Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李奇鴻zh_TW
dc.contributor.advisorChi-Hon Leeen
dc.contributor.author歐瑟夫zh_TW
dc.contributor.authorJoseph Olasunkanmi Oyewaleen
dc.date.accessioned2024-08-19T16:44:40Z-
dc.date.available2024-10-23-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-07-28-
dc.identifier.citationAnguita, E., & Villalobo, A. (2018). Ca(2+) signaling and Src-kinases-controlled cellular functions. Arch Biochem Biophys, 650, 59-74. https://doi.org/10.1016/j.abb.2018.05.005
Apitz, H., & Salecker, I. (2014). A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe. J Neurogenet, 28(3-4), 233-249. https://doi.org/10.3109/01677063.2014.922558
Arikkath, J. (2012). Molecular mechanisms of dendrite morphogenesis. Front Cell Neurosci, 6, 61. https://doi.org/10.3389/fncel.2012.00061
Ashley, J., Sorrentino, V., Lobb-Rabe, M., Nagarkar-Jaiswal, S., Tan, L., Xu, S., Xiao, Q., Zinn, K., & Carrillo, R. A. (2019). Transsynaptic interactions between IgSF proteins DIP-α and Dpr10 are required for motor neuron targeting specificity. Elife, 8. https://doi.org/10.7554/eLife.42690
Awasaki, T., Saito, M., Sone, M., Suzuki, E., Sakai, R., Ito, K., & Hama, C. (2000). The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. Neuron, 26(1), 119-131. https://doi.org/10.1016/s0896-6273(00)81143-5
Bandekar, S. J., Chen, C. L., Ravala, S. K., Cash, J. N., Avramova, L. V., Zhalnina, M. V., Gutkind, J. S., Li, S., & Tesmer, J. J. G. (2022). Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. J Biol Chem, 298(8), 102209. https://doi.org/10.1016/j.jbc.2022.102209
Bernards, A., & Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends Cell Biol, 14(7), 377-385. https://doi.org/10.1016/j.tcb.2004.05.003
Briançon-Marjollet, A., Ghogha, A., Nawabi, H., Triki, I., Auziol, C., Fromont, S., Piché, C., Enslen, H., Chebli, K., & Cloutier, J.-F. (2008). Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Molecular and cellular biology, 28(7), 2314-2323.
Chang, F., Lemmon, C., Lietha, D., Eck, M., & Romer, L. (2011). Tyrosine phosphorylation of Rac1: a role in regulation of cell spreading. PLoS One, 6(12), e28587. https://doi.org/10.1371/journal.pone.0028587
Chao, D. L., Ma, L., & Shen, K. (2009). Transient cell-cell interactions in neural circuit formation. Nat Rev Neurosci, 10(4), 262-271. https://doi.org/10.1038/nrn2594
Cherfils, J., & Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev, 93(1), 269-309. https://doi.org/10.1152/physrev.00003.2012
Chklovskii, D. B., Vitaladevuni, S., & Scheffer, L. K. (2010). Semi-automated reconstruction of neural circuits using electron microscopy. Curr Opin Neurobiol, 20(5), 667-675. https://doi.org/10.1016/j.conb.2010.08.002
Clandinin, T. R., & Zipursky, S. L. (2002). Making connections in the fly visual system. Neuron, 35(5), 827-841. https://doi.org/10.1016/s0896-6273(02)00876-0
Corty, M. M., Matthews, B. J., & Grueber, W. B. (2009). Molecules and mechanisms of dendrite development in Drosophila. Development, 136(7), 1049-1061. https://doi.org/10.1242/dev.014423
Courgeon, M., & Desplan, C. (2019). Coordination of neural patterning in the Drosophila visual system. Curr Opin Neurobiol, 56, 153-159. https://doi.org/10.1016/j.conb.2019.01.024
Danelon, V., Goldner, R., Martinez, E., Gokhman, I., Wang, K., Yaron, A., & Tran, T. S. (2020). Modular and Distinct Plexin-A4/FARP2/Rac1 Signaling Controls Dendrite Morphogenesis. J Neurosci, 40(28), 5413-5430. https://doi.org/10.1523/jneurosci.2730-19.2020
Dong, X., Shen, K., & Bülow, H. E. (2015). Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annu Rev Physiol, 77, 271-300. https://doi.org/10.1146/annurev-physiol-021014-071746
Edlund, S., Landström, M., Heldin, C. H., & Aspenström, P. (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell, 13(3), 902-914. https://doi.org/10.1091/mbc.01-08-0398
Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., & Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57(3), 353-363. https://doi.org/10.1016/j.neuron.2007.11.030
Forrest, S. L., Kril, J. J., Stevens, C. H., Kwok, J. B., Hallupp, M., Kim, W. S., Huang, Y., McGinley, C. V., Werka, H., Kiernan, M. C., Götz, J., Spillantini, M. G., Hodges, J. R., Ittner, L. M., & Halliday, G. M. (2018). Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain, 141(2), 521-534. https://doi.org/10.1093/brain/awx328
Furusawa, K., & Emoto, K. (2020). Scrap and Build for Functional Neural Circuits: Spatiotemporal Regulation of Dendrite Degeneration and Regeneration in Neural Development and Disease. Front Cell Neurosci, 14, 613320. https://doi.org/10.3389/fncel.2020.613320
Gao, F. B. (2007). Molecular and cellular mechanisms of dendritic morphogenesis. Curr Opin Neurobiol, 17(5), 525-532. https://doi.org/10.1016/j.conb.2007.08.004
Gonzalez-Billault, C., Muñoz-Llancao, P., Henriquez, D. R., Wojnacki, J., Conde, C., & Caceres, A. (2012). The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken), 69(7), 464-485. https://doi.org/10.1002/cm.21034
Grewe, J., Matos, N., Egelhaaf, M., & Warzecha, A. K. (2006). Implications of functionally different synaptic inputs for neuronal gain and computational properties of fly visual interneurons. J Neurophysiol, 96(4), 1838-1847. https://doi.org/10.1152/jn.00170.2006
Guarino, M. (2010). Src signaling in cancer invasion. J Cell Physiol, 223(1), 14-26. https://doi.org/10.1002/jcp.22011
Hakeda-Suzuki, S., & Suzuki, T. (2014). Cell surface control of the layer specific targeting in the Drosophila visual system. Genes Genet Syst, 89(1), 9-15. https://doi.org/10.1266/ggs.89.9
Hall, A., & Nobes, C. D. (2000). Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci, 355(1399), 965-970. https://doi.org/10.1098/rstb.2000.0632
Han, C., Wang, D., Soba, P., Zhu, S., Lin, X., Jan, L. Y., & Jan, Y. N. (2012). Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron, 73(1), 64-78. https://doi.org/10.1016/j.neuron.2011.10.036
Hattori, D., Demir, E., Kim, H. W., Viragh, E., Zipursky, S. L., & Dickson, B. J. (2007). Dscam diversity is essential for neuronal wiring and self-recognition. Nature, 449(7159), 223-227. https://doi.org/10.1038/nature06099
Holguera, I., & Desplan, C. (2018). Neuronal specification in space and time. Science, 362(6411), 176-180. https://doi.org/10.1126/science.aas9435
Jan, Y. N., & Jan, L. Y. (2001). Dendrites. Genes Dev, 15(20), 2627-2641. https://doi.org/10.1101/gad.916501
Jan, Y. N., & Jan, L. Y. (2010). Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci, 11(5), 316-328. https://doi.org/10.1038/nrn2836
Jolly, A. L., Luan, C. H., Dusel, B. E., Dunne, S. F., Winding, M., Dixit, V. J., Robins, C., Saluk, J. L., Logan, D. J., Carpenter, A. E., Sharma, M., Dean, D., Cohen, A. R., & Gelfand, V. I. (2016). A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. Cell Rep, 14(3), 611-620. https://doi.org/10.1016/j.celrep.2015.12.051
