請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94811完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何佳安 | zh_TW |
| dc.contributor.advisor | Ja-an Annie Ho | en |
| dc.contributor.author | 鄭凱安 | zh_TW |
| dc.contributor.author | Kai-An Cheng | en |
| dc.date.accessioned | 2024-08-19T16:45:30Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | J.M. Banales, J.J. Marin, A. Lamarca, P.M. Rodrigues, S.A. Khan, L.R. Roberts, V. Cardinale, G. Carpino, J.B. Andersen, C. Braconi. (2020) Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology & Hepatology, 17(9), 557-588.
P.J. Brindley, M. Bachini, S.I. Ilyas, S.A. Khan, A. Loukas, A.E. Sirica, B.T. Teh, S. Wongkham, G.J. Gores. (2021) Cholangiocarcinoma. Nature reviews Disease primers, 7(1), 65. D. Moris, M. Palta, C. Kim, P.J. Allen, M.A. Morse, M.E. Lidsky. (2023) Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA: a cancer journal for clinicians, 73(2), 198-222. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. S.A. Khan, S. Tavolari, G. Brandi. (2019) Cholangiocarcinoma: Epidemiology and risk factors. Liver International, 39, 19-31. 衛生福利部國民健康署(2023)。中華民國110年癌症登記報告,40-41。 衛生福利部國民健康署(2023)。111年國人死因統計結果分析。網址:https://www.mohw.gov.tw/cp-16-74869-1.html。(於2024年二月訪問) C.R. Lin, Y.K. Lee, C.J. Chiang, Y.W. Yang, H.C. Chang, S.L. You. (2022) Secular trends of intrahepatic cholangiocarcinoma in a high endemic area: A population-based study. World J Gastroenterol, 28, 3695-3705. Y.T. Lee, J.J. Wang, M. Luu, M. Noureddin, N.N. Nissen, T.C. Patel, L.R. Roberts, A.G. Singal, G.J. Gores, J.D. Yang. (2021) Comparison of Clinical Features and Outcomes Between Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma in the United States. Hepatology, 74(5), 2622-2632. I.D. Nagtegaal, R.D. Odze, D. Klimstra, V. Paradis, M. Rugge, P. Schirmacher, K.M. Washington, F. Carneiro, I.A. Cree. (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology, 76(2), 182-188. D. Alvaro, G.J. Gores, J. Walicki, C. Hassan, G. Sapisochin, M. Komuta, A. Forner, J.W. Valle, A. Laghi, S.I. Ilyas, J.-W. Park, R.K. Kelley, M. Reig, B. Sangro. (2023) EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. Journal of Hepatology, 79(1), 181-208. A. Yousaf, J.U. Kim, J. Eliahoo, S.D. Taylor-Robinson, S.A. Khan. (2019) Ablative Therapy for Unresectable Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Journal of Clinical and Experimental Hepatology, 9(6), 740-748. B. Glimelius, K. Hoffman, P.O. Sjödén, G. Jacobsson, H. Sellström, L.K. Enander, T. Linné, C. Svensson. (1996) Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Annals of Oncology, 7(6), 593-600. J. Valle, H. Wasan, D.H. Palmer, D. Cunningham, A. Anthoney, A. Maraveyas, S. Madhusudan, T. Iveson, S. Hughes, S.P. Pereira, M. Roughton, J. Bridgewater. (2010) Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. New England Journal of Medicine, 362(14), 1273-1281. D.-Y. Oh, K.-H. Lee, D.-W. Lee, J. Yoon, T.-Y. Kim, J.-H. Bang, A.-R. Nam, K.-S. Oh, J.-M. Kim, Y. Lee, V. Guthrie, P. McCoon, W. Li, S. Wu, Q. Zhang, M.C. Rebelatto, J.W. Kim. (2022) Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, single-centre, phase 2 study. The Lancet Gastroenterology & Hepatology, 7(6), 522-532. A. Elvevi, A. Laffusa, M. Scaravaglio, R.E. Rossi, R. Longarini, A.M. Stagno, L. Cristoferi, A. Ciaccio, D.L. Cortinovis, P. Invernizzi, S. Massironi. (2022) Clinical treatment of cholangiocarcinoma: an updated comprehensive review. Annals of Hepatology, 27(5), 100737. Y.T. Lee, Y.J. Tan, C.E. Oon. (2018) Molecular targeted therapy: Treating cancer with specificity. European Journal of Pharmacology, 834, 188-196. K.S. Ahn, K.J. Kang. (2020) Molecular heterogeneity in intrahepatic cholangiocarcinoma. World J Hepatol, 12(12), 1148-1157. Y. Zen. (2023) Intrahepatic cholangiocarcinoma: typical features, uncommon variants, and controversial related entities. Human Pathology, 132, 197-207. M. Akita, K. Sofue, K. Fujikura, K. Otani, T. Itoh, T. Ajiki, T. Fukumoto, Y. Zen. (2019) Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma. HPB, 21(2), 226-234. S.M. Cho, A. Esmail, A. Raza, S. Dacha, M. Abdelrahim. (2022) Timeline of FDA-Approved Targeted Therapy for