile examination to detect and inform the diagnosis of enamel caries. Cochrane Database of Systematic Reviews, 2021(6).
Cınar, C., et al., Comparison of laser fluorescence devices for detection of caries in primary teeth. Int Dent J, 2013. 63(2): p. 97-102.
Longbottom, C. and M.C. Huysmans, Electrical measurements for use in caries clinical trials. J Dent Res, 2004. 83 Spec No C: p. C76-9.
Ng, S.Y., et al., Ultrasonic studies of unblemished and artificially demineralized enamel in extracted human teeth: a new method for detecting early caries. J Dent, 1988. 16(5): p. 201-9.
Katkar, R.A., et al., Optical Coherence Tomography. Dent Clin North Am, 2018. 62(3): p. 421-434.
Shimada, Y., et al., Evaluation of dental caries, tooth crack, and age-related changes in tooth structure using optical coherence tomography. Jpn Dent Sci Rev, 2020. 56(1): p. 109-118.
Shimada, Y., et al., Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. J Biophotonics, 2014. 7(7): p. 506-13.
Macey, R., et al., Transillumination and optical coherence tomography for the detection and diagnosis of enamel caries. Cochrane Database Syst Rev, 2021. 1(1): p. Cd013855.
Zakian, C.M., et al., Occlusal caries detection by using thermal imaging. J Dent, 2010. 38(10): p. 788-95.
Nicolaides, L., et al., Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence. Appl Opt, 2002. 41(4): p. 768-77.
Mishra, M. and S. Mishra, Lasers and its Clinical Applications in Dentistry. International Journal of Dental Clinics, 2011. 3.
Jeon, R.J., et al., Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and
modulated luminescence. J Biomed Opt, 2007. 12(3): p. 034028.
Singh, V.K. and A.K. Rai, Potential of laser-induced breakdown spectroscopy for the rapid identification of carious teeth. Lasers Med Sci, 2011. 26(3): p. 307-15.
Ling, Y., et al., Theoretical imaging study of early caries by a laser induced Rayleigh wave. Applied Optics, 2017. 56(25): p. 7182-7187.
Rayleigh, L., On Waves Propagated along the Plane Surface of an Elastic Solid. Proceedings of The London Mathematical Society, 1885: p. 4-11.
da Silva, E.J., et al., Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range. Imaging Sci Dent, 2021. 51(2): p. 107-115.
Das, A., et al., Exploiting Nanomaterials for Optical Coherence Tomography and Photoacoustic Imaging in Nanodentistry. Nanomaterials (Basel), 2022.
12(3).
Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81.
Oh, B.H., K.H. Kim, and K.Y. Chung, Skin Imaging Using Ultrasound Imaging, Optical Coherence Tomography, Confocal Microscopy, and Two-Photon Microscopy in Cutaneous Oncology. Front Med (Lausanne), 2019. 6: p.274.
Minakaran, N., et al., Optical coherence tomography (OCT) in neuroophthalmology. Eye (Lond), 2021. 35(1): p. 17-32.
Varga, Z., et al., Optical Coherence Tomography in Intracoronary Diagnostics. S D Med, 2020. 73(5): p. 202-207.
Schuman, J.S., Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc, 2008. 106: p. 426-58.
Leitgeb, R., C. Hitzenberger, and A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt Express, 2003. 11(8): p.889-94.
Zeppieri, M., et al., Optical Coherence Tomography (OCT): A Brief Look at the Uses and Technological Evolution of Ophthalmology. Medicina (Kaunas), 2023. 59(12).
Shimada, Y., et al., Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent, 2010. 38(8): p. 655-65.
Li, X., Y. Huang, and Q. Hao, Automated robot-assisted wide-field optical coherence tomography using structured light camera. Biomed Opt Express, 2023. 14(8): p. 4310-4325.
Otis, L.L., et al., Dental optical coherence tomography: a comparison of two in vitro systems. Dentomaxillofac Radiol, 2000. 29(2): p. 85-9.
Bakhsh, T.A., Optical comparison between micro-CT and OCT in imaging of marginal composite adaptation: Observational study. J Microsc, 2021. 282(2):p. 136-145.
Thomas, C.S., et al., Cross-sectional visual comparison of remineralization efficacy of various agents on early smooth surface caries of primary teeth with swept source optical coherence tomography. J Oral Biol Craniofac Res, 2021.11(4): p. 628-637.
Schneider, H., et al., An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations. J Clin Med,2020. 9(10).
Fried, D., et al., In vivo Near-IR Imaging of Occlusal Lesions at 1310-nm. Proc SPIE Int Soc Opt Eng, 2011. 7884(78840b).
Marshall, G.W., Jr., et al., The dentin substrate: structure and properties related to bonding. J Dent, 1997. 25(6): p. 441-58.
Fried, D., et al., Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Opt, 1995. 34(7): p. 1278-85.
Nakagawa, H., et al., Validation of swept source optical coherence tomography(SS-OCT) for the diagnosis of smooth surface caries in vitro. J Dent, 2013.41(1): p. 80-9.
Hariri, I., et al., Estimation of the enamel and dentin mineral content from the refractive index. Caries Res, 2013. 47(1): p. 18-26.
Abdelrehim, T., et al., Auto-Segmentation and Quantification of Non-Cavitated Enamel Caries Imaged with Swept-Source Optical Coherence Tomography. Diagnostics (Basel), 2023. 13(23).
Schmitt, J.M., S.H. Xiang, and K.M. Yung, Speckle in optical coherence tomography. J Biomed Opt, 1999. 4(1): p. 95-105.
Schmitt, J.M., Array detection for speckle reduction in optical coherence microscopy. Phys Med Biol, 1997. 42(7): p. 1427-39.
Kang, H., C.L. Darling, and D. Fried, Enhancing the detection of hidden occlusal caries lesions with OCT using high index liquids. Proc SPIE Int Soc Opt Eng, 2014. 8929: p. 89290o.
Vásárhelyi, L., et al., Microcomputed tomography–based characterization of advanced materials: a review. Materials Today Advances, 2020. 8: p. 100084.
Chałas, R., et al., Observations of mineralised tissues of teeth in X-ray microcomputed tomography. Folia Morphol (Warsz), 2017. 76(2): p. 143-148.
Gugnani, N., et al., International Caries Detection and Assessment System (ICDAS): A New Concept. Int J Clin Pediatr Dent, 2011. 4(2): p. 93-100.
Mejàre, I., et al., Caries development from 11 to 22 years of age: a prospective radiographic study. Prevalence and distribution. Caries Res, 1998. 32(1): p.10-6.
Niyazmand, H., et al., The effect of transverse ocular magnification adjustment on macular thickness profile in different refractive errors in community-based adults. PLoS One, 2022. 17(4): p. e0266909.
Tohnak, S., et al., A Pilot Study of Grayscale Value to Differentiate Cavitated Carious Lesion from Non-cavitated Lesion. Journal of International Dental and Medical Research, 2018. 11(2): p. 445-448.
Erdelyi, R.A., et al., Dental Diagnosis and Treatment Assessments: Between Xrays Radiography and Optical Coherence Tomography. Materials (Basel), 2020. 13(21).
Erdelyi, R.A., et al., Optimization of X-ray Investigations in Dentistry Using Optical Coherence Tomography. Sensors (Basel), 2021. 21(13).
Holtzman, J.S., et al., Assessment of early occlusal caries pre- and post-sealant application--an imaging approach. Lasers Surg Med, 2014. 46(6): p. 499-507.
Wenzel, A., M.J. Larsen, and O. Fejerskov, Detection of occlusal caries without cavitation by visual inspection, film radiographs, xeroradiographs, and digitized radiographs. Caries Res, 1991. 25(5): p. 365-71.
Thomas, M.F., D.N. Ricketts, and R.F. Wilson, Occlusal caries diagnosis in molar teeth from bitewing and panoramic radiographs. Prim Dent Care, 2001.8(2): p. 63-9.
Arnold, W.H., P. Gaengler, and L. Kalkutschke, Three-dimensional reconstruction of approximal subsurface caries lesions in deciduous molars. Clin Oral Investig, 1998. 2(4): p. 174-9.
Shimamura, Y., et al., Influence of tooth-surface hydration conditions on optical coherence-tomography imaging. J Dent, 2011. 39(8): p. 572-7.
Schneider, H., et al., Dental Applications of Optical Coherence Tomography (OCT) in Cariology. Applied Sciences, 2017. 7: p. 472.
Hariri, I., et al., Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: an optical coherence tomography study. J Dent, 2012. 40(5): p. 387-96.
Miyagi, H., et al., Assessment of the Accuracy in Measuring the Enamel Thickness of Maxillary Incisors with Optical Coherence Tomography. Diagnostics (Basel), 2022. 12(7).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94824-
dc.description.abstract背景:齲⿒是全球最常見的⼝腔疾病之⼀,對患者的⼝腔健康和⽣活質量有重⼤影響。早期診斷和治療對預防齲⿒惡化⾄關重要。傳統X 光檢查雖能提供詳細影像,但存在輻射暴露和解析度有限的問題。光學同調斷層掃描術(Optical Coherence Tomography, OCT)是⼀種非侵⼊性、⾼解析度且無輻射的技術,已在眼科等領域取得成果。OCT能即時提供微(μm)級的⽣物組織斷層影像並⽣成三維圖像。儘管OCT在發明五年後即有商用機種,但在牙科領域仍主要停留在學研階段,顯示出其在牙⿒硬組織掃描上的挑戰,主要包括:(1)成像深度和品質受限於光學系統和牙⿒光學性質;(2)OCT影像對比度依賴牙⿒內部組織的光學特性分布,但牙釉菱柱和牙本質小管的線性排列會導致非等向性和雙折射效應。
研究目的:本研究旨在評估OCT在牙⿒硬組織和齲⿒檢測中的效果,並將其與其他成像技術(如X 光和錐狀射束電腦斷層掃描(Cone Beam Computed Tomography,CBCT))進⾏比較,以確定OCT在齲⿒診斷中的優勢和局限性。同時,研究還探索了使用⾼折射率液體(如甘油)提⾼OCT影像質量的⽅法,並研究多角度掃描和顏⾊映射技術在OCT影像中的應用,評估其對影像清晰度和診斷準確性的影響。此外,還使用OCT對⿒質厚度進⾏測量,以探討其準確性。期望OCT能夠為臨床牙科診斷提供更精確和有效的技術支持。
材料與⽅法:本研究收集了多個牙⿒樣本,並利用掃頻式光學同調斷層掃描系統(SSOCT)對其進⾏掃描。首先對牙⿒樣本進⾏清潔和編號,然後選取特定位置使用SS-OCT進⾏掃描。此外,記錄目視檢查、X 光檢查和CBCT的齲⿒檢測結果,以評估這些⽅法在齲⿒偵測中的準確性。影像優化實驗分為三個部分:第⼀,觀察塗抹甘油後影像的優化效果;第⼆,使用多角度影像合成技術,包括正面和左右旋轉5 度角的影像,並將這些影像與未塗甘油的影像及Micro CT影像進⾏比較;第三,嘗試使用顏⾊映射技術標記齲⿒病變區域,以提⾼影像的可視化效果。影像的比較以微米級電腦斷層掃描造影系統(Micro-CT)影像作為黃⾦標準,Micro-CT和OCT影像皆匯⼊Amira® 3D Pro(Thermo Fisher Scientific, USA)軟體進⾏3D 影像重組及資料分析。最後,使用SS-OCT系統測量⿒質厚度,以驗證其準確性和可⾏性,並使用Excel軟體中的資料分析功能進⾏統計分析並繪圖。
結果:研究結果顯示,OCT能夠清晰顯示齲⿒病變區域的結構特徵,在早期齲⿒偵測中具有較⾼的靈敏度和準確性。與X 光和CBCT相比,OCT在非侵⼊性診斷⽅面具有優勢,特別是在避免輻射暴露和提供更⾼解析度影像⽅面。使用甘油處理後,OCT影像的對比度和清晰度顯著提⾼,影像深度也有所提升。多角度掃描和影像合成技術增加了影像資訊,進⼀步提升影像品質。此外,顏⾊映射技術使得OCT影像中的齲⿒病變區域更加直觀且易於識
別。⿒質厚度測量結果顯示,⼿動測量與OCT測量數據具有⾼度的線性相關性,但當樣本厚度超過2mm時,⼿動測量值和OCT測量值之間的誤差明顯增⼤。
結論:OCT在齲⿒早期偵測中展現出巨⼤潛⼒,能夠提供無輻射、⾼解析度的牙⿒結構影像。與傳統X 光和CBCT技術相比,OCT在初期齲⿒診斷中具有更⾼的靈敏度和準確度,為臨床牙科提供了⼀種更安全、有效的診斷⼯具。使用甘油可進⼀步提⾼OCT影像品質,多角度掃描影像合成技術能增加影像資訊,提升影像的清晰度和對比度。顏⾊映射技術使齲⿒病變區域的可視化更加直觀。剩餘⿒質厚度的測量結果顯示了使用OCT測量⿒質厚度的可⾏性。未來的研究應著重於推廣OCT技術的臨床應用,並探索更多提⾼影像品質的⽅法。
zh_TW
dc.description.abstractBackground: Dental caries is one of the most common oral diseases worldwide, significantly impacting patients' oral health and quality of life. Early diagnosis and treatment are crucial to prevent further deterioration. Traditional X-ray examinations, while providing detailed images, pose issues such as radiation exposure and limited resolution. Optical Coherence Tomography (OCT) is a non-invasive, high-resolution, and radiation-free imaging technique that has achieved significant success in fields like ophthalmology. OCT can provide real-time, micron (μm)-level cross-sectional images of biological tissues and generate threedimensional images. Although commercial OCT devices became available five years after its invention, its application in dentistry remains primarily at the research stage, highlighting challenges in scanning hard dental tissues. The main challenges include: (1) imaging depth and quality being limited by optical systems and the optical properties of teeth; (2) OCT image contrast relying on the distribution of optical properties within the tooth, with the linear arrangement of enamel prisms and dentinal tubules causing anisotropy and birefringence effects.
Purpose: This study aims to evaluate the effectiveness of OCT in detecting dental hard tissues and caries, and to compare it with other imaging techniques such as X-rays and Cone Beam Computed Tomography (CBCT) to determine the advantages and limitations of OCT in caries diagnosis. Additionally, the study explores methods to enhance OCT image quality using high refractive index fluids (e.g., glycerin), and investigates the application of multi-angle scanning and color mapping techniques in OCT imaging, assessing their impact on image clarity and diagnostic accuracy. Furthermore, OCT will be used to measure dental tissue thickness to examine its accuracy. It is hoped that OCT can provide more precise and effective technical support for clinical dental diagnosis.
Materials and methods: In this study, multiple tooth samples were collected and scanned using a Swept-Source Optical Coherence Tomography (SS-OCT) system. First, the tooth samples were cleaned and numbered, and then specific locations were selected for SS-OCT scanning. Additionally, visual examination, X-ray examination, and CBCT examination results were recorded to evaluate the accuracy of these methods in detecting caries. The image optimization experiment was divided into three parts: first, observing the optimization effects of images after applying glycerin; second, using multi-angle image synthesis techniques, including images from the front and 5-degree rotations to the left and right, and comparing these images with those without glycerin application and with Micro-CT images; and third, attempting to use color mapping techniques to mark caries lesion areas to enhance image visualization. The comparison of images used Micro-CT images as the gold standard. Both Micro-CT and OCT images were imported into Amira® 3D Pro (Thermo Fisher Scientific, USA) software for 3D image reconstruction and data analysis. Finally, the SS-OCT system was used to measure the thickness of the tooth structure to verify its accuracy and feasibility. Statistical analysis and plotting were performed using the data analysis functions in Excel software.
Results: The research results indicate that OCT can clearly reveal the structural characteristics of carious lesions and has high sensitivity and accuracy in the early detection of dental caries. Compared to X-rays and CBCT, OCT has advantages in non-invasive diagnosis, particularly in avoiding radiation exposure and providing higher resolution images. After applying glycerin, the contrast and clarity of OCT images significantly improve, and the imaging depth is also enhanced. Multi-angle scanning and image synthesis techniques increase the amount of image information, further improving image quality. Additionally, the use of color mapping techniques makes the carious lesion areas in OCT images more intuitive and easier to identify. Measurements of tooth thickness show a high linear correlation between manual measurements and OCT data, but when the sample thickness exceeds 2mm, the discrepancy between manual measurements and OCT measurements increases significantly.
Conclusion: OCT shows great potential in early caries detection, providing radiation-free, high resolution images of dental structures. Compared to traditional X-ray and CBCT techniques, OCT offers higher sensitivity and accuracy in the diagnosis of early caries, providing a safer and more effective diagnostic tool for clinical dentistry. The use of glycerin can further enhance the quality of OCT images. Multi-angle scanning and image synthesis techniques can increase image information, improving image clarity and contrast. The color mapping technique makes the visualization of caries lesions more intuitive. The results of measuring the dental tissue thickness demonstrate the feasibility of using OCT for this purpose. Future research should focus on promoting the clinical application of OCT technology and exploring more methods to improve image quality.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:04:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T17:05:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中⽂摘要 ii
Abstract iv
第⼀章 序論 1
1.1 研究動機與目的 1
1.2 論⽂架構 2
第⼆章 ⽂獻回顧 3
2.1 現⾏⼝腔內成像技術 3
2.1.1 放射線攝影術 ( Radiography ) 3
2.1.2 牙科錐狀射束電腦斷層掃描術( Cone-beam computed tomography,CBCT ) 4
2.1.3 定量光激發螢光術(Quantitative light-induced fluorescence, QLF) 4
2.1.4 光纖透照術(Fiber-optic transillumination, FOTI) 5
2.1.5 ⼝腔內掃描機(Intraoral scanner, IOS) 6
2.1.6 光學同調斷層掃描術(Optical Coherence Tomography, OCT) 7
2.2 牙⿒組織結構與光學特性 7
2.2.1 牙⿒的組織結構 7
2.2.2 牙⿒的光學特性 9
2.3 齲⿒ 9
2.3.1 致病機制 9
2.3.2 齲⿒分類 10
2.4 齲⿒之早期偵測 11
2.4.1 齲⿒早期偵測的重要性 11
2.4.2 齲⿒早期偵測之現⾏⽅法 11
2.4.3 齲⿒早期偵測發展中⽅法 13
2.5 光學同調斷層掃描術(Optical Coherence Tomography, OCT ) 15
2.5.1 光學同調斷層掃描術概論 15
2.5.2 光學同調斷層掃描原理與發展簡史 15
2.5.3 光學同調斷層掃描術現今於醫療領域之應用 17
2.5.4 光學同調斷層掃描術於早期偵測齲⿒之應用及潛⼒ 17
2.5.5 牙⿒在光學同調斷層掃描上的成像 19
2.5.6 光學同調斷層掃描影像中的散斑雜訊(Speckle noise) 20
2.6 微米級電腦斷層掃描造影系統(Micro-CT) 應用 21
第三章 實驗材料與⽅法 22
3.1 牙⿒收集與樣本備製 23
3.2 光學同調斷層掃描系統 23
3.2.1 光學同調斷層掃描術系統架構 23
3.2.2 多視向取像平台設置 24
3.2.3 光學同調斷層掃描術系統特性 24
3.3 測量與分析⽅法 25
3.3.1 目視檢查 25
3.3.2 牙科X 光片檢查 26
3.3.3 微米級電腦斷層掃描造影與分析(Micro-Computed Tomography) 26
3.3.4 錐狀射束電腦斷層掃描造影與分析(Cone-Beam Computed Tomography) 27
3.3.5 光學同調斷層( OCT )掃描分析 27
3.3.6 多視角牙⿒OCT影像合成 28
3.3.7 OCT與其他檢測⽅法診斷效度的比較:以Micro CT為黃⾦標準 29
3.3.8 牙⿒厚度偵測樣本備製與檢測 29
第四章 結果 31
4.1 光學同調斷層掃描(OCT)⿒質結構影像分析 31
4.1.1 OCT齲⿒成像 32
4.2 OCT與其他檢測⽅法診斷效度的比較結果:以Micro CT為黃⾦標準 35
4.2.1 OCT 於咬合面齲⿒檢測與其他診斷⽅法的比較 35
4.2.2 OCT於平滑面齲⿒檢測與其他診斷⽅法的比較 35
4.2.3 比較OCT、X 光和CBCT對齲⿒深度的檢測能⼒ 36
4.3 光學同調斷層掃描優化影像⿒質結構影像分析結果 37
4.3.1 使用甘油的牙⿒影像分析 37
4.3.2 基於平均亮度值和最⼤亮度值的三個掃描角度影像合成拼接 38
4.3.3 使用Amira® 3D Pro 進⾏顏⾊映射的OCT影像分析 39
4.4 光學同調斷層掃描於⿒質厚度測量分析 41
4.4.1 ⼿動測量值與OCT測量值 41
4.4.2 ⼿動測量值與OCT測量值的相關性 41
第五章 討論 42
5.1 光學同調斷層掃描⿒質結構影像分析結果討論 42
5.2 光學同調斷層掃描術於⿒質變化檢測與其他臨床常用成像技術比較 44
5.2.1 OCT 於齲⿒與其他診斷⽅法的比較: 44
5.2.2 OCT、X 光和CBCT對齲⿒深度的檢測能⼒ 45
5.3 甘油的使用在影像優化的效果 45
5.4 多角度影像拼接的影像優化效果 46
5.5 使用顏⾊映射(colormap)標記齲⿒位置 47
5.6 光學同調斷層掃描於⿒質厚度的測量討論 48
5.7 未來發展及展望 49
第六章 結論 50
第七章 未來研究⽅向 52
附圖 54
附表 105
參考⽂獻 113
-
dc.language.isozh_TW-
dc.title光學同調斷層掃描術應用於牙⿒硬組織偵測之研究zh_TW
dc.titleApplication of Optical Coherence Tomography in Dental Hard Tissueen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林俊彬;李翔傑zh_TW
dc.contributor.oralexamcommitteeChun-Pin Lin;Hsiang-Chieh Leeen
dc.subject.keyword掃頻光源式光學同調斷層掃描術,光學同調斷層掃描術影像分析,牙⿒結構影像,齲⿒偵測,微米級電腦斷層掃描造影系統,多角度影像合成,zh_TW
dc.subject.keywordSwept-source OCT,OCT image analysis,Dental structure imaging,Caries detection,Micro-CT imaging system,Multi-angle image synthesis,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202402832-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf163.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved