請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94797完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙 | zh_TW |
| dc.contributor.advisor | Hsiu-Hsi Chen | en |
| dc.contributor.author | 魏仕翔 | zh_TW |
| dc.contributor.author | Shih-Hsiang Wei | en |
| dc.date.accessioned | 2024-08-19T16:32:13Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-23 | - |
| dc.identifier.citation | Bardou, M., Barkun, A. N., & Martel, M. (2013). Obesity and colorectal cancer. Gut, 62(6), 933-947. https://doi.org/10.1136/gutjnl-2013-304701
Blanks, R., Burón Pust, A., Alison, R., He, E., Barnes, I., Patnick, J., Reeves, G. K., Floud, S., Beral, V., & Green, J. (2019). Screen‐detected and interval colorectal cancers in England: Associations with lifestyle and other factors in women in a large UK prospective cohort. International journal of cancer, 145(3), 728-734. https://doi.org/10.1002/ijc.32168 Chang, L.-C., Shun, C.-T., Hsu, W.-F., Tu, C.-H., Tsai, P.-Y., Lin, B.-R., Liang, J.-T., Wu, M.-S., & Chiu, H.-M. (2017). Fecal Immunochemical Test Detects Sessile Serrated Adenomas and Polyps With a Low Level of Sensitivity. Clinical Gastroenterology and Hepatology, 15(6), 872-879.e871. https://doi.org/10.1016/j.cgh.2016.07.029 Chen, T. H.-H., Yen, M.-F., Lai, M.-S., Koong, S.-L., Wang, C.-Y., Wong, J.-M., Prevost, T. C., & Duffy, S. W. (1999). Evaluation of a selective screening for colorectal carcinoma. Cancer, 86(7), 1116-1128. https://doi.org/10.1002/(sici)1097-0142(19991001)86:7<1116::Aid-cncr4>3.0.Co;2-d Chen, T. H., Chiu, Y. H., Luh, D. L., Yen, M. F., Wu, H. M., Chen, L. S., Tung, T. H., Huang, C. C., Chan, C. C., Shiu, M. N., Yeh, Y. P., Liou, H. H., Liao, C. S., Lai, H. C., Chiang, C. P., Peng, H. L., Tseng, C. D., Yen, M. S., Hsu, W. C., . . . Taiwan Community-Based Integrated Screening, G. (2004). Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer, 100(8), 1734-1743. https://doi.org/10.1002/cncr.20171 Chen, T. H. H., Chiu, Y. H., Luh, D. L., Yen, M. F., Wu, H. M., Chen, L. S., Tung, T. H., Huang, C. C., Chan, C. C., & Shiu, M. N. (2004). Community‐based multiple screening model: Design, implementation, and analysis of 42,387 participants Taiwan community‐based integrated screening group. Cancer: Interdisciplinary International Journal of the American Cancer Society, 100(8), 1734-1743. Chiu, H.-M., Jen, G. H.-H., Wang, Y.-W., Fann, J. C.-Y., Hsu, C.-Y., Jeng, Y.-C., Yen, A. M.-F., Chiu, S. Y.-H., Chen, S. L.-S., & Hsu, W.-F. (2021). Long-term effectiveness of faecal immunochemical test screening for proximal and distal colorectal cancers. Gut, 70(12), 2321-2329. Chiu Han-Mo, C. H.-H. (2021). CRC Screening Theory and Practice. https://doi.org/10.1007/978-981-15-7482-5 Chiu, H. M., Chen, S. L., Yen, A. M., Chiu, S. Y., Fann, J. C., Lee, Y. C., Pan, S. L., Wu, M. S., Liao, C. S., Chen, H. H., Koong, S. L., & Chiou, S. T. (2015). Effectiveness of fecal immunochemical testing in reducing colorectal cancer mortality from the One Million Taiwanese Screening Program. Cancer, 121(18), 3221-3229. https://doi.org/10.1002/cncr.29462 Chiu, H. M., Jen, G. H., Wang, Y. W., Fann, J. C., Hsu, C. Y., Jeng, Y. C., Yen, A. M., Chiu, S. Y., Chen, S. L., Hsu, W. F., Lee, Y. C., Wu, M. S., Wu, C. Y., Jou, Y. Y., & Chen, T. H. (2021). Long-term effectiveness of faecal immunochemical test screening for proximal and distal colorectal cancers. Gut, 70(12), 2321-2329. https://doi.org/10.1136/gutjnl-2020-322545 Chiu, H. M., Lee, Y. C., Tu, C. H., Chen, C. C., Tseng, P. H., Liang, J. T., Shun, C. T., Lin, J. T., & Wu, M. S. (2013). Association Between Early Stage Colon Neoplasms and False-negative Results From the Fecal Immunochemical Test. Clinical Gastroenterology and Hepatology, 11(7), 832-838.e832. https://doi.org/10.1016/j.cgh.2013.01.013 Chiu, H. M., Lin, J. T., Shun, C. T., Liang, J. T., Lee, Y. C., Huang, S. P., & Wu, M. S. (2007). Association of Metabolic Syndrome With Proximal and Synchronous Colorectal Neoplasm. Clinical Gastroenterology and Hepatology, 5(2), 221-229. https://doi.org/10.1016/j.cgh.2006.06.022 Chiu, S. Y. H., Malila, N., Yen, A. M. F., Anttila, A., Hakama, M., & Chen, H. H. (2011). Analytical decision model for sample size and effectiveness projections for use in planning a population‐based randomized controlled trial of colorectal cancer screening. Journal of Evaluation in Clinical Practice, 17(1), 123-129. https://doi.org/10.1111/j.1365-2753.2010.01378.x Cox, D. R., Miller, H. D. (1965). The theory of stochastic processes. Henrikson, N. B., Webber, E. M., Goddard, K. A., Scrol, A., Piper, M., Williams, M. S., Zallen, D. T., Calonge, N., Ganiats, T. G., Janssens, A. C. J. W., Zauber, A., Lansdorp-Vogelaar, I., Van Ballegooijen, M., & Whitlock, E. P. (2015). Family history and the natural history of colorectal cancer: systematic review. Genetics in Medicine, 17(9), 702-712. https://doi.org/10.1038/gim.2014.188 Hsu, W. F., Hsu, C. Y., Yen, A. M., Chen, S. L., Chiu, S. Y., Fann, J. C., Lee, Y. C., Chiu, H. M., & Chen, H. H. (2021). Classifying interval cancers as false negatives or newly occurring in fecal immunochemical testing. J Med Screen, 28(3), 286-294. https://doi.org/10.1177/0969141320986830 Jen, G. H.-H., Yen, A. M.-F., Hsu, C.-Y., Chiu, H.-M., Chen, S. L.-S., & Chen, T. H.-H. (2021). Modelling the impacts of COVID-19 pandemic on the quality of population-based colorectal cancer screening. Preventive Medicine, 151, 106597. https://doi.org/10.1016/j.ypmed.2021.106597 Johnson, C. M., Wei, C., Ensor, J. E., Smolenski, D. J., Amos, C. I., Levin, B., & Berry, D. A. (2013). Meta-analyses of colorectal cancer risk factors. Cancer Causes & Control, 24(6), 1207-1222. https://doi.org/10.1007/s10552-013-0201-5 Keum, N., Bao, Y., Smith-Warner, S. A., Orav, J., Wu, K., Fuchs, C. S., & Giovannucci, E. L. (2016). Association of Physical Activity by Type and Intensity With Digestive System Cancer Risk. JAMA Oncology, 2(9), 1146. https://doi.org/10.1001/jamaoncol.2016.0740 Liu, P.-H., Wu, K., Ng, K., Zauber, A. G., Nguyen, L. H., Song, M., He, X., Fuchs, C. S., Ogino, S., Willett, W. C., Chan, A. T., Giovannucci, E. L., & Cao, Y. (2019). Association of Obesity With Risk of Early-Onset Colorectal Cancer Among Women. JAMA Oncology, 5(1), 37. https://doi.org/10.1001/jamaoncol.2018.4280 Murphy, N., Ward, H. A., Jenab, M., Rothwell, J. A., Boutron-Ruault, M.-C., Carbonnel, F., Kvaskoff, M., Kaaks, R., Kühn, T., Boeing, H., Aleksandrova, K., Weiderpass, E., Skeie, G., Borch, K. B., Tjønneland, A., Kyrø, C., Overvad, K., Dahm, C. C., Jakszyn, P., . . . Gunter, M. J. (2019). Heterogeneity of Colorectal Cancer Risk Factors by Anatomical Subsite in 10 European Countries: A Multinational Cohort Study. Clinical Gastroenterology and Hepatology, 17(7), 1323-1331.e1326. https://doi.org/10.1016/j.cgh.2018.07.030 Oh, M., McBride, A., Yun, S., Bhattacharjee, S., Slack, M., Martin, J. R., Jeter, J., & Abraham, I. (2018). BRCA1 and BRCA2 Gene Mutations and Colorectal Cancer Risk: Systematic Review and Meta-analysis. JNCI: Journal of the National Cancer Institute, 110(11), 1178-1189. https://doi.org/10.1093/jnci/djy148 Rabeneck, L., Chiu, H. M., & Senore, C. (2020). International Perspective on the Burden of Colorectal Cancer and Public Health Effects. Gastroenterology, 158(2), 447-452. https://doi.org/10.1053/j.gastro.2019.10.007 Shaw, E., Farris, M. S., Stone, C. R., Derksen, J. W. G., Johnson, R., Hilsden, R. J., Friedenreich, C. M., & Brenner, D. R. (2018). Effects of physical activity on colorectal cancer risk among family history and body mass index subgroups: a systematic review and meta-analysis. BMC Cancer, 18(1). https://doi.org/10.1186/s12885-017-3970-5 Zheng, W., & Rutter, C. M. (2012). Estimated Mean Sojourn Time Associated with Hemoccult SENSA for Detection of Proximal and Distal Colorectal Cancer. Cancer Epidemiology Biomarkers & Prevention, 21(10), 1722-1730. https://doi.org/10.1158/1055-9965.epi-12-0561 衛生福利部國民健康署. (2023). 110年癌症登記年報. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94797 | - |
| dc.description.abstract | 背景:
糞便潛血免疫法 (Fecal immunochemical test, FIT)篩檢效益評估已經從族群層級的實證醫學證據轉向個人層級為中心的精準醫學。除了過去對影響評估效度的自我選擇偏差與干擾因子的校正之外,評估N對1試驗及考慮個人因子的大腸腺腫-大腸癌自然病史予以不同篩檢策略建議包括個人化篩檢間隔與個人風險分層篩檢建議評估及長程追蹤效益等挑戰亦興起新穎方法學考量。傳統上使用電腦模擬的評估模型無法適用此類複雜情境,其原因包括需要多重虛擬假設,且未能考慮真實世界數據 (Real World Data, RWD)的屬性和特徵。 本論文旨在發展元宇宙數位雙胞胎模型,以評估以族群基礎之FIT篩檢效益,評估不同篩檢間隔等均一性篩檢與個人化風險為基礎篩檢建議之沉浸式篩檢政策。 方法: 元宇宙基礎架構乃透過數位雙胞胎設計創建RWD虛擬分身,經過RWD和虛擬世界數據 (Virtual World Data, VWD)橋接合成,進行隨機化沉浸式介入評估。VWD透過生成式人工智慧引擎利用兩種機器學習演算法生成。首先,利用馬可夫過程從2004年至2022年臺灣全國FIT篩檢數據中學習主宰不同部位大腸直腸癌 (近端和遠側部位)自然病史參數,並評估對不同部位大腸直腸癌其不同篩檢間隔之篩檢效益之差別。其次,我們利用隨機森林機器學習模型辨別社區民眾個人特徵於大腸直腸腺瘤和癌症之個人化風險分位數,並嵌合於第一階段馬可夫過程模型,以評估個人化介入與篩檢政策之效益。 結果: 三階段馬可夫過程結果顯示近端大腸直腸癌從臨床前可偵測期 (Preclinical Detectable Phase, PCDP)到臨床期(Clinical Phase, CP)進展速度較遠側大腸直腸癌快。若將癌症分為早期及晚期之五階段馬可夫過程結果亦也顯示相同結果,早期大腸癌在近端部位的FIT敏感度低於遠側部位,從腺腫到癌症近端部位轉移較快且敏感度低於遠側部份。若欲達到降低大腸直腸癌晚期發生率達25%的效益,則對有較高近端大腸直腸癌風險個案需要每年篩檢一次,而對遠側大腸直腸癌潛在風險較高的個案而言,篩檢間隔可設定於每兩年篩檢一次。 利用隨機森林機器學習演算法找到可鑑別近端和遠側大腸直腸癌之個人特徵,並利用貝氏網路演算產生多階段個人化十分位風險評估模式,予以建立個人化篩檢策略,如高風險者(風險分數大於75%):每年篩檢一次,中高風險者(風險分數50-75%):每兩年篩檢一次,低風險者(風險分數25%-50%):每三年篩檢一次,最低風險者(風險分數0%-25%):每六年篩檢一次,此個人化篩檢策略於降低晚期大腸癌發生率可達32%。 結論: 本論文顯示應用元宇宙數位雙胞胎模型可做為以病人為中心精準大腸直腸癌FIT篩檢策略設計,並用於評估篩檢效益。 | zh_TW |
| dc.description.abstract | Background:
Evaluation of population-based Fecal immunochemical test (FIT) service screening has turned from universal evidence-based medicine to patient-centered personalized medicine. Therefore, a series of concerns and recommendations are raised and suggested including those threats to validity (self-selection and confounding factors) associated with the effectiveness of screening, N to 1 trial impasse, the individually-tailored disease natural course of colorectal neoplasia, various screening policies such inter-screening interval and risk-based screening strategy, and the logistics of long-term follow-up. The conventional simulation models cannot be accommodated to satisfy these complex situations because the use of this traditional approach requires numerous virtual assumptions and fails to take into account the real world data (RWD) property and inherent characteristics. This thesis is therefore to develop a metaverse-based digital twin model for evaluating the effectiveness of population-based FIT service screening with a series of immersive screening policies with emphasis on inter-screening interval and risk-based screening strategies. Methods: The metaverse-based infrastructure was framed by adopting the digital twin design to spin out the avatar of the RWD, after synthetic bridging between the RWD and the virtual world data (VWD), which was further randomized to immersive interventions for evaluation. The VWD was generated by generative artificial intelligence engine by leveraging two machine learning algorithms. The first was to learn the parameters governing the site-(proximal and distal location)-based disease natural course of colorectal cancer with Markov process from the RWD of Taiwan nationwide FIT screening data between 2004 and 2022. The effectiveness of inter-screening interval by site was then evaluated. To develop the personalized disease natural course of colorectal adenoma and carcinoma, we leveraged the random forest of machine learning model to identify important variables based on community-based integrated screening data. The decile of personalized risk assessment model of colorectal adenoma and carcinoma was therefore constructed. The effectiveness of individually-tailored intervention and risk-based screening policy was evaluated. Result: The results of transition rates and sensitivity of FIT test using three-state Markov process show the proximal CRCs progressed faster from pre-clinical detectable phase (PCDP) to clinical phase than the distal CRCs. The findings of five-state Markov process also show the proximal CRCs had faster transition from early to late AJCC stage during PCDP and further progressed to the late stage of clinical phase. The test sensitivity of early AJCC stage was lower in the proximal site than the distal site. The similar findings on faster transition rates from adenoma to carcinoma and lower sensitivity were also noted. If effectiveness of CRC mortality reduction is set at least 25% annual screening is required for those who are potential of developing proximal CRCs and biennial screening is sufficient for those who are potential of developing distal CRCs. Individual features were extracted to distinguish the proximal CRCs form the distinguished CRCs by leveraging the random forest of machine learning algorithm. Risk-based-screening strategy (annual for 75% or higher risk, biennial for 50-75% moderate high risk four-yearly regime for 25%-50% lower risk and six-yearly regime for the lowest risk of 0-25%) in the light of the incorporation of these distinguished features into decile-based personalized risk model was demonstrated to reduce of incidence of advanced-stage CRC 32%. Conclusion: This thesis demonstrates the clinical usefulness of leveraging a metaverse digital twin model for evaluating and designing precision and patient-centered FIT screening strategies for CRC. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:32:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T16:32:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 i 中文摘要 ii 英文摘要 iv 第一章 、前言 1 第二章 、文獻探討 2 2.1 大腸癌流行病學 2 2.2 大腸癌風險因子 3 2.3 近端大腸癌 (Proximal Colon)及遠側大腸癌 (Distal Colon)篩檢效益 5 2.4 大腸直腸癌疾病自然史評估方法 6 2.5 臺灣大腸癌篩檢計畫沿革及效益評估 9 第三章 、材料與方法 14 3.1 元宇宙數位雙胞胎設計 14 3.2 真實世界資料設計與收集 16 3.2.1 臺灣大腸直腸癌篩檢 16 3.2.2 社區整合式篩檢 18 3.3 統計分析 19 3.3.1 多階段大腸直腸癌疾病進展 19 3.3.2 多階段大腸直腸腺腫--大腸直腸癌疾病進展 21 3.3.3 隨機森林鑑別不同部位大腸直腸癌發生 22 3.3.4 貝氏網絡模式鑑別不同階段大腸直腸腺腫--大腸直腸癌風險 23 3.3.5 元宇宙大腸癌篩檢數位分身效益評估 23 第四章 、結果 25 4.1 臺灣大腸癌篩檢 25 4.1.1 描述性分析結果 25 4.1.2 大腸直腸癌不同部位疾病進展病史 26 4.1.3 隨機森林 (Random Forest) 分析結果 30 4.2 社區整合式篩檢 33 4.2.1 描述性分析結果 33 4.2.2 隨機森林分析結果 37 4.2.3 大腸腺腫至侵襲癌個人化危險分層分析結果 42 4.2.4 大腸腺腫及侵襲癌個人化風險分數數位雙胞胎介入評估 43 第五章 、討論 45 5.1 近端及遠側大腸直腸癌自然病史 45 5.2 元宇宙數位雙胞胎模型用於精準FIT篩檢服務評估 47 5.3 研究限制 47 第六章 、結論 48 參考文獻 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | FIT | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 數位雙胞胎 | zh_TW |
| dc.subject | 元宇宙 | zh_TW |
| dc.subject | 大規模癌症篩檢 | zh_TW |
| dc.subject | Mass cancer screening | en |
| dc.subject | Metaverse | en |
| dc.subject | Digital Twin | en |
| dc.subject | FIT | en |
| dc.subject | Colorectal cancer | en |
| dc.title | 元宇宙數位雙胞胎模型評估免疫糞便潛血精準大腸癌篩檢 | zh_TW |
| dc.title | Metaverse Digital Twin Model for Evaluating Precision Fecal Immunochemical Test (FIT) Service Screening for Colorectal Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱瀚模;嚴明芳;陳祈玲 | zh_TW |
| dc.contributor.oralexamcommittee | Han-Mo Chiu;Ming-Fang Yen;Chi-Ling Chen | en |
| dc.subject.keyword | 大腸直腸癌,FIT,大規模癌症篩檢,元宇宙,數位雙胞胎, | zh_TW |
| dc.subject.keyword | Colorectal cancer,FIT,Mass cancer screening,Metaverse,Digital Twin, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202401409 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-23 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