Cholangiocarcinoma. Cancers, 14(11), 2641. Y. Li, J. Yu, Y. Zhang, C. Peng, Y. Song, S. Liu. (2024) Advances in targeted therapy of cholangiocarcinoma. Ann Med, 56(1), 2310196. F. Mosele, J. Remon, J. Mateo, C.B. Westphalen, F. Barlesi, M.P. Lolkema, N. Normanno, A. Scarpa, M. Robson, F. Meric-Bernstam, N. Wagle, A. Stenzinger, J. Bonastre, A. Bayle, S. Michiels, I. Bièche, E. Rouleau, S. Jezdic, J.Y. Douillard, J.S. Reis-Filho, R. Dienstmann, F. André. (2020) Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Annals of Oncology, 31(11), 1491-1505. P.L.S. Uson Junior, M.J. Borad. (2023) Clinical Utility of Ivosidenib in the Treatment of IDH1-Mutant Cholangiocarcinoma: Evidence To Date. Cancer Manag Res, 15, 1025-1031. D. Lavacchi, E. Caliman, G. Rossi, E. Buttitta, C. Botteri, S. Fancelli, E. Pellegrini, G. Roviello, S. Pillozzi, L. Antonuzzo. (2022) Ivosidenib in IDH1-mutated cholangiocarcinoma: Clinical evaluation and future directions. Pharmacology & Therapeutics, 237, 108170. U.S. FDA. (2018) Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-endpoints-approval-cancer-drugs-and-biologics. (Accessed 2024, March). S.J. Parker, C.M. Metallo. (2015) Metabolic consequences of oncogenic IDH mutations. Pharmacology & Therapeutics, 152, 54-62. B.S. Winkler, N. DeSantis, F. Solomon. (1986) Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Experimental Eye Research, 43(5), 829-847. C.W.T. van Roermund, E.H. Hettema, A.J. Kal, M. van den Berg, H.F. Tabak, R.J.A. Wanders. (1998) Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions. The EMBO Journal, 17(3), 677-687. S. Liu, T. Cadoux-Hudson, C.J. Schofield. (2020) Isocitrate dehydrogenase variants in cancer - Cellular consequences and therapeutic opportunities. Curr Opin Chem Biol, 57, 122-134. H. Al-Khallaf. (2017) Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci, 7, 37. Z.J. Reitman, H. Yan. (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst, 102(13), 932-41. Z.J. Reitman, D.W. Parsons, H. Yan. (2010) IDH1 and IDH2: not your typical oncogenes. Cancer Cell, 17(3), 215-6. B. Yang, C. Zhong, Y. Peng, Z. Lai, J. Ding. (2010) Molecular mechanisms of “off-on switch” of activities of human IDH1 by tumor-associated mutation R132H. Cell Research, 20(11), 1188-1200. X. Xie, D. Baird, K. Bowen, V. Capka, J. Chen, G. Chenail, Y. Cho, J. Dooley, A. Farsidjani, P. Fortin, D. Kohls, R. Kulathila, F. Lin, D. McKay, L. Rodrigues, D. Sage, B.B. Touré, S. van der Plas, K. Wright, M. Xu, H. Yin, J. Levell, R.A. Pagliarini. (2017) Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity. Structure, 25(3), 506-513. C.J. Pirozzi, H. Yan. (2021) The implications of IDH mutations for cancer development and therapy. Nature Reviews Clinical Oncology, 18(10), 645-661. P.L.S. Uson Junior, M.J. Borad. (2023) Clinical Utility of Ivosidenib in the Treatment of IDH1-Mutant Cholangiocarcinoma: Evidence To Date. Cancer Management and Research, 15(null), 1025-1031. W. Xu, H. Yang, Y. Liu, Y. Yang, P. Wang, S.H. Kim, S. Ito, C. Yang, P. Wang, M.T. Xiao, L.X. Liu, W.Q. Jiang, J. Liu, J.Y. Zhang, B. Wang, S. Frye, Y. Zhang, Y.H. Xu, Q.Y. Lei, K.L. Guan, S.M. Zhao, Y. Xiong. (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 19(1), 17-30. M.-J. Wu, L. Shi, J. Merritt, A.X. Zhu, N. Bardeesy. (2022) Biology of IDH mutant cholangiocarcinoma. Hepatology, 75(5), 1322-1337. P. Ježek. (2019) 2-Hydroxyglutarate in Cancer Cells. Antioxidants & Redox Signaling, 33(13), 903-926. S.C. Baksh, L.W.S. Finley. (2021) Metabolic Coordination of Cell Fate by α-Ketoglutarate-Dependent Dioxygenases. Trends Cell Biol, 31(1), 24-36. I.P. Foskolou, L. Bunse, J. Van den Bossche. (2023) 2-hydroxyglutarate rides the cancer-immunity cycle. Current Opinion in Biotechnology, 83, 102976. D. Golub, N. Iyengar, S. Dogra, T. Wong, D. Bready, K. Tang, A.S. Modrek, D.G. Placantonakis. (2019) Mutant Isocitrate Dehydrogenase Inhibitors as Targeted Cancer Therapeutics. Frontiers in Oncology, 9. G.H. Fong, K. Takeda. (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death & Differentiation, 15(4), 635-641. G.L. Semenza. (2003) Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3(10), 721-732. H. Chen, L. Zhou, J. Li, K. Hu. (2022) ALKBH family members as novel biomarkers and prognostic factors in human breast cancer. Aging (Albany NY), 14(16), 6579-6593. T.Q. Tran, M.B. Ishak Gabra, X.H. Lowman, Y. Yang, M.A. Reid, M. Pan, T.R. O’Connor, M. Kong. (2017) Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes. PLOS Biology, 15(11), e2002810. P. Wang, J. Wu, S. Ma, L. Zhang, J. Yao, K.A. Hoadley, M.D. Wilkerson, C.M. Perou, K.L. Guan, D. Ye, Y. Xiong. (2015) Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Rep, 13(11), 2353-2361. Y. Wang, A.T. Wild, S. Turcan, W.H. Wu, C. Sigel, D.S. Klimstra, X. Ma, Y. Gong, E.C. Holland, J.T. Huse, T.A. Chan. (2020) Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Science Advances, 6(17), eaaz3221. S. Han, Y. Liu, S.J. Cai, M. Qian, J. Ding, M. Larion, M.R. Gilbert, C. Yang. (2020) IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. British Journal of Cancer, 122(11), 1580-1589. M.E. Conway, J. Hull, M. El Hindy, S.C. Taylor, F. El Amraoui, C. Paton-Thomas, P. White, M. Williams, H.P. Ellis, A. Bertoni, B. Radlwimmer, S.M. Hutson, K.M. Kurian. (2016) Decreased expression of the mitochondrial BCAT protein correlates with improved patient survival in IDH-WT gliomas. Brain Pathol, 26(6), 789-791. M.G. Badur, T. Muthusamy, S.J. Parker, S. Ma, S.K. McBrayer, T. Cordes, J.H. Magana, K.L. Guan, C.M. Metallo. (2018) Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Sells. Cell Rep, 25(4), 1018-1026.e4. N. Bögürcü-Seidel, G. Bergers. (2022) R-2-HG assists IDH1-mutant solid tumors by promoting angiogenesis. Cell Research, 32(9), 795-796. L. Bunse, S. Pusch, T. Bunse, F. Sahm, K. Sanghvi, M. Friedrich, D. Alansary, J.K. Sonner, E. Green, K. Deumelandt, M. Kilian, C. Neftel, S. Uhlig, T. Kessler, A. von Landenberg, A.S. Berghoff, K. Marsh, M. Steadman, D. Zhu, B. Nicolay, B. Wiestler, M.O. Breckwoldt, R. Al-Ali, S. Karcher-Bausch, M. Bozza, I. Oezen, M. Kramer, J. Meyer, A. Habel, J. Eisel, G. Poschet, M. Weller, M. Preusser, M. Nadji-Ohl, N. Thon, M.C. Burger, P.N. Harter, M. Ratliff, R. Harbottle, A. Benner, D. Schrimpf, J. Okun, C. Herold-Mende, S. Turcan, S. Kaulfuss, H. Hess‐Stumpp, K. Bieback, D.P. Cahill, K.H. Plate, D. Hänggi, M. Dorsch, M.L. Suvà, B.A. Niemeyer, A. von Deimling, W. Wick, M. Platten. (2018) Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nature Medicine, 24(8), 1192-1203. K. Oizel, C. Gratas, A. Nadaradjane, L. Oliver, F.M. Vallette, C. Pecqueur. (2015) D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide-triggered apoptosis mediated by an alteration in mitochondrial NADH. Cell Death & Disease, 6(3), e1704-e1704. J. Popovici-Muller, R.M. Lemieux, E. Artin, J.O. Saunders, F.G. Salituro, J. Travins, G. Cianchetta, Z. Cai, D. Zhou, D. Cui, P. Chen, K. Straley, E. Tobin, F. Wang, M.D. David, V. Penard-Lacronique, C. Quivoron, V. Saada, S. de Botton, S. Gross, L. Dang, H. Yang, L. Utley, Y. Chen, H. Kim, S. Jin, Z. Gu, G. Yao, Z. Luo, X. Lv, C. Fang, L. Yan, A. Olaharski, L. Silverman, S. Biller, S.-S.M. Su, K. Yen. (2018) Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Medicinal Chemistry Letters, 9(4), 300-305. M. Sproat. (2023) Ivosidenib (Tibsovo®). Oncology Times, 45(22), 11. K.J. Norsworthy, L. Luo, V. Hsu, R. Gudi, S.E. Dorff, D. Przepiorka, A. Deisseroth, Y.L. Shen, C.M. Sheth, R. Charlab, G.M. Williams, K.B. Goldberg, A.T. Farrell, R. Pazdur. (2019) FDA Approval Summary: Ivosidenib for Relapsed or Refractory Acute Myeloid Leukemia with an Isocitrate Dehydrogenase-1 Mutation. Clin Cancer Res, 25(11), 3205-3209. S.J. Casak, S. Pradhan, L.A. Fashoyin-Aje, Y. Ren, Y.L. Shen, Y. Xu, E.C.Y. Chow, Y. Xiong, J.F. Zirklelbach, J. Liu, R. Charlab, W.F. Pierce, N. Fesenko, J.A. Beaver, R. Pazdur, P.G. Kluetz, S.J. Lemery. (2022) FDA Approval Summary: Ivosidenib for the Treatment of Patients with Advanced Unresectable or Metastatic, Chemotherapy Refractory Cholangiocarcinoma with an IDH1 Mutation. Clin Cancer Res, 28(13), 2733-2737. A. Papapetropoulos, S. Topouzis, S.P. Alexander, M. Cortese‐Krott, D.A. Kendall, K.A. Martemyanov, C. Mauro, N. Nagercoil, R.A. Panettieri, H.H. Patel. (2024) Novel drugs approved by the EMA, the FDA, and the MHRA in 2023. A.X. Zhu, T. Macarulla, M.M. Javle, R.K. Kelley, S.J. Lubner, J. Adeva, J.M. Cleary, D.V.T. Catenacci, M.J. Borad, J.A. Bridgewater, W.P. Harris, A.G. Murphy, D.-Y. Oh, J.R. Whisenant, M.A. Lowery, L. Goyal, R.T. Shroff, A.B. El-Khoueiry, C.X. Chamberlain, E. Aguado-Fraile, S. Choe, B. Wu, H. Liu, C. Gliser, S.S. Pandya, J.W. Valle, G.K. Abou-Alfa. (2021) Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncology, 7(11), 1669-1677. B. Fan, G.K. Abou-Alfa, A.X. Zhu, S.S. Pandya, H. Jia, F. Yin, C. Gliser, Z. Hua, M. Hossain, H. Yang. (2024) Pharmacokinetics/pharmacodynamics of ivosidenib in advanced IDH1-mutant cholangiocarcinoma: findings from the phase III ClarIDHy study. Cancer Chemotherapy and Pharmacology, 93(5), 471-479. G.K. Abou-Alfa, T. Macarulla, M.M. Javle, R.K. Kelley, S.J. Lubner, J. Adeva, J.M. Cleary, D.V. Catenacci, M.J. Borad, J. Bridgewater, W.P. Harris, A.G. Murphy, D.Y. Oh, J. Whisenant, M.A. Lowery, L. Goyal, R.T. Shroff, A.B. El-Khoueiry, B. Fan, B. Wu, C.X. Chamberlain, L. Jiang, C. Gliser, S.S. Pandya, J.W. Valle, A.X. Zhu. (2020) Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol, 21(6), 796-807. J.M. Cleary, B. Rouaisnel, A. Daina, S. Raghavan, L.A. Roller, B.M. Huffman, H. Singh, P.Y. Wen, N. Bardeesy, V. Zoete, B.M. Wolpin, J.-A. Losman. (2022) Secondary IDH1 resistance mutations and oncogenic IDH2 mutations cause acquired resistance to ivosidenib in cholangiocarcinoma. npj Precision Oncology, 6(1), 61. J.-W. Park, Ş. Turcan. (2019) Epigenetic Reprogramming for Targeting IDH-Mutant Malignant Gliomas. Cancers, 11(10), 1616. E. Aguado-Fraile, A. Tassinari, Y. Ishii, C. Sigel, M.A. Lowery, L. Goyal, C. Gliser, L. Jiang, S.S. Pandya, B. Wu, N. Bardeesy, S. Choe, V. Deshpande. (2021) Molecular and Morphological Changes Induced by Ivosidenib Correlate with Efficacy in Mutant-IDH1 Cholangiocarcinoma. Future Oncology, 17(16), 2057-2074. X. Wang, Z. Chen, J. Xu, S. Tang, N. An, L. Jiang, Y. Zhang, S. Zhang, Q. Zhang, Y. Shen, S. Chen, X. Lan, T. Wang, L. Zhai, S. Cao, S. Guo, Y. Liu, A. Bi, Y. Chen, X. Gai, Y. Duan, Y. Zheng, Y. Fu, Y. Li, L. Yuan, L. Tong, K. Mo, M. Wang, S.-H. Lin, M. Tan, C. Luo, Y. Chen, J. Liu, Q. Zhang, L. Li, M. Huang. (2022) SLC1A1-mediated cellular and mitochondrial influx of R-2-hydroxyglutarate in vascular endothelial cells promotes tumor angiogenesis in IDH1-mutant solid tumors. Cell Research, 32(7), 638-658. M. Enjoji, H. Sakai, H. Nawata, K. Kajiyama, M. Tsuneyoshi. (1997) Sarcomatous and adenocarcinoma cell lines from the same nodule of cholangiocarcinoma. In Vitro Cellular & Developmental Biology - Animal, 33(9), 681-683. J.L. Ku, K.A. Yoon, I.J. Kim, W.H. Kim, J.Y. Jang, K.S. Suh, S.W. Kim, Y.H. Park, J.H. Hwang, Y.B. Yoon, J.G. Park. (2002) Establishment and characterisation of six human biliary tract cancer cell lines. British Journal of Cancer, 87(2), 187-193. E. Loeuillard, S.R. Fischbach, G.J. Gores, S.I. Ilyas. (2019) Animal models of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis, 1865(5), 982-992. R. Reinbold, I.C. Hvinden, P. Rabe, R.A. Herold, A. Finch, J. Wood, M. Morgan, M. Staudt, I.J. Clifton, F.A. Armstrong, J.S.O. McCullagh, J. Redmond, C. Bardella, M.I. Abboud, C.J. Schofield. (2022) Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors. Nature Communications, 13(1), 4785. J.J. Harding, M.A. Lowery, A.H. Shih, J.M. Schvartzman, S. Hou, C. Famulare, M. Patel, M. Roshal, R.K. Do, A. Zehir, D. You, S.D. Selcuklu, A. Viale, M.S. Tallman, D.M. Hyman, E. Reznik, L.W.S. Finley, E. Papaemmanuil, A. Tosolini, M.G. Frattini, K.J. MacBeth, G. Liu, B. Fan, S. Choe, B. Wu, Y.Y. Janjigian, I.K. Mellinghoff, L.A. Diaz, R.L. Levine, G.K. Abou-Alfa, E.M. Stein, A.M. Intlekofer. (2018) Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition. Cancer Discovery, 8(12), 1540-1547. I.P. Foskolou, L. Bunse, J. Van den Bossche. (2023) 2-hydroxyglutarate rides the cancer-immunity cycle. Curr Opin Biotechnol, 83, 102976. R.K. Kelley, J.M. Cleary, V. Sahai, M. Baretti, J.A. Bridgewater, Z. Hua, C. Gliser, Y. Bian, G.K. Abou-Alfa. (2024) A phase 1/2, safety lead-in and dose expansion, open-label, multicenter trial investigating the safety, tolerability, and preliminary activity of ivosidenib in combination with nivolumab and ipilimumab in previously treated subjects with IDH1-mutated nonresectable or metastatic cholangiocarcinoma. Journal of Clinical Oncology, 42(16_suppl), TPS4197-TPS4197. N. Laham-Karam, G.P. Pinto, A. Poso, P. Kokkonen. (2020) Transcription and Translation Inhibitors in Cancer Treatment. Front Chem, 8, 276. P. Huang, S. Chubb, L.W. Hertel, G.B. Grindey, W. Plunkett. (1991) Action of 2′,2′-Difluorodeoxycytidine on DNA Synthesis1. Cancer Research, 51(22), 6110-6117. H. Xu, C. Faber, T. Uchiki, J. Racca, C. Dealwis. (2006) Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Proceedings of the National Academy of Sciences, 103(11), 4028-4033. L. de Sousa Cavalcante, G. Monteiro. (2014) Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. European Journal of Pharmacology, 741, 8-16. Z. Wang, G. Zhu. (2018) DNA Damage Repair Pathways and Repair of Cisplatin-Induced DNA Damage, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier. A. Jain, D. Jahagirdar, P. Nilendu, N.K. Sharma. (2017) Molecular approaches to potentiate cisplatin responsiveness in carcinoma therapeutics. Expert Review of Anticancer Therapy, 17(9), 815-825. B. Penelope, R. Kaukab, E. Lindsey, M. Annelot, S. Philippa, H. Alex, K. Mariana, S. Michael, H.-E. Marry van den. (2021) Cisplatin Ototoxicity in Children, in: W. Tang-Chuan (Ed.), Hearing Loss, IntechOpen, Rijeka, p. Ch. 5. J.-P.J. Issa, H.M. Kantarjian, P. Kirkpatrick. (2005) Azacitidine. Nature Reviews Drug Discovery, 4(4), 275-276. O. Raslan, A. Garcia-Horton. (2022) Azacitidine and its role in the upfront treatment of acute myeloid leukemia. Expert Opinion on Pharmacotherapy, 23(8), 873-884. M. Cruijsen, M. Lübbert, P. Wijermans, G. Huls. (2015) Clinical Results of Hypomethylating Agents in AML Treatment. Journal of Clinical Medicine, 4(1), 1-17. L.H. Li, E.J. Olin, H.H. Buskirk, L.M. Reineke. (1970) Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res, 30(11), 2760-9. H. Fruchtman, Z.M. Avigan, J.A. Waksal, N. Brennan, J.O. Mascarenhas. (2024) Management of isocitrate dehydrogenase 1/2 mutated acute myeloid leukemia. Leukemia, 38(5), 927-935. D.V. Jeyaraju, M. Alapa, A. Polonskaia, A. Risueño, P. Subramanyam, A. Anand, K. Ghosh, C. Kyriakopoulos, D. Hemerich, R. Hurren, X. Wang, M. Gronda, A. Ahsan, H. Chiu, G. Thomas, E.F. Lind, D.L. Menezes, A.D. Schimmer, P.R. Hagner, A. Gandhi, A.G. Thakurta. (2024) Extended exposure to low doses of azacitidine induces differentiation of leukemic stem cells through activation of myeloperoxidase. Haematologica, 109(4), 1082-1094. P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W.B. Smith, O. Fedorov, E.M. Morse, T. Keates, T.T. Hickman, I. Felletar, M. Philpott, S. Munro, M.R. McKeown, Y. Wang, A.L. Christie, N. West, M.J. Cameron, B. Schwartz, T.D. Heightman, N. La Thangue, C.A. French, O. Wiest, A.L. Kung, S. Knapp, J.E. Bradner. (2010) Selective inhibition of BET bromodomains. Nature, 468(7327), 1067-1073. G. Jiang, W. Deng, Y. Liu, C. Wang. (2020) General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep, 21(3), 1021-1034. B. Donati, E. Lorenzini, A. Ciarrocchi. (2018) BRD4 and Cancer: going beyond transcriptional regulation. Molecular Cancer, 17(1), 164. M. Yang, K. Liu, P. Chen, H. Zhu, J. Wang, J. Huang. (2022) Bromodomain-containing protein 4 (BRD4) as an epigenetic regulator of fatty acid metabolism genes and ferroptosis. Cell Death & Disease, 13(10), 912. T. Fujisawa, P. Filippakopoulos. (2017) Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nature Reviews Molecular Cell Biology, 18(4), 246-262. H. Fujiwara, K. Tateishi, H. Kato, T. Nakatsuka, K. Yamamoto, Y. Tanaka, H. Ijichi, N. Takahara, S. Mizuno, H. Kogure, S. Matsubara, Y. Nakai, K. Koike. (2018) Isocitrate dehydrogenase 1 mutation sensitizes intrahepatic cholangiocarcinoma to the BET inhibitor JQ1. Cancer Sci, 109(11), 3602-3610. T.-Y. Lin, J. Fenger, S. Murahari, M.D. Bear, S.K. Kulp, D. Wang, C.-S. Chen, W.C. Kisseberth, C.A. London. (2010) AR-42, a novel HDAC inhibitor, exhibits biologic activity against malignant mast cell lines via down-regulation of constitutively activated Kit. Blood, 115(21), 4217-4225. S. Shankar, R.K. Srivastava. (2008) Histone Deacetylase Inhibitors: Mechanisms and Clinical Significance in Cancer: HDAC Inhibitor-Induced Apoptosis, in: R. Khosravi-Far, E. White (Eds.), Programmed Cell Death in Cancer Progression and Therapy, Springer Netherlands, Dordrecht, pp. 261-298. D. Ruzic, N. Djoković, T. Srdić-Rajić, C. Echeverria, K. Nikolic, J.F. Santibanez. (2022) Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics, 14(1), 209. M. Zhang, Y. Pan, D. Tang, R.G. Dorfman, L. Xu, Q. Zhou, L. Zhou, Y. Wang, Y. Li, Y. Yin, B. Kong, H. Friess, S. Zhao, J.-l. Wu, L. Wang, X. Zou. (2019) Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis. Cell Communication and Signaling, 17(1), 23. L.A.M. Kulka, P.-V. Fangmann, D. Panfilova, H. Olzscha. (2020) Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Frontiers in Cell and Developmental Biology, 8. C. Pottier, M. Fresnais, M. Gilon, G. Jérusalem, R. Longuespée, N.E. Sounni. (2020) Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers (Basel), 12(3). G.M. Keating. (2017) Dasatinib: A Review in Chronic Myeloid Leukaemia and Ph+ Acute Lymphoblastic Leukaemia. Drugs, 77(1), 85-96. S.K. Saha, J.D. Gordan, B.P. Kleinstiver, P. Vu, M.S. Najem, J.C. Yeo, L. Shi, Y. Kato, R.S. Levin, J.T. Webber, L.J. Damon, R.K. Egan, P. Greninger, U. McDermott, M.J. Garnett, R.L. Jenkins, K.M. Rieger-Christ, T.B. Sullivan, A.F. Hezel, A.S. Liss, Y. Mizukami, L. Goyal, C.R. Ferrone, A.X. Zhu, J.K. Joung, K.M. Shokat, C.H. Benes, N. Bardeesy. (2016) Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discov, 6(7), 727-39. K. Yao, H. Liu, J. Yin, J. Yuan, H. Tao. (2021) Synthetic lethality and synergetic effect: the effective strategies for therapy of IDH-mutated cancers. J Exp Clin Cancer Res, 40(1), 263. R.B. Irby, T.J. Yeatman. (2000) Role of Src expression and activation in human cancer. Oncogene, 19(49), 5636-5642. J. Speckart, V. Rasmusen, Z. Talib, D.A. GnanaDev, A.A. Rahnemai-Azar. (2024) Emerging Therapies in Management of Cholangiocarcinoma. Cancers, 16(3), 613. Y. Ni, P. Shen, X. Wang, H. Liu, H. Luo, X. Han. (2022) The Roles of IDH1 in Tumor Metabolism and Immunity. Future Oncology, 18(35), 3941-3953. J. Ye, Y. Gu, F. Zhang, Y. Zhao, Y. Yuan, Z. Hao, Y. Sheng, W.Y. Li, A. Wakeham, R.A. Cairns, T.W. Mak. (2017) IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization. Proceedings of the National Academy of Sciences, 114(2), 292-297. C.M. Metallo, P.A. Gameiro, E.L. Bell, K.R. Mattaini, J. Yang, K. Hiller, C.M. Jewell, Z.R. Johnson, D.J. Irvine, L. Guarente, J.K. Kelleher, M.G. Vander Heiden, O. Iliopoulos, G. Stephanopoulos. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380-384. R. Singh, V. Gupta, A. Kumar, K. Singh. (2023) 2-Deoxy-D-Glucose: A Novel Pharmacological Agent for Killing Hypoxic Tumor Cells, Oxygen Dependence-Lowering in Covid-19, and Other Pharmacological Activities. Adv Pharmacol Pharm Sci, 2023, 9993386. S. Dey, N. Murmu, T. Mondal, I. Saha, S. Chatterjee, R. Manna, S. Haldar, S.K. Dash, T.R. Sarkar, B. Giri. (2022) Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother, 156, 113801. D. Urban, N. Martinez, M. Davis, K. Brimacombe, D. Cheff, T. Lee, M. Henderson, S. Titus, R. Pragani, J. Rohde, L. Liu, Y. Fang, S. Karavadhi, P. Shah, O. Lee, A. Wang, A. McIver, H. Zheng, X. Wang, M. Hall. (2017) Assessing inhibitors of mutant isocitrate dehydrogenase using a suite of pre-clinical discovery assays. Scientific Reports, 7. C.L. Kielkopf, W. Bauer, I.L. Urbatsch. (2020) Bradford Assay for Determining Protein Concentration. Cold Spring Harb Protoc, 2020(4), 102269. M. Ghasemi, T. Turnbull, S. Sebastian, I. Kempson. (2021) The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int J Mol Sci, 22(23). G. Morciano, A.C. Sarti, S. Marchi, S. Missiroli, S. Falzoni, L. Raffaghello, V. Pistoia, C. Giorgi, F. Di Virgilio, P. Pinton. (2017) Use of luciferase probes to measure ATP in living cells and animals. Nature Protocols, 12(8), 1542-1562. N.A.P. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree. (2006) Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315-2319. C.R. Justus, M.A. Marie, E.J. Sanderlin, L.V. Yang. (2023) Transwell In Vitro Cell Migration and Invasion Assays. Methods Mol Biol, 2644, 349-359. T. Nolan, R.E. Hands, S.A. Bustin. (2006) Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1(3), 1559-1582. M.S. Tabatabaei, M. Ahmed. (2022) Enzyme-linked immunosorbent assay (ELISA), Cancer cell biology: Methods and protocols, Springer, pp. 115-134. D. Harpaz, E. Eltzov, T.S.E. Ng, R.S. Marks, A.I.Y. Tok. (2020) Enhanced Colorimetric Signal for Accurate Signal Detection in Paper-Based Biosensors. Diagnostics, 10(1), 28. K.M. McKinnon. (2018) Flow Cytometry: An Overview. Curr Protoc Immunol, 120, 5.1.1-5.1.11. T.L. da Silva, J.C. Roseiro, A. Reis. (2012) Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production processes. Trends in biotechnology, 30(4), 225-232. A.M. Rieger, K.L. Nelson, J.D. Konowalchuk, D.R. Barreda. (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp, (50). V.W. Yang. (2018) Chapter 8 - The Cell Cycle, in: H.M. Said (Ed.), Physiology of the Gastrointestinal Tract (Sixth Edition), Academic Press, pp. 197-219. L.J. Mah, A. El-Osta, T.C. Karagiannis. (2010) γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia, 24(4), 679-686. F.K. Noubissi, A.A. McBride, H.G. Leppert, L.J. Millet, X. Wang, S.M. Davern. (2021) Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Scientific Reports, 11(1), 8945. M.J. Wu, L. Shi, J. Dubrot, J. Merritt, V. Vijay, T.Y. Wei, E. Kessler, K.E. Olander, R. Adil, A. Pankaj, K.S. Tummala, V. Weeresekara, Y. Zhen, Q. Wu, M. Luo, W. Shen, M. García-Beccaria, M. Fernández-Vaquero, C. Hudson, S. Ronseaux, Y. Sun, R. Saad-Berreta, R.W. Jenkins, T. Wang, M. Heikenwälder, C.R. Ferrone, L. Goyal, B. Nicolay, V. Deshpande, R.M. Kohli, H. Zheng, R.T. Manguso, N. Bardeesy. (2022) Mutant IDH Inhibits IFNγ-TET2 Signaling to Promote Immunoevasion and Tumor Maintenance in Cholangiocarcinoma. Cancer Discov, 12(3), 812-835. T. Wu, W. Yang, A. Sun, Z. Wei, Q. Lin. (2022) The Role of CXC Chemokines in Cancer Progression. Cancers (Basel), 15(1). J. Korbecki, M. Bosiacki, I. Szatkowska, P. Kupnicka, D. Chlubek, I. Baranowska-Bosiacka. (2024) The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors, International Journal of Molecular Sciences. X. Zhao, Y. Lu, L. Cui. (2023) Neutrophil-sourced TNF in cancer: deciphering an intricate orchestrator of immunosuppressive communication in the tumor microenvironment. Signal Transduction and Targeted Therapy, 8(1), 272. Y. Yamamoto, A. Sugimoto, K. Maruo, G. Tsujio, T. Sera, S. Kushiyama, S. Nishimura, K. Kuroda, S. Togano, S. Eguchi, R. Tanaka, K. Kimura, R. Amano, M. Ohira, M. Yashiro. (2022) CXCR2 signaling might have a tumor-suppressive role in patients with cholangiocarcinoma. PLOS ONE, 17(4), e0266027. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94811 | - |
| dc.description.abstract | 肝內膽管癌(intrahepatic cholangiocarcinoma, iCCA)是第二常見的原發性肝癌類型,由於腫瘤位置在肝臟內部,手術切除腫瘤的難度較大。目前一線治療是胞毒性化學療法,但其臨床療效有限,且iCCA具有高度基因異質性,這促使標靶治療成為發展的方向。異檸檬酸脫氫酶I型(Isocitrate dehydrogenase 1, IDH1)是iCCA中常見的突變,突變後會導致致癌代謝物的積累,引發表觀遺傳學重新編程、代謝壓力和氧化壓力上升等作用,最終導致細胞癌化。Ivosidenib是一種通過美國FDA核准的IDH1抑制劑,能有效抑制突變IDH1,減少致癌代謝物的濃度,延長無症狀存活期。然而,在長期應用中,ivosidenib未能有效減小腫瘤體積,且易導致藥物抗性,其臨床效果有限。因此,本研究旨在通過與候選藥物聯合治療,結合ivosidenib的病程控制效果和候選藥物的腫瘤清除能力,以期達到更好的治療效果。研究首先評估了ivosidenib的療效,發現其雖然能有效抑制突變IDH1,但在MTT試驗中顯示出有限的細胞毒殺能力,需通過長期藥物處理後的群落生成試驗才能觀察到對RBE肝內膽管癌細胞的長期生存抑制效果。同時,本研究發現,ivosidenib治療後會提升細胞遷移能力並增加CXCL1趨化因子的表達,顯示其對促進癌症進展具有潛在作用。此外,本研究試圖探索高濃度ivosidenib產生毒殺效果的機制,發現高濃度ivosidenib處理下能會使細胞週期停滯並誘發DNA損傷,是抑制RBE細胞活性的潛在可能成因。
最後,本研究篩選了DNA/RNA合成抑制劑、表觀遺傳學藥物、酪胺酸激酶抑制劑、代謝調節劑等四大類候選藥物,許多藥物都在MTT試驗中展現對RBE細胞顯著的毒殺能力,不過在與ivosidenib聯合給藥的增敏性分析中都僅展現出加乘效應。不過,本研究認為這些聯合給藥能夠時抑制致癌代謝物生成並同時毒殺癌細胞,有望在長期給藥下或活體環境內存在治療潛力。 | zh_TW |
| dc.description.abstract | Intrahepatic cholangiocarcinoma (iCCA) ranks as the second most prevalent type of liver cancer, posing significant challenges in treatment due to high recurrence rates and the complexity of resection surgery. While chemotherapy is commonly used as a primary treatment, its effectiveness is limited by the genetic diversity of the cancer and the development of drug resistance mechanisms. Mutant isocitrate dehydrogenase 1 (mIDH1) represents a promising target for iCCA therapy, as it contributes to epigenetic reprogramming, metabolic stress, and other factors pivotal in disease progression.
Ivosidenib (IVO), an FDA-approved drug, inhibits the mIDH1 enzyme, thereby reducing oncometabolite levels and inhibiting tumor growth. However, clinical studies have indicated low response rates and the emergence of drug resistance with prolonged use. In our study, we first evaluated the efficacy of ivosidenib, confirming its ability to effectively inhibit mutant IDH1. Nevertheless, it demonstrated limited cytotoxicity in MTT assays, necessitating a 14-day colony formation assay to observe its long-term survival inhibitory effects on RBE iCCA cells. Notably, ivosidenib treatment was associated with increased migration ability and upregulation of the chemokine CXCL1 in RBE cells, suggesting a partial induction of cancer progression. Furthermore, we investigated the mechanisms underlying the cytotoxic effects of high concentrations of ivosidenib but did not observe corresponding results in apoptosis, cell cycle, or DNA damage assays. Finally, we screened four categories of candidate drugs—DNA/RNA synthesis inhibitors, epigenetic agents, tyrosine kinase inhibitors, and metabolic inhibitors. Many of these drugs demonstrated significant cytotoxicity against RBE cells in MTT assays but only additive effects when combined with ivosidenib in sensitization assays. Given these findings, our study highlights the potential of these combination therapies to inhibit oncometabolite synthesis by ivosidenib and induce cytotoxicity in iCCA cells through candidate drugs. We anticipate that these combinations hold promise for long-term treatment and in vivo settings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:45:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T16:45:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝 辭 ii 中文摘要 iv 英文摘要 v 目 次 vii 圖 次 xi 表 次 xv 第1章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 第2章 文獻回顧 4 2-1 肝內膽管癌 4 2-1-1 肝內膽管癌概述 4 2-1-2 膽管癌分類 6 2-1-3 肝內膽管癌的臨床治療 7 2-2 標靶治療 9 2-2-1 肝內膽管癌的標靶分子 9 2-2-2 肝內膽管癌的臨床標靶藥物 10 2-3 突變型IDH1標靶治療 11 2-3-1 異檸檬酸脫氫酶 11 2-3-2 Ivosidenib 15 2-3-3 目前對於mIDH1肝內膽管癌的治療研究的困境 16 2-4 Ivosidenib的聯合用藥治療策略 18 2-4-1 近期臨床聯合用藥策略 18 2-4-2 本研究的聯合用藥篩選 19 第3章 實驗設計 30 第4章 材料與方法 32 4-1 研究材料 32 4-1-1 藥品及試劑 32 4-1-2 儀器與耗材 36 4-1-3 核酸引子 38 4-1-4 抗體 38 4-1-5 細胞株 39 4-2 實驗方法 40 4-2-1 細胞培養 40 4-2-2 R-2-HG定量分析 44 4-2-3 MTT試驗 47 4-2-4 細胞內ATP含量測定 49 4-2-5 克隆試驗 50 4-2-6 Transwell細胞遷移試驗 53 4-2-7 定量即時逆轉錄聚合酶連鎖反應分析 55 4-2-8 酵素連結免疫吸附法 61 4-2-9 流式細胞分析 63 第5章 實驗結果 70 5-1 Ivosidenib對於肝內膽管癌細胞株的治療效果 70 5-1-1 Ivosidenib可抑制RBE細胞的胞內R-2-HG的表現量 70 5-1-2 Ivosidenib無法顯著降低RBE細胞的細胞存活率 72 5-1-3 Ivosidenib長時間處理下抑制RBE細胞群落的生成 74 5-1-4 Ivosidenib促進RBE細胞的遷移能力 76 5-1-5 Ivosidenib對於免疫相關趨化因子表現量的影響 77 5-1-6 探討高濃度ivosidenib作用下RBE細胞活性降低的成因 81 5-2 Ivosidenib聯合候選藥物對於肝內膽管癌細胞之增敏性分析 88 5-2-1 DNA/RNA合成抑制劑與ivosidenib的聯合治療 88 5-2-2 表觀遺傳學藥物與ivosidenib的聯合治療 93 5-2-3 酪胺酸激酶抑制劑與ivosidenib的聯合治療 99 5-2-4 代謝調節劑與ivosidenib的聯合治療 101 第6章 討論 103 第7章 結論與未來展望 107 參考資料 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 肝內膽管癌 | zh_TW |
| dc.subject | 突變異檸檬酸脫氫酶 | zh_TW |
| dc.subject | Ivosidenib | zh_TW |
| dc.subject | 候選藥物 | zh_TW |
| dc.subject | 聯合用藥 | zh_TW |
| dc.subject | Mutant isocitrate dehydrogenase 1 | en |
| dc.subject | Intrahepatic cholangiocarcinoma | en |
| dc.subject | Combination therapy | en |
| dc.subject | Candidate drugs | en |
| dc.subject | Ivosidenib | en |
| dc.title | Ivosidenib藥物機制探討與聯合治療藥物篩選應用於IDH1突變型肝內膽管癌治療 | zh_TW |
| dc.title | Enhancing therapeutic efficiency of ivosidenib in intrahepatic cholangiocarcinoma through combination therapy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳立真;徐士蘭;林宗哲;楊家銘 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Chen WU;Shih-Lan Hsu;Zhong-Zhe Lin ;Chia-Min Yang | en |
| dc.subject.keyword | 肝內膽管癌,突變異檸檬酸脫氫酶,Ivosidenib,候選藥物,聯合用藥, | zh_TW |
| dc.subject.keyword | Intrahepatic cholangiocarcinoma,Mutant isocitrate dehydrogenase 1,Ivosidenib,Candidate drugs,Combination therapy, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202404000 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2029-07-31 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