Kamiyama, D., McGorty, R., Kamiyama, R., Kim, M. D., Chiba, A., & Huang, B. (2015). Specification of Dendritogenesis Site in Drosophila aCC Motoneuron by Membrane Enrichment of Pak1 through Dscam1. Dev Cell, 35(1), 93-106. https://doi.org/10.1016/j.devcel.2015.09.007
Kashef, J., Köhler, A., Kuriyama, S., Alfandari, D., Mayor, R., & Wedlich, D. (2009). Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev, 23(12), 1393-1398. https://doi.org/10.1101/gad.519409
Konstantinides, N., Holguera, I., Rossi, A. M., Escobar, A., Dudragne, L., Chen, Y. C., Tran, T. N., Martínez Jaimes, A. M., Özel, M. N., Simon, F., Shao, Z., Tsankova, N. M., Fullard, J. F., Walldorf, U., Roussos, P., & Desplan, C. (2022). A complete temporal transcription factor series in the fly visual system. Nature, 604(7905), 316-322. https://doi.org/10.1038/s41586-022-04564-w
Kotelevets, L., & Chastre, E. (2020). Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel), 12(3). https://doi.org/10.3390/cancers12030665
Kulkarni, V. A., & Firestein, B. L. (2012). The dendritic tree and brain disorders. Mol Cell Neurosci, 50(1), 10-20. https://doi.org/10.1016/j.mcn.2012.03.005
Lah, G. J., Li, J. S., & Millard, S. S. (2014). Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron, 83(6), 1376-1388. https://doi.org/10.1016/j.neuron.2014.08.002
Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22(3), 451-461. https://doi.org/10.1016/s0896-6273(00)80701-1
Li, H., Janssens, J., De Waegeneer, M., Kolluru, S. S., Davie, K., Gardeux, V., Saelens, W., David, F. P. A., Brbić, M., Spanier, K., Leskovec, J., McLaughlin, C. N., Xie, Q., Jones, R. C., Brueckner, K., Shim, J., Tattikota, S. G., Schnorrer, F., Rust, K., . . . Zinzen, R. P. (2022). Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 375(6584), eabk2432. https://doi.org/10.1126/science.abk2432
Li, H., Shuster, S. A., Li, J., & Luo, L. (2018). Linking neuronal lineage and wiring specificity. Neural Dev, 13(1), 5. https://doi.org/10.1186/s13064-018-0102-0
Li, X., Erclik, T., Bertet, C., Chen, Z., Voutev, R., Venkatesh, S., Morante, J., Celik, A., & Desplan, C. (2013). Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature, 498(7455), 456-462. https://doi.org/10.1038/nature12319
Li, Y., Chen, P. J., Lin, T. Y., Ting, C. Y., Muthuirulan, P., Pursley, R., Ilić, M., Pirih, P., Drews, M. S., Menon, K. P., Zinn, K. G., Pohida, T., Borst, A., & Lee, C. H. (2021). Neural mechanism of spatio-chromatic opponency in the Drosophila amacrine neurons. Curr Biol, 31(14), 3040-3052.e3049. https://doi.org/10.1016/j.cub.2021.04.068
Lin, T. Y., Chen, P. J., Yu, H. H., Hsu, C. P., & Lee, C. H. (2020). Extrinsic Factors Regulating Dendritic Patterning. Front Cell Neurosci, 14, 622808. https://doi.org/10.3389/fncel.2020.622808
London, M., & Häusser, M. (2005). Dendritic computation. Annu Rev Neurosci, 28, 503-532. https://doi.org/10.1146/annurev.neuro.28.061604.135703
Lu, B., Wang, K. H., & Nose, A. (2009). Molecular mechanisms underlying neural circuit formation. Curr Opin Neurobiol, 19(2), 162-167. https://doi.org/10.1016/j.conb.2009.04.004
Luo, J., Ting, C. Y., Li, Y., McQueen, P., Lin, T. Y., Hsu, C. P., & Lee, C. H. (2020). Antagonistic regulation by insulin-like peptide and activin ensures the elaboration of appropriate dendritic field sizes of amacrine neurons. Elife, 9. https://doi.org/10.7554/eLife.50568
Macpherson, L. J., Zaharieva, E. E., Kearney, P. J., Alpert, M. H., Lin, T. Y., Turan, Z., Lee, C. H., & Gallio, M. (2015). Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Commun, 6, 10024. https://doi.org/10.1038/ncomms10024
Malartre, M., Ayaz, D., Amador, F. F., & Martín-Bermudo, M. D. (2010). The guanine exchange factor vav controls axon growth and guidance during Drosophila development. J Neurosci, 30(6), 2257-2267. https://doi.org/10.1523/jneurosci.1820-09.2010
Malin, J., & Desplan, C. (2021). Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A, 118(28). https://doi.org/10.1073/pnas.2101823118
Marrs, G. S., Green, S. H., & Dailey, M. E. (2001). Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat Neurosci, 4(10), 1006-1013. https://doi.org/10.1038/nn717
Mi, Z., Si, T., Kapadia, K., Li, Q., & Muma, N. A. (2017). Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. Neuropharmacology, 117, 93-105. https://doi.org/10.1016/j.neuropharm.2017.01.034
Millard, S. S., Flanagan, J. J., Pappu, K. S., Wu, W., & Zipursky, S. L. (2007). Dscam2 mediates axonal tiling in the Drosophila visual system. Nature, 447(7145), 720-724. https://doi.org/10.1038/nature05855
Morante, J., & Desplan, C. (2008). The color-vision circuit in the medulla of Drosophila. Curr Biol, 18(8), 553-565. https://doi.org/10.1016/j.cub.2008.02.075
Nern, A., Pfeiffer, B. D., & Rubin, G. M. (2015). Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci U S A, 112(22), E2967-2976. https://doi.org/10.1073/pnas.1506763112
Neubrand, V. E., Thomas, C., Schmidt, S., Debant, A., & Schiavo, G. (2010). Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio. Journal of cell science, 123(12), 2111-2123.
Newsome, T. P., Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A., & Dickson, B. J. (2000). Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell, 101(3), 283-294. https://doi.org/10.1016/s0092-8674(00)80838-7
Ng, J., Nardine, T., Harms, M., Tzu, J., Goldstein, A., Sun, Y., Dietzl, G., Dickson, B. J., & Luo, L. (2002). Rac GTPases control axon growth, guidance and branching. Nature, 416(6879), 442-447. https://doi.org/10.1038/416442a
Ngo, K. T., Andrade, I., & Hartenstein, V. (2017). Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe. Dev Biol, 428(1), 1-24. https://doi.org/10.1016/j.ydbio.2017.05.008
Nguyen, C. T., Nguyen, V. M., & Jeong, S. (2022). Regulation of Off-track bidirectional signaling by Semaphorin-1a and Wnt signaling in the Drosophila motor axon guidance. Insect Biochem Mol Biol, 150, 103857. https://doi.org/10.1016/j.ibmb.2022.103857
Odierna, G. L., Kerwin, S. K., Harris, L. E., Shin, G. J., Lavidis, N. A., Noakes, P. G., & Millard, S. S. (2020). Dscam2 suppresses synaptic strength through a PI3K-dependent endosomal pathway. J Cell Biol, 219(6). https://doi.org/10.1083/jcb.201909143
Ouyang, M., Sun, J., Chien, S., & Wang, Y. (2008). Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci U S A, 105(38), 14353-14358. https://doi.org/10.1073/pnas.0807537105
Pan, Y., & Monje, M. (2020). Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci, 40(5), 944-954. https://doi.org/10.1523/jneurosci.0740-19.2019
Pasterkamp, R. J., Ruitenberg, M. J., & Verhaagen, J. (1999). Semaphorins and their receptors in olfactory axon guidance. Cell Mol Biol (Noisy-le-grand), 45(6), 763-779.
Peng, Y. R., He, S., Marie, H., Zeng, S. Y., Ma, J., Tan, Z. J., Lee, S. Y., Malenka, R. C., & Yu, X. (2009). Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron, 61(1), 71-84. https://doi.org/10.1016/j.neuron.2008.11.015
Pfeiffer, B. D., Ngo, T. T., Hibbard, K. L., Murphy, C., Jenett, A., Truman, J. W., & Rubin, G. M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186(2), 735-755. https://doi.org/10.1534/genetics.110.119917
Phelps, J. S., Hildebrand, D. G. C., Graham, B. J., Kuan, A. T., Thomas, L. A., Nguyen, T. M., Buhmann, J., Azevedo, A. W., Sustar, A., Agrawal, S., Liu, M., Shanny, B. L., Funke, J., Tuthill, J. C., & Lee, W. A. (2021). Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell, 184(3), 759-774.e718. https://doi.org/10.1016/j.cell.2020.12.013
Plazaola-Sasieta, H., Fernández-Pineda, A., Zhu, Q., & Morey, M. (2017). Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies. J Neurogenet, 31(4), 231-249. https://doi.org/10.1080/01677063.2017.1391249
Puram, S. V., & Bonni, A. (2013). Cell-intrinsic drivers of dendrite morphogenesis. Development, 140(23), 4657-4671. https://doi.org/10.1242/dev.087676
Raji, J. I., & Potter, C. J. (2021). The number of neurons in Drosophila and mosquito brains. PLoS One, 16(5), e0250381. https://doi.org/10.1371/journal.pone.0250381
Richter, L. M., & Gjorgjieva, J. (2017). Understanding neural circuit development through theory and models. Curr Opin Neurobiol, 46, 39-47. https://doi.org/10.1016/j.conb.2017.07.004
Sanes, J. R., & Zipursky, S. L. (2010). Design principles of insect and vertebrate visual systems. Neuron, 66(1), 15-36. https://doi.org/10.1016/j.neuron.2010.01.018
Sanes, J. R., & Zipursky, S. L. (2020). Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell, 181(3), 536-556. https://doi.org/10.1016/j.cell.2020.04.008
Sato, M., Suzuki, T., & Nakai, Y. (2013). Waves of differentiation in the fly visual system. Dev Biol, 380(1), 1-11. https://doi.org/10.1016/j.ydbio.2013.04.007
Schelski, M., & Bradke, F. (2017). Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci, 84, 11-28. https://doi.org/10.1016/j.mcn.2017.03.008
Schmidt, S., & Debant, A. (2014). Function and regulation of the Rho guanine nucleotide exchange factor Trio. Small GTPases, 5, e29769. https://doi.org/10.4161/sgtp.29769
Schmucker, D., & Chen, B. (2009). Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev, 23(2), 147-156. https://doi.org/10.1101/gad.1752909
Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nat Neurosci, 4(4), 359-365. https://doi.org/10.1038/86006
Servitja, J. M., Marinissen, M. J., Sodhi, A., Bustelo, X. R., & Gutkind, J. S. (2003). Rac1 function is required for Src-induced transformation. Evidence of a role for Tiam1 and Vav2 in Rac activation by Src. J Biol Chem, 278(36), 34339-34346. https://doi.org/10.1074/jbc.M302960200
Shinomiya, K., Horne, J. A., McLin, S., Wiederman, M., Nern, A., Plaza, S. M., & Meinertzhagen, I. A. (2019). The Organization of the Second Optic Chiasm of the Drosophila Optic Lobe. Front Neural Circuits, 13, 65. https://doi.org/10.3389/fncir.2019.00065
Shivalkar, M., & Giniger, E. (2012). Control of dendritic morphogenesis by Trio in Drosophila melanogaster. PLoS One, 7(3), e33737. https://doi.org/10.1371/journal.pone.0033737
Shree, S., Sutradhar, S., Trottier, O., Tu, Y., Liang, X., & Howard, J. (2022). Dynamic instability of dendrite tips generates the highly branched morphologies of sensory neurons. Sci Adv, 8(26), eabn0080. https://doi.org/10.1126/sciadv.abn0080
Spiering, D., & Hodgson, L. (2011). Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh Migr, 5(2), 170-180. https://doi.org/10.4161/cam.5.2.14403
Suzuki, T., Kaido, M., Takayama, R., & Sato, M. (2013). A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol, 380(1), 12-24. https://doi.org/10.1016/j.ydbio.2013.05.002
Tadros, W., Xu, S., Akin, O., Yi, C. H., Shin, G. J., Millard, S. S., & Zipursky, S. L. (2016). Dscam Proteins Direct Dendritic Targeting through Adhesion. Neuron, 89(3), 480-493. https://doi.org/10.1016/j.neuron.2015.12.026
Takemura, S. Y., Lu, Z., & Meinertzhagen, I. A. (2008). Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol, 509(5), 493-513. https://doi.org/10.1002/cne.21757
Takemura, S. Y., Nern, A., Chklovskii, D. B., Scheffer, L. K., Rubin, G. M., & Meinertzhagen, I. A. (2017). The comprehensive connectome of a neural substrate for 'ON' motion detection in Drosophila. Elife, 6. https://doi.org/10.7554/eLife.24394
Takemura, S. Y., Xu, C. S., Lu, Z., Rivlin, P. K., Parag, T., Olbris, D. J., Plaza, S., Zhao, T., Katz, W. T., Umayam, L., Weaver, C., Hess, H. F., Horne, J. A., Nunez-Iglesias, J., Aniceto, R., Chang, L. A., Lauchie, S., Nasca, A., Ogundeyi, O., . . . Scheffer, L. K. (2015). Synaptic circuits and their variations within different columns in the visual system of Drosophila. Proc Natl Acad Sci U S A, 112(44), 13711-13716. https://doi.org/10.1073/pnas.1509820112
Tao, T., Sun, J., Peng, Y., Wang, P., Chen, X., Zhao, W., Li, Y., Wei, L., Wang, W., Zheng, Y., Wang, Y., Zhang, X., & Zhu, M. S. (2019). Distinct functions of Trio GEF domains in axon outgrowth of cerebellar granule neurons. J Genet Genomics, 46(2), 87-96. https://doi.org/10.1016/j.jgg.2019.02.003
Ting, C. Y., McQueen, P. G., Pandya, N., Lin, T. Y., Yang, M., Reddy, O. V., O'Connor, M. B., McAuliffe, M., & Lee, C. H. (2014). Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron, 81(4), 830-846. https://doi.org/10.1016/j.neuron.2013.12.012
van Rijssel, J., Kroon, J., Hoogenboezem, M., van Alphen, F. P., de Jong, R. J., Kostadinova, E., Geerts, D., Hordijk, P. L., & van Buul, J. D. (2012). The Rho-guanine nucleotide exchange factor Trio controls leukocyte transendothelial migration by promoting docking structure formation. Mol Biol Cell, 23(15), 2831-2844. https://doi.org/10.1091/mbc.E11-11-0907
van Rijssel, J., & van Buul, J. D. (2012). The many faces of the guanine-nucleotide exchange factor trio. Cell Adh Migr, 6(6), 482-487. https://doi.org/10.4161/cam.21418
Vartak, A., Goyal, D., & Kumar, H. (2023). Role of Axon Guidance Molecules in Ascending and Descending Paths in Spinal Cord Regeneration. Neuroscience, 533, 36-52. https://doi.org/10.1016/j.neuroscience.2023.08.034
Weiner, J. A., Jontes, J. D., & Burgess, R. W. (2013). Introduction to mechanisms of neural circuit formation. Front Mol Neurosci, 6, 12. https://doi.org/10.3389/fnmol.2013.00012
Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L., & Clemens, J. C. (2004). Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell, 118(5), 619-633. https://doi.org/10.1016/j.cell.2004.08.021
Xie, Q., Li, J., Li, H., Udeshi, N. D., Svinkina, T., Orlin, D., Kohani, S., Guajardo, R., Mani, D. R., Xu, C., Li, T., Han, S., Wei, W., Shuster, S. A., Luginbuhl, D. J., Quake, S. R., Murthy, S. E., Ting, A. Y., Carr, S. A., & Luo, L. (2022). Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code. Neuron, 110(14), 2299-2314.e2298. https://doi.org/10.1016/j.neuron.2022.04.026
Xu, C., Theisen, E., Maloney, R., Peng, J., Santiago, I., Yapp, C., Werkhoven, Z., Rumbaut, E., Shum, B., Tarnogorska, D., Borycz, J., Tan, L., Courgeon, M., Griffin, T., Levin, R., Meinertzhagen, I. A., de Bivort, B., Drugowitsch, J., & Pecot, M. Y. (2019). Control of Synaptic Specificity by Establishing a Relative Preference for Synaptic Partners. Neuron, 103(5), 865-877.e867. https://doi.org/10.1016/j.neuron.2019.06.006
Yamagata, M., & Sanes, J. R. (2008). Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature, 451(7177), 465-469. https://doi.org/10.1038/nature06469
Yang, H. W., Shin, M. G., Lee, S., Kim, J. R., Park, W. S., Cho, K. H., Meyer, T., & Heo, W. D. (2012). Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell, 47(2), 281-290. https://doi.org/10.1016/j.molcel.2012.05.007
Zwarts, L., Goossens, T., Clements, J., Kang, Y. Y., & Callaerts, P. (2016). Axon Branch-Specific Semaphorin-1a Signaling in Drosophila Mushroom Body Development. Front Cell Neurosci, 10, 210. https://doi.org/10.3389/fncel.2016.00210
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94809-
dc.description.abstract過去研究認為Down syndrome cell adhesion molecule 2 (Dscam2)通過介導神經突之間的同型交互作用,來指引神經迴路的組裝。然而,此訊號傳遞機制尚不明確。在本篇論文中,我們使用果蠅視覺神經作為模型,證明Dscam2對於髓質投射神經元Tm20的樹突場尺寸擴展與正確的平面投射方向不可或缺。這些Dscam2的細胞自主功能具異構特異性:Dscam2 10B異構體可限制樹突場尺寸,而10A和10B皆會調控平面投射的方向。除了Dscam2細胞膜外域的調控機制,Dscam2細胞質域的訊號傳遞對於Tm20形成正確樹突型態也是必要的。接著我們描繪Dscam2在細胞內的訊號途徑,並發現非受體酪胺酸激酶Src2,和Dscam2有遺傳交互作用,參與指示應有的樹突型態。通過篩選候選基因,我們認為Rac1是Src在Dscam2路徑的下游的潛在標的,可被核甘酸轉換因子Trio調控,推測它會調節樹突發育過程中的肌動蛋白骨架。除此之外,我們發現與先前認知不同,PI3K並非Dscam2下游限制樹突發展的因子。我們的研究為更深入了解Dscam2訊號路徑建立基礎。zh_TW
dc.description.abstractIt has been proposed that the Down syndrome cell adhesion molecule 2 (Dscam2) mediates homotypic interactions between neurites to guide neural circuit assembly. However, its signaling mechanism is unknown. In this thesis, using the Drosophila visual neurons as a model, we demonstrate that Dscam2 is required in the medulla projection neurons, Tm20, for proper expansion of dendritic field sizes and correct planar projection. These cell-autonomous functions of Dscam2 are isoform-specific: Dscam2 10B isoform restricts dendritic field sizes while both 10A and 10B isoforms regulate the direction of dendritic planar projection. Aside the mechanism utilized by the ectodomains, Dscam2’s cytoplasmic domain is essential to elicit signal transduction for proper dendritic patterning of Tm20 neurons. We then, delineated Dscam2’s intracellular signaling pathway and discovered the involvement of the non-receptor tyrosine kinase, Src42 which genetically interacts with Dscam2 to instruct appropriate dendritic arbor of Tm20 neurons. By screening candidates, we identified Rac1 as the potential target of Src in Dscam2 pathway, which itself is regulated by its nucleotide exchanger Trio, presumably, to modulate actin cytoskeleton during dendrite development. In addition, we determined that unlike previous suggestion, PI3K, does not act downstream of Dscam2 to restrict dendritic elaboration. Our findings pave the path to elucidating the signaling pathway of Dscam2.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:44:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:44:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsDedication and acknowledgement……………………...………………………………i
Chinese Abstract…………………….………………………………………….…ii
English Abstract ……………………………………………………………………… iii
Table of Contents …………………………………………………………………….. iv
List of Figures………………………………………………………….………….... v
CHAPTER ONE: INTRODUCTION…………………………..………………….…1
1.1 CNS development and neural circuit assembly…………………………………….1
1.2 Dendrite development: a critical component of neural circuit assembly……………2
1.3 Drosophila visual system: A model for dissecting neural circuit assembly……….4
1.4.0 Medulla: The largest neuropil of Drosophila optic lobe……………………….…5
1.4.1 Medulla neurons………………………………………………………………….7
1.4.2 Tm20 neurons: a model for investigating dendrite development………………….7
1.5 Wiring mechanisms of the neural circuits………………………………………….9
1.6 Homophilic recognition molecules: vital for cell recognition in NC assembly….10
1.7 Down syndrome cell adhesion molecule 2 (Dscam2) …………………………….11
1.8 Aims…………………………………………………………...………………...13
1.9 Significance …………………………………………………………………. ….13
CHAPTER TWO: MATERIALS AND METHODS……………………………...….14
2.1 Drosophila stocks and genotypes………………………………………………….14
2.2 MARCM-based mosaic analysis………………………………………………….14
2.3 Generation of TrioGEF point mutations………………………………….……15
2.4 Immunostaining……………………………………………………………....15
2.5 Image acquisition………………………………………………………………….16
2.5 GFP reconstitution across synaptic partners (GRASP)…………………………....17
2.7 Dendritic field sizes quantification……………………………………………….17
2.8 Statistics……………………………………………………………………….…18
CHAPTER THREE: RESULTS …………………………………………………….19
3.1.0 Patterning of Tm20 dendrites requires Dscam2…………………………….19
3.1.1 Dscam2 restricts dendritic field sizes of Tm20 neurons …………………………20
3.1.2 Dscam2 mutation does not alter the normal cell fate of Tm20 neurons …………22
3.2.0 Dscam2 regulates wiring mechanisms of Tm20 neurons ……………………….23
3.2.1 Dscam2 regulates synaptic partner input precision …………………………….24
3.2.2 Dscam2 controls synaptic partner specificity …………………………………...25
3.3 Extracellular molecular diversity is required for Dscam2 functions ……………26
3.4 Cytoplasmic domain is required …………………….………………………...27
3.5 Trio activates Rac1 activity to modulate dendrite morphology …………………28
3.6 Trio instructively regulates dendritic arbor restriction in Tm20 neurons………….30
3.7 Rac1 activation is required for proper dendritic development of Tm20 neurons….30
3.8 Src genetically interacts with Dscam2 to pattern Tmo2 dendritic morphology……32
CHAPTER FOUR: DISCUSSION.…………………………………………….......35
4.0 Signaling mechanisms of Dscam2………………………………………..……….35
4.1 Trio instructively regulates dendritic field sizes ……………………………….…35
4.2 Rac1 activation is indispensable………………………………………….……….37
4.3 Intracellular signaling requires activation by tyrosine kinases ………………….38
4.4 Molecular diversity of Dscam2 is required for its function ……………………...39
4.5 Dscam2 restricts elaboration of dendritic arbors…………………………………..40
4.7 Dscam2 regulates synaptic partner specificity and selectivity……………………..40
4.8 Model of Dscam2 signaling mechanisms……………………………………. ….42
4.9 Concluding remarks………………………………………………………...…….42
Table………………………………………………………………………………....64
References…………………………………………………………………………….66
-
dc.language.isoen-
dc.titleDscam2訊號機制對限制視覺神經樹突場尺寸之研究zh_TW
dc.titleSignaling Mechanisms of the Down Syndrome Cell Adhesion Receptor Dscam2 in Restricting Dendritic Field Expansion of Visual Neuronsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor詹智強zh_TW
dc.contributor.coadvisorChih-Chiang Chanen
dc.contributor.oralexamcommittee游宏祥;簡正鼎;林書葦zh_TW
dc.contributor.oralexamcommitteeHung-Hsiang Yu ;Chien-Ting Chien;Suewei Linen
dc.subject.keywordCell adhesion molecule,樹突發育,神經迴路的組裝,訊號傳遞機制,果蠅視覺神經,zh_TW
dc.subject.keywordCell adhesion molecule,dendrite development,neural circuit assembly,signaling mechanism,Drosophila visual neurons,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202401982-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-29-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept跨領域神經科學國際研究生博士學位學程-
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved