請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94822完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張以承 | zh_TW |
| dc.contributor.advisor | Yi-Cheng Chang | en |
| dc.contributor.author | 楊為舜 | zh_TW |
| dc.contributor.author | Wei-shun Yang | en |
| dc.date.accessioned | 2024-08-19T17:00:02Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-12 | - |
| dc.identifier.citation | 1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O'Callaghan CA, Lasserson DS, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765.
2. Chapter 1: CKD in the General Population. American Journal of Kidney Diseases. 2018;71(3):S9-S30. 3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-305. 4. Fried LF, Katz R, Sarnak MJ, Shlipak MG, Chaves PH, Jenny NS, et al. Kidney function as a predictor of noncardiovascular mortality. J Am Soc Nephrol. 2005;16(12):3728-35. 5. Xie Y, Bowe B, Xian H, Balasubramanian S, Al-Aly Z. Rate of Kidney Function Decline and Risk of Hospitalizations in Stage 3A CKD. Clin J Am Soc Nephrol. 2015;10(11):1946-55. 6. Chapter 3: Morbidity and Mortality in Patients With CKD. American Journal of Kidney Diseases. 2018;71(3):S47-S76. 7. Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA. 2019;322(13):1294-304. 8. Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol. 2011;6(10):2444-51. 9. Packham DK, Alves TP, Dwyer JP, Atkins R, de Zeeuw D, Cooper M, et al. Relative incidence of ESRD versus cardiovascular mortality in proteinuric type 2 diabetes and nephropathy: results from the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency Consortium) database. Am J Kidney Dis. 2012;59(1):75-83. 10. Yokoyama H, Araki S, Haneda M, Matsushima M, Kawai K, Hirao K, et al. Chronic kidney disease categories and renal-cardiovascular outcomes in type 2 diabetes without prevalent cardiovascular disease: a prospective cohort study (JDDM25). Diabetologia. 2012;55(7):1911-8. 11. Wada T, Haneda M, Furuichi K, Babazono T, Yokoyama H, Iseki K, et al. Clinical impact of albuminuria and glomerular filtration rate on renal and cardiovascular events, and all-cause mortality in Japanese patients with type 2 diabetes. Clin Exp Nephrol. 2014;18(4):613-20. 12. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015;3(7):514-25. 13. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-81. 14. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713-35. 15. Yu SM, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne). 2018;5:221. 16. D'Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63(3):809-25. 17. Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nature Reviews Methods Primers. 2021;1(1):59. 18. Hosoe J, Suzuki K, Miya F, Kato T, Tsunoda T, Okada Y, et al. Structural basis of ethnic-specific variants of PAX4 associated with type 2 diabetes. Hum Genome Var. 2021;8(1):25. 19. Takeuchi F, Yokota M, Yamamoto K, Nakashima E, Katsuya T, Asano H, et al. Genome-wide association study of coronary artery disease in the Japanese. Eur J Hum Genet. 2012;20(3):333-40. 20. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677-87. 21. Moltke I, Grarup N, Jorgensen ME, Bjerregaard P, Treebak JT, Fumagalli M, et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. 2014;512(7513):190-3. 22. Manousaki D, Kent JW, Jr., Haack K, Zhou S, Xie P, Greenwood CM, et al. Toward Precision Medicine: TBC1D4 Disruption Is Common Among the Inuit and Leads to Underdiagnosis of Type 2 Diabetes. Diabetes Care. 2016;39(11):1889-95. 23. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-3. 24. Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56(10):2631-7. 25. Ng MC, Tam CH, Lam VK, So WY, Ma RC, Chan JC. Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab. 2007;92(9):3733-7. 26. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092-7. 27. Replication DIG, Meta-analysis C, Asian Genetic Epidemiology Network Type 2 Diabetes C, South Asian Type 2 Diabetes C, Mexican American Type 2 Diabetes C, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples C, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234-44. 28. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-91. 29. Boger CA, Chen MH, Tin A, Olden M, Kottgen A, de Boer IH, et al. CUBN is a gene locus for albuminuria. J Am Soc Nephrol. 2011;22(3):555-70. 30. Trudu M, Janas S, Lanzani C, Debaix H, Schaeffer C, Ikehata M, et al. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression. Nat Med. 2013;19(12):1655-60. 31. Franceschini N, Haack K, Almasy L, Laston S, Lee ET, Best LG, et al. Generalization of associations of kidney-related genetic loci to American Indians. Clin J Am Soc Nephrol. 2014;9(1):150-8. 32. Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 2012;44(8):904-9. 33. Hishida A, Nakatochi M, Akiyama M, Kamatani Y, Nishiyama T, Ito H, et al. Genome-Wide Association Study of Renal Function Traits: Results from the Japan Multi-Institutional Collaborative Cohort Study. Am J Nephrol. 2018;47(5):304-16. 34. Lee J, Lee Y, Park B, Won S, Han JS, Heo NJ. Genome-wide association analysis identifies multiple loci associated with kidney disease-related traits in Korean populations. PLoS One. 2018;13(3):e0194044. 35. Teumer A, Tin A, Sorice R, Gorski M, Yeo NC, Chu AY, et al. Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes. 2016;65(3):803-17. 36. Haas ME, Aragam KG, Emdin CA, Bick AG, International Consortium for Blood P, Hemani G, et al. Genetic Association of Albuminuria with Cardiometabolic Disease and Blood Pressure. Am J Hum Genet. 2018;103(4):461-73. 37. Teumer A, Li Y, Ghasemi S, Prins BP, Wuttke M, Hermle T, et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat Commun. 2019;10(1):4130. 38. Zanetti D, Rao A, Gustafsson S, Assimes TL, Montgomery SB, Ingelsson E. Identification of 22 novel loci associated with urinary biomarkers of albumin, sodium, and potassium excretion. Kidney Int. 2019;95(5):1197-208. 39. Okuda H, Okamoto K, Abe M, Ishizawa K, Makino S, Tanabe O, et al. Genome-wide association study identifies new loci for albuminuria in the Japanese population. Clin Exp Nephrol. 2020;24(8):1-9. 40. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021;53(2):185-94. 41. Gagliano Taliun SA, Dinsmore IR, Mirshahi T, Chang AR, Paterson AD, Barua M. GWAS for the composite traits of hematuria and albuminuria. Sci Rep. 2023;13(1):18084. 42. Dalrymple LS, Katz R, Kestenbaum B, de Boer IH, Fried L, Sarnak MJ, et al. The risk of infection-related hospitalization with decreased kidney function. Am J Kidney Dis. 2012;59(3):356-63. 43. Ishigami J, Grams ME, Chang AR, Carrero JJ, Coresh J, Matsushita K. CKD and Risk for Hospitalization With Infection: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis. 2017;69(6):752-61. 44. James MT, Quan H, Tonelli M, Manns BJ, Faris P, Laupland KB, et al. CKD and risk of hospitalization and death with pneumonia. Am J Kidney Dis. 2009;54(1):24-32. 45. McDonald HI, Thomas SL, Millett ER, Nitsch D. CKD and the risk of acute, community-acquired infections among older people with diabetes mellitus: a retrospective cohort study using electronic health records. Am J Kidney Dis. 2015;66(1):60-8. 46. Dalrymple LS, Go AS. Epidemiology of acute infections among patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(5):1487-93. 47. Wang HE, Gamboa C, Warnock DG, Muntner P. Chronic kidney disease and risk of death from infection. Am J Nephrol. 2011;34(4):330-6. 48. Xu H, Gasparini A, Ishigami J, Mzayen K, Su G, Barany P, et al. eGFR and the Risk of Community-Acquired Infections. Clin J Am Soc Nephrol. 2017;12(9):1399-408. 49. Su G, Xu H, Marrone G, Lindholm B, Wen Z, Liu X, et al. Chronic kidney disease is associated with poorer in-hospital outcomes in patients hospitalized with infections: Electronic record analysis from China. Sci Rep. 2017;7(1):11530. 50. Bursle EC, Dyer J, Looke DF, McDougall DA, Paterson DL, Playford EG. Risk factors for urinary catheter associated bloodstream infection. J Infect. 2015;70(6):585-91. 51. Samanipour A, Dashti-Khavidaki S, Abbasi MR, Abdollahi A. Antibiotic resistance patterns of microorganisms isolated from nephrology and kidney transplant wards of a referral academic hospital. J Res Pharm Pract. 2016;5(1):43-51. 52. Ben-Ami R, Berman J, Novikov A, Bash E, Shachor-Meyouhas Y, Zakin S, et al. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis. 2017;23(1). 53. Ostermann M, Palchaudhuri P, Riding A, Begum P, Milburn HJ. Incidence of tuberculosis is high in chronic kidney disease patients in South East England and drug resistance common. Ren Fail. 2016;38(2):256-61. 54. Phatharacharukul P, Thongprayoon C, Cheungpasitporn W, Edmonds PJ, Mahaparn P, Bruminhent J. The Risks of Incident and Recurrent Clostridium difficile-Associated Diarrhea in Chronic Kidney Disease and End-Stage Kidney Disease Patients: A Systematic Review and Meta-Analysis. Dig Dis Sci. 2015;60(10):2913-22. 55. Thongprayoon C, Cheungpasitporn W, Phatharacharukul P, Edmonds PJ, Kaewpoowat Q, Mahaparn P, et al. Chronic kidney disease and end-stage renal disease are risk factors for poor outcomes of Clostridium difficile infection: a systematic review and meta-analysis. Int J Clin Pract. 2015;69(9):998-1006. 56. Chapter 4: Other complications of CKD: CVD, medication dosage, patient safety, infections, hospitalizations, and caveats for investigating complications of CKD. Kidney International Supplements. 2013;3(1):91-111. 57. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016;25(24):5321-31. 58. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-75. 59. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10(1):5-6. 60. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955-9. 61. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11(7):499-511. 62. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-8. 63. Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32(4):381-5. 64. Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics. 2008;9:516. 65. Fallin MD, Kao WH. Is "X"-WAS the future for all of epidemiology? Epidemiology. 2011;22(4):457-9; discussion 67-8. 66. Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. 2014:005165. 67. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26(18):2336-7. 68. team Rdc. R: a language and enviroment for statistical computing. Vienna, Austria: R Fundation for Statistical Computing; 2010. 69. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. 70. Hsing AW, Ioannidis JP. Nationwide Population Science: Lessons From the Taiwan National Health Insurance Research Database. JAMA Intern Med. 2015;175(9):1527-9. 71. Chan CK, Hu YH, Chen L, Chang CC, Lin YF, Lai TS, et al. Risk of sepsis in patients with primary aldosteronism. Crit Care. 2018;22(1):313. 72. Huang ST, Lin CL, Chang YJ, Sher YP, Wu MJ, Shu KH, et al. Pneumococcal pneumonia infection is associated with end-stage renal disease in adult hospitalized patients. Kidney Int. 2014;86(5):1023-30. 73. Lai TS, Wang CY, Pan SC, Huang TM, Lin MC, Lai CF, et al. Risk of developing severe sepsis after acute kidney injury: a population-based cohort study. Crit Care. 2013;17(5):R231. 74. Lee SH, Hsu TC, Lee MG, Chao CC, Lee WC, Lai CC, et al. Nationwide Trend of Sepsis: A Comparison Among Octogenarians, Elderly, and Young Adults. Crit Care Med. 2018;46(6):926-34. 75. Liu WC, Lin CS, Yeh CC, Wu HY, Lee YJ, Chung CL, et al. Effect of Influenza Vaccination Against Postoperative Pneumonia and Mortality for Geriatric Patients Receiving Major Surgery: A Nationwide Matched Study. J Infect Dis. 2018;217(5):816-26. 76. Ou SM, Chu H, Chao PW, Lee YJ, Kuo SC, Chen TJ, et al. Long-Term Mortality and Major Adverse Cardiovascular Events in Sepsis Survivors. A Nationwide Population-based Study. Am J Respir Crit Care Med. 2016;194(2):209-17. 77. Shen HN, Lu CL, Yang HH. Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest. 2010;138(2):298-304. 78. Agarwal S, Kraus Z, Dement-Brown J, Alabi O, Starost K, Tolnay M. Human Fc Receptor-like 3 Inhibits Regulatory T Cell Function and Binds Secretory IgA. Cell Rep. 2020;30(5):1292-9 e3. 79. Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet. 2011;44(2):178-82. 80. Zhong Z, Feng S, Shi D, Xu R, Yin P, Wang M, et al. Association of FCRL3 Gene Polymorphisms with IgA Nephropathy in a Chinese Han Population. DNA Cell Biol. 2019;38(10):1155-65. 81. Li M, Wang L, Shi DC, Foo JN, Zhong Z, Khor CC, et al. Genome-Wide Meta-Analysis Identifies Three Novel Susceptibility Loci and Reveals Ethnic Heterogeneity of Genetic Susceptibility for IgA Nephropathy. J Am Soc Nephrol. 2020;31(12):2949-63. 82. Taira M, Imamura M, Takahashi A, Kamatani Y, Yamauchi T, Araki SI, et al. A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS One. 2018;13(12):e0208654. 83. Liu H, Doke T, Guo D, Sheng X, Ma Z, Park J, et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat Genet. 2022;54(7):950-62. 84. Sasaki K, Shiba K, Nakamura A, Kawano N, Satouh Y, Yamaguchi H, et al. Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol. 2019;2:226. 85. Lipschutz JH. The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development. Kidney Res Clin Pract. 2019;38(3):260-6. 86. Kushnir A, Wajsberg B, Marks AR. Ryanodine receptor dysfunction in human disorders. Biochim Biophys Acta Mol Cell Res. 2018;1865(11 Pt B):1687-97. 87. Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, Keller BJ, et al. Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genet. 2015;11(8):e1005352. 88. Park SJ, Li C, Chen YM. Endoplasmic Reticulum Calcium Homeostasis in Kidney Disease: Pathogenesis and Therapeutic Targets. Am J Pathol. 2021;191(2):256-65. 89. Horimoto A, Xue D, Cai J, Lash JP, Daviglus ML, Franceschini N, et al. Genome-Wide Admixture Mapping of Estimated Glomerular Filtration Rate and Chronic Kidney Disease Identifies European and African Ancestry-of-Origin Loci in Hispanic and Latino Individuals in the United States. J Am Soc Nephrol. 2022;33(1):77-87. 90. Mochida Y, Ochiai K, Nagase T, Nonomura K, Akimoto Y, Fukuhara H, et al. Piezo2 expression and its alteration by mechanical forces in mouse mesangial cells and renin-producing cells. Sci Rep. 2022;12(1):4197. 91. Marshall KL, Saade D, Ghitani N, Coombs AM, Szczot M, Keller J, et al. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature. 2020;588(7837):290-5. 92. Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, et al. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight. 2021;6(19). 93. Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595(1):79-91. 94. Shultz LD, Lane PW, Coman DR, Taylor S, Hall E, Lyons B, et al. Hairpatches, a single gene mutation characterized by progressive renal disease and alopecia in the mouse. A potential model for a newly described heritable human disorder. Lab Invest. 1991;65(5):588-600. 95. Hosur V, Cox ML, Burzenski LM, Riding RL, Alley L, Lyons BL, et al. Retrotransposon insertion in the T-cell acute lymphocytic leukemia 1 (Tal1) gene is associated with severe renal disease and patchy alopecia in Hairpatches (Hpt) mice. PLoS One. 2013;8(1):e53426. 96. Larach DB, Engoren MC, Schmidt EM, Heung M. Genetic variants and acute kidney injury: A review of the literature. J Crit Care. 2018;44:203-11. 97. Schlosser P, Li Y, Sekula P, Raffler J, Grundner-Culemann F, Pietzner M, et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat Genet. 2020;52(2):167-76. 98. Montford JR, Bauer C, Dobrinskikh E, Hopp K, Levi M, Weiser-Evans M, et al. Inhibition of 5-lipoxygenase decreases renal fibrosis and progression of chronic kidney disease. Am J Physiol Renal Physiol. 2019;316(4):F732-F42. 99. Jin J, Sklar GE, Min Sen Oh V, Chuen Li S. Factors affecting therapeutic compliance: A review from the patient's perspective. Ther Clin Risk Manag. 2008;4(1):269-86. 100. Cramer JA. A systematic review of adherence with medications for diabetes. Diabetes Care. 2004;27(5):1218-24. 101. Kiortsis DN, Giral P, Bruckert E, Turpin G. Factors associated with low compliance with lipid-lowering drugs in hyperlipidemic patients. J Clin Pharm Ther. 2000;25(6):445-51. 102. Ross S, Walker A, MacLeod MJ. Patient compliance in hypertension: role of illness perceptions and treatment beliefs. J Hum Hypertens. 2004;18(9):607-13. 103. Loghman-Adham M. Medication noncompliance in patients with chronic disease: issues in dialysis and renal transplantation. Am J Manag Care. 2003;9(2):155-71. 104. Vassalotti JA, Centor R, Turner BJ, Greer RC, Choi M, Sequist TD, et al. Practical Approach to Detection and Management of Chronic Kidney Disease for the Primary Care Clinician. Am J Med. 2016;129(2):153-62 e7. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94822 | - |
| dc.description.abstract | 介紹:慢性腎臟疾病對全球健康造成巨大負擔,其定義包含腎小球過濾率降低及白蛋白尿。族群特定的相關基因在全基因組相關研究中經常被觀察到。本研究針對台灣非糖尿病人群進行白蛋白尿尿的全基因組相關研究,並且利用大型前瞻性研究探討蛋白尿在感染造成住院率之關係。
方法:本研究從台灣生物資料庫招募了30-70歲、無癌症病史的非糖尿病人群,其中有6,768名受試者進行了尿液檢驗。使用PLINK進行品質控制並使用SHAPEIT和IMPUTE2進行填補,並排除了等位基因頻率低於0.1%的單核苷酸多態性(SNP),最終共保留了3,638,350個單核苷酸多態性(SNP),使用線性回歸分析了單核苷酸多態性(SNP)與白蛋白尿/尿肌酐比值之間的關係。此外本研究利用2005年至2008年間參與新北市健康篩檢計畫的慢性腎病1–3期患者,以比例危險回歸模型計算了年輕(<50歲)和老年(≥50歲)慢性腎病患者感染相關住院和死亡的危險比(HR)和95%的信賴區間(CI)以及蛋白尿在兩族群中的影響。 結果:全基因組相關分析(GWAS)顯示在FCRL3(p = 2.56 × 10-6)、TMEM161(p = 4.43 × 10-6)、EFCAB1(p = 2.03 × 10-6)、ELMOD1(p = 2.97 × 10-6)、RYR3(p = 1.34 × 10-6)和PIEZO2(p = 2.19 × 10-7)的附近或內部識別了六個可能位點。FCRL3基因中編碼分泌型IgA受體的遺傳變異與IgA腎病有關,後者可表現為蛋白尿。PIEZO2基因編碼了腎絲球髓質細胞和產腎素細胞中的機械力感應器。還在五個基因中識別到五個p值介於5 × 10-6和5 × 10-5之間的單核苷酸多態性(SNP),這些基因可能在白蛋白尿的發展中具有生物學作用。 我們並發現蛋白尿與感染引發住院的風險明顯相關, 且獨立於估計腎小球濾過率(eGFR)而這種關係在年長者中更明顯。 結論:在台灣非糖尿病人群中識別了五個新的位點和一個已知的可能位點與白蛋白尿相關,而且蛋白尿與感染造成住院之風險明顯相關,尤其於年長族群。 | zh_TW |
| dc.description.abstract | Introduction: Chronic kidney disease, which is defined by a reduced estimated glomerular filtration rate and albuminuria, imposes a large health burden worldwide, including infection associated complications. Ethnicity-specific associations are frequently observed in genome-wide association studies (GWAS). This study conducts a GWAS of albuminuria and a prospective study of albuminuria associated infection-complication in Taiwanese population.
Methods: Nondiabetic individuals aged 30-70 years without a history of cancer were enrolled from the Taiwan Biobank. A total of 6,768 subjects were subjected to a spot urine examination. After quality control using PLINK and imputation using SHAPEIT and IMPUTE2, a total of 3,638,350 single-nucleotide polymorphisms (SNPs) remained for testing. SNPs with a minor allele frequency of less than 0.1% were excluded. Linear regression was used to determine the relationship between SNPs and log urine albumin-to-creatinine ratio. A proportional hazards regression model was employed to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for infection-related hospitalization and mortality in 119,871 Taiwanese adults. Results: GWAS identified six suggestive loci are identified in or near the FCRL3 (p = 2.56 × 10-6), TMEM161 (p = 4.43 × 10-6), EFCAB1 (p = 2.03 × 10-6), ELMOD1 (p = 2.97 × 10-6), RYR3 (p = 1.34 × 10-6), and PIEZO2 (p = 2.19 × 10-7). Genetic variants in the FCRL3 gene that encode a secretory IgA receptor are found to be associated with IgA nephropathy, which can manifest as proteinuria. The PIEZO2 gene encodes a sensor for mechanical forces in mesangial cells and renin-producing cells. Five SNPs with a p-value between 5 × 10-6 and 5 × 10-5 are also identified in five genes that may have a biological role in the development of albuminuria. Proteinuria increases the risk of infection-related hospitalization independently of estimated glomerular filtration rate (eGFR), and this relationship is stronger in elderly individuals. Conclusion: Five new loci and one known suggestive locus for albuminuria are identified in the nondiabetic Taiwanese population. The risk of infection-related hospitalization is higher in the elderly with proteinuria. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T17:00:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T17:00:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 第一章 背景與文獻回顧 1 第一節 白蛋白尿與慢性腎臟病的意義 1 第二節 全基因組相關研究 6 第三節 腎臟疾病相關之全基因組相關研究 10 第四節 臨床上白蛋白尿對感染症之影響 14 第二章 研究目的 15 第三章 研究方法 16 A. 白蛋白尿全基因組相關研究 16 第一節 材料及方法 16 第二節 驗證 17 第三節 統計分析 17 B. 白蛋白尿與感染症住院的關係 18 第一節 資料來源與研究對象 18 第二節 測量參數 19 第三節 結果 19 第四節 統計分析 20 第五節 倫理 20 第四章 研究結果 21 A. 白蛋白尿全基因組相關研究 21 B. 蛋白尿與感染症住院的關係 31 第五章 綜合討論 35 第六章 結論 40 第七章 未來應用與研究方向 41 圖次 圖一. KDIGO (Kidney Disease: Improving Global Outcomes) 慢性腎臟病治療指引慢性腎病之分期 2 圖二. 健康足細胞中間隙隔膜信號級聯和肌動蛋白動態之間的示意性互動 3 圖三. 蛋白尿和白蛋白尿病理機轉 5 圖四. 全基因組相關研究示意圖 9 圖五. 歐洲族群的白蛋白尿全基因組相關研究 10 圖六 . 日本的白蛋白尿全基因組相關研究 11 圖七. p <5.0 × 10−6的曼哈頓圖(Manhattan plot) 23 圖八. Q-Q plot 24 圖九. 六個單核苷酸多態性(SNP)的區域圖 25 表次 表一 . 與蛋白尿性腎病相關的裂隙隔膜和肌動蛋白細胞骨架的基因 4 表二. 腎臟病相關之全基因組相關研究文獻回顧 12 表三. 研究族群基本資料 21 表四 在6,768 名非糖尿病台灣人中可能與白蛋白尿相關的單核苷酸多態性(SNP) (p < 5x 10-6) 22 表五. p值介於5× 10-6和10-4的單核苷酸多態性(SNP)及其鄰近基因 27 表六. 與CKDgen進行驗證 28 表七. 與UK Biobank 驗證 30 表八. 新北健檢基本資料(以年齡分層) (N = 119,871) 32 表九. 慢性腎病分期以及蛋白尿程度在年輕(小於五十歲)和年長(大於等於50歲)族群與感染住院風險的關聯 34 參考文獻 42 附件 著作列表 51 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 全基因組相關分析(GWAS) | zh_TW |
| dc.subject | 蛋白尿 | zh_TW |
| dc.subject | 住院 | zh_TW |
| dc.subject | 感染 | zh_TW |
| dc.subject | 白蛋白尿 | zh_TW |
| dc.subject | genome-wide association study | en |
| dc.subject | hospitalization | en |
| dc.subject | infection | en |
| dc.subject | proteinuria | en |
| dc.subject | albuminuria | en |
| dc.title | 白蛋白尿在台灣族群的全基因組相關分析(GWAS)以及蛋白尿與感染住院的關係 | zh_TW |
| dc.title | A Genome-Wide Association Studies for Albuminuria and the Association of Proteinuria with Infection-associated Hospitalization in Taiwanese Population | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 莊立民;許書睿;賴台軒;徐治平 | zh_TW |
| dc.contributor.oralexamcommittee | LEE-MING CHUANG;SHU-JUI HSU;Tau-shuan Lai;Chir-ping Hsu | en |
| dc.subject.keyword | 白蛋白尿,蛋白尿,全基因組相關分析(GWAS),感染,住院, | zh_TW |
| dc.subject.keyword | albuminuria,proteinuria,genome-wide association study,infection,hospitalization, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202401448 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-15 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
| 顯示於系所單位: | 基因體暨蛋白體醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
