Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94777
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫錦虹zh_TW
dc.contributor.advisorChin-Hung Sunen
dc.contributor.author吳祐佳zh_TW
dc.contributor.authorYou-Jia Wuen
dc.date.accessioned2024-08-19T16:20:49Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation1. Adam, R.D., Protozoa: Giardia lamblia, in Encyclopedia of Food Safety, Y. Motarjemi, Editor. 2014, Academic Press: Waltham. p. 37-44.
2. Adam, R.D., Biology of Giardia lamblia. Clin Microbiol Rev, 2001. 14(3): p. 447-75.
3. Haubrich, W.S., Giard of Giardiasis. Gastroenterology, 2005. 129(4): p. 1366.
4. Lipoldová, M., Giardia and Vilém Dušan Lambl. PLoS Negl Trop Dis, 2014. 8(5): p. e2686.
5. Leung, A.K.C., et al., Giardiasis: An Overview. Recent Pat Inflamm Allergy Drug Discov, 2019. 13(2): p. 134-143.
6. Kılınç, Ö.O., et al. The Investigation of Giardiasis (Foodborne and Waterborne Diseases) in Buffaloes in Van Region, Türkiye: First Molecular Report of Giardia duodenalis Assemblage B from Buffaloes. Pathogens, 2023. 12, DOI: 10.3390/pathogens12010106.
7. Geurden, T. and M. Olson, Giardia in Pets and Farm Animals, and Their Zoonotic Potential, in Giardia: A Model Organism, H.D. Luján and S. Svärd, Editors. 2011, Springer Vienna: Vienna. p. 71-92.
8. Robertson, L.J. and Y.A.L. Lim, Waterborne and Environmentally-Borne Giardiasis, in Giardia: A Model Organism, H.D. Luján and S. Svärd, Editors. 2011, Springer Vienna: Vienna. p. 29-69.
9. Jarroll, E.L., A.K. Bingham, and E.A. Meyer, Effect of chlorine on Giardia lamblia cyst viability. Appl Environ Microbiol, 1981. 41(2): p. 483-7.
10. Einarsson, E. and S.G. Svärd, Encystation of Giardia intestinalis—a Journey from the Duodenum to the Colon. Current Tropical Medicine Reports, 2015. 2(3): p. 101-109.
11. Luján, H.D., M.R. Mowatt, and T.E. Nash, The Molecular Mechanisms of Giardia Encystation. Parasitology Today, 1998. 14(11): p. 446-450.
12. Friend, D.S., The fine structure of Giardia muris. J Cell Biol, 1966. 29(2): p. 317-32.
13. Gadelha, A.P.R., M. Benchimol, and W. de Souza, Chapter One - The structural organization of Giardia intestinalis cytoskeleton, in Advances in Parasitology, M.G. Ortega-Pierres, Editor. 2020, Academic Press. p. 1-23.
14. Ankarklev, J., et al., Behind the smile: cell biology and disease mechanisms of Giardia species. Nature Reviews Microbiology, 2010. 8(6): p. 413-422.
15. Lanfredi-Rangel, A., et al., The Peripheral Vesicles of Trophozoites of the Primitive ProtozoanGiardia lambliaMay Correspond to Early and Late Endosomes and to Lysosomes. Journal of Structural Biology, 1998. 123(3): p. 225-235.
16. Casson, L.W., et al., Giardia in Wastewater-Effect of Treatment. Research Journal of the Water Pollution Control Federation, 1990. 62(5): p. 670-675.
17. Benchimol, M. and W. De Souza, The Ultrastructure of Giardia During Growth and Differentiation, in Giardia: A Model Organism, H.D. Luján and S. Svärd, Editors. 2011, Springer Vienna: Vienna. p. 141-160.
18. Creationism, N.A.o.S.S.C.o.S.a., The Origin of the Universe, Earth, and Life., in Science and Creationism: A View from the National Academy of Sciences: Second Edition., N.A.o.S. (U.S.), Editor. 1999, Washington, DC : National Academy Press.
19. Gould, S.B., Membranes and evolution. Current Biology, 2018. 28(8): p. R381-R385.
20. Martin, W.F., S. Garg, and V. Zimorski, Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci, 2015. 370(1678): p. 20140330.
21. Shami, G.J., et al., Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep, 2021. 11(1): p. 3319.
22. Alberts, B., et al., Molecular Biology of the Cell. 4th edition. 2002: New York: Garland Science.
23. Pfanner, N., B. Warscheid, and N. Wiedemann, Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol, 2019. 20(5): p. 267-284.
24. Araiso, Y., K. Imai, and T. Endo, Role of the TOM Complex in Protein Import into Mitochondria: Structural Views. Annu Rev Biochem, 2022. 91: p. 679-703.
25. Mokranjac, D. and W. Neupert, The many faces of the mitochondrial TIM23 complex. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2010. 1797(6): p. 1045-1054.
26. Jensen, R.E. and C.D. Dunn, Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2002. 1592(1): p. 25-34.
27. Qi, L., et al., Cryo-EM structure of the human mitochondrial translocase TIM22 complex. Cell Research, 2021. 31(3): p. 369-372.
28. Broderick, J.B., 8.27 - Iron–Sulfur Clusters in Enzyme Catalysis, in Comprehensive Coordination Chemistry II, J.A. McCleverty and T.J. Meyer, Editors. 2003, Pergamon: Oxford. p. 739-757.
29. Stiban, J., M. So, and L.S. Kaguni, Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. Biochemistry (Mosc), 2016. 81(10): p. 1066-1080.
30. Tovar, J., et al., Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature, 2003. 426(6963): p. 172-176.
31. Martincová, E., et al., Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging. Mol Cell Biol, 2015. 35(16): p. 2864-74.
32. Rout, S., et al., An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia. PLoS Pathog, 2016. 12(12): p. e1006036.
33. Huang, Y.-C., et al., Regulation of Cyst Wall Protein Promoters by Myb2 in Giardia lamblia. Journal of Biological Chemistry, 2008. 283(45): p. 31021-31029.
34. Pan, Y.-J., et al., A Novel WRKY-like Protein Involved in Transcriptional Activation of Cyst Wall Protein Genes in Giardia lamblia</em>*<sup></sup>. Journal of Biological Chemistry, 2009. 284(27): p. 17975-17988.
35. Wang, Y.T., et al., A novel pax-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. Journal of Biological Chemistry, 2010. 285(42): p. 32213-32226.
36. Su, L.H., et al., A novel E2F-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. Journal of Biological Chemistry, 2011. 286(39): p. 34101-34120.
37. Cho, C.-C., et al., Regulation of a Myb Transcription Factor by Cyclin-dependent Kinase 2 in Giardia lamblia</em>*<sup></sup>. Journal of Biological Chemistry, 2012. 287(6): p. 3733-3750.
38. Eichinger, D., Encystation in parasitic protozoa. Current Opinion in Microbiology, 2001. 4(4): p. 421-426.
39. Sun, C.-H., et al., Mining the Giardia lamblia Genome for New Cyst Wall Proteins*. Journal of Biological Chemistry, 2003. 278(24): p. 21701-21708.
40. Aguilar-Díaz, H., et al., Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies? Trends in Parasitology, 2011. 27(10): p. 450-458.
41. Estébanez, B., et al., Endoplasmic Reticulum Unfolded Protein Response, Aging and Exercise: An Update. Front Physiol, 2018. 9: p. 1744.
42. Soltys, B.J., M. Falah, and R.S. Gupta, Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J Cell Sci, 1996. 109 ( Pt 7): p. 1909-17.
43. Stefanic, S., et al., Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem, 2006. 281(11): p. 7595-604.
44. Li, Z., et al., Myeloid leukemia factor 1: A "double-edged sword" in health and disease. Front Oncol, 2023. 13: p. 1124978.
45. Gobert, V., M. Haenlin, and L. Waltzer, Myeloid leukemia factor: a return ticket from human leukemia to fly hematopoiesis. Transcription, 2012. 3(5): p. 250-4.
46. Bras, S., et al., Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proceedings of the National Academy of Sciences, 2012. 109(13): p. 4986-4991.
47. Bras, S., et al., Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proc Natl Acad Sci U S A, 2012. 109(13): p. 4986-91.
48. Liu, S., et al., RUNX1 inhibits proliferation and induces apoptosis of t(8;21) leukemia cells via KLF4-mediated transactivation of P57. Haematologica, 2019. 104(8): p. 1597-1607.
49. Dyer, J.O., et al., Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression. Journal of Molecular Biology, 2017. 429(13): p. 2093-2107.
50. Su, L.-H., et al., Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Molecular and Biochemical Parasitology, 2007. 156(2): p. 124-135.
51. Morrison, H.G., et al., Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia. Science, 2007. 317(5846): p. 1921-1926.
52. Jerlström-Hultqvist, J., et al., Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome. Eukaryotic Cell, 2012. 11(7): p. 864-873.
53. Bagchi, S., et al., Programmed cell death in Giardia. Parasitology, 2012. 139(7): p. 894-903.
54. Parzych, K.R. and D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 2014. 20(3): p. 460-73.
55. Yin, Z., C. Pascual, and D.J. Klionsky, Autophagy: machinery and regulation. Microb Cell, 2016. 3(12): p. 588-596.
56. Filomeni, G., D. De Zio, and F. Cecconi, Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ, 2015. 22(3): p. 377-88.
57. Chen, Y.F., et al., The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol, 2017. 112: p. 21-30.
58. Cenci, S., The proteasome in terminal plasma cell differentiation. Semin Hematol, 2012. 49(3): p. 215-22.
59. Zeng, M. and J.N. Zhou, Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal, 2008. 20(4): p. 659-65.
60. Simon, H.U., Autophagy in myocardial differentiation and cardiac development. Circ Res, 2012. 110(4): p. 524-5.
61. Gutiérrez, J., et al., Ciliate cryptobiosis: a microbial strategy against environmental starvation. International Microbiology, 2001. 4(3): p. 151-157.
62. Brennand, A., et al., Autophagy in parasitic protists: Unique features and drug targets. Molecular and Biochemical Parasitology, 2011. 177(2): p. 83-99.
63. Busatti, H.G., et al., Effects of metronidazole analogues on Giardia lamblia: experimental infection and cell organization. Diagnostic microbiology and infectious disease, 2013. 75(2): p. 160-164.
64. Navale, R., et al., Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum. PLoS One, 2014. 9(11): p. e113220.
65. Brennand, A., E. Rico, and P.A. Michels, Autophagy in trypanosomatids. Cells, 2012. 1(3): p. 346-371.
66. Huang, K.-Y., et al., Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014. 1840(1): p. 53-64.
67. Winteringham, L.N., et al., Myeloid Leukemia Factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation. Oncogene, 2004. 23(29): p. 5105-5109.
68. Lin, Z.Q., et al., Development of CRISPR/Cas9-mediated gene disruption systems in Giardia lamblia. PLoS One, 2019. 14(3): p. e0213594.
69. Li, Z.-F., et al., Non-pathogenic protein aggregates in skeletal muscle in MLF1 transgenic mice. Journal of the Neurological Sciences, 2008. 264(1): p. 77-86.
70. Dyer, J.O., et al., Myeloid Leukemia Factor Acts in a Chaperone Complex to Regulate Transcription Factor Stability and Gene Expression. J Mol Biol, 2017. 429(13): p. 2093-2107.
71. Wu, J.-H., et al., A myeloid leukemia factor homolog is involved in tolerance to stresses and stress-induced protein metabolism in Giardia lamblia. Biology Direct, 2023. 18(1): p. 20.
72. Wu, J.-H., et al., A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochimica et Biophysica Acta (BBA) - General Subjects, 2021. 1865(6): p. 129859.
73. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo j, 2000. 19(21): p. 5720-8.
74. Bao, W., et al., Induction of autophagy by the MG‑132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF‑7 cells. Mol Med Rep, 2016. 13(1): p. 796-804.
75. Redmann, M., et al., Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol, 2017. 11: p. 73-81.
76. Chen, W., et al., Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer. Redox Biol, 2016. 10: p. 78-89.
77. Sotthibundhu, A., et al., Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells. Stem Cell Res Ther, 2016. 7(1): p. 166.
78. Panja, S., et al., How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Molecular Membrane Biology, 2008. 25(5): p. 411-422.
79. Rajalingam, D., et al., Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci, 2009. 18(5): p. 980-93.
80. Koley, D. and A.J. Bard, Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proceedings of the National Academy of Sciences, 2010. 107(39): p. 16783-16787.
81. Im, K., et al., An Introduction to Performing Immunofluorescence Staining. Methods Mol Biol, 2019. 1897: p. 299-311.
82. Zenke, R., et al., Fluorescence microscopy visualization of halomucin, a secreted 927 kDa protein surrounding Haloquadratum walsbyi cells. Front Microbiol, 2015. 6: p. 249.
83. Nash Zachary, M. and A. Cotter Peggy, Bordetella Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway. Microbiology Spectrum, 2019. 7(2): p. 10.1128/microbiolspec.psib-0024-2018.
84. Mesnage, S., et al., Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. Embo j, 2000. 19(17): p. 4473-84.
85. Henriques, B.J., et al., Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene, 2021. 776: p. 145407.
86. Wenzel, J.J., et al., ABCA10, a novel cholesterol-regulated ABCA6-like ABC transporter. Biochemical and Biophysical Research Communications, 2003. 306(4): p. 1089-1098.
87. Su, Q., et al., Structure of the human PKD1-PKD2 complex. Science, 2018. 361(6406): p. eaat9819.
88. Moradi, H., et al., Functional features of the C-terminal region of yeast ribosomal protein L5. Mol Genet Genomics, 2008. 280(4): p. 337-50.
89. Al-Bassam, J., Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins. Methods in enzymology, 2014. 540: p. 131-148.
90. Farmer, V.J. and M. Zanic, TOG-domain proteins. Current Biology, 2021. 31(10): p. R499-R501.
91. Fang, X., et al., The NEK1 interactor, C21ORF2, is required for efficient DNA damage repair. Acta Biochim Biophys Sin (Shanghai), 2015. 47(10): p. 834-41.
92. Wheway, G., et al., An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol, 2015. 17(8): p. 1074-1087.
93. Itin, C., et al., Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network. Mol Biol Cell, 1999. 10(7): p. 2191-7.
94. Chua, S.-T., The impact of autophagy-related drugs on Giardia lamblia stress-related proteins in Graduate Institute of Microbiology, College of Medicine. 2023, National Taiwan University.
95. Liu, Y., G. Fiskum, and D. Schubert, Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem, 2002. 80(5): p. 780-7.
96. Ashrafi, G. and T.L. Schwarz, The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death & Differentiation, 2013. 20(1): p. 31-42.
97. Barazzuol, L., et al. PINK1/Parkin Mediated Mitophagy, Ca2+ Signalling, and ER–Mitochondria Contacts in Parkinson’s Disease. International Journal of Molecular Sciences, 2020. 21, DOI: 10.3390/ijms21051772.
98. Robinson , R., Histone chaperone regulates replication. Journal of Cell Biology, 2008. 180(2): p. 250-250.
99. Lin, J.H., P. Walter, and T.S. Yen, Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol, 2008. 3: p. 399-425.
100. Morrison, H.G., et al., Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science, 2007. 317(5846): p. 1921-6.
101. Adam, R.D., The Giardia lamblia genome. International Journal for Parasitology, 2000. 30(4): p. 475-484.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94777-
dc.description.abstract早期認為梨形鞭毛蟲 (Giardia lamblia) 不具粒線體,不過近代研究於小胞器膜上發現鐵硫蛋白 (Iron-sulfur cluster, Isc),說明梨形鞭毛蟲的祖先曾經擁有粒線體,只是在演化過程中逐漸捨棄許多原本應有的功能,發展出具有部分粒線體功能的囊泡,稱為mitosome,我們實驗室先前發現未知功能的骨髓性白血病因子 (Myeloid leukemia factor, MLF) 出現在未知的囊泡,利用IFA (Immunofluorescence assay) 來共染ISCU (mitosome marker) 和MLF的表現,發現兩種囊泡並沒有共定位,確認MLF定位於mitosome以外的囊泡中,而設計突變蛋白與MLF共染IFA則有共定位,可能MLF參與自噬作用和蛋白酶體 (proteasome) 降解,此外觀察到梨形鞭毛蟲在囊體形成過程中,MLF表現增加,推斷其與囊體形成有關;本次實驗透過選殖八種mitosome相關蛋白探究:(1) 八種mitosome相關蛋白在梨形鞭毛蟲滋養體與囊體形成過程時期中的表現,判斷這些蛋白功能是否與囊體形成有關;(2) 八種mitosome相關蛋白在蟲體的定位,以及其與MLF蛋白的位置關係;根據Western blot結果顯示,梨形鞭毛蟲在過度表現7188、8148、9296、10971、12229、16386、16891或22587蛋白的情況下,MLF蛋白表現上升,而過度表現所有八種蛋白的情況下,Bip蛋白表現增加,過度表達蛋白7188、9296、10971或16386讓CWP1 (Cyst wall protein 1) 表現下降,但其餘蛋白的高濃度表現讓CWP1上升,而IFA顯示的各自表達8148、9296、10971、12229、16386、16891或22587的囊泡和MLF所在囊泡有出現部分的共定位。zh_TW
dc.description.abstractPeople used to believe that Giardia lamblia did not have mitochondria. However, recent studies have found iron-sulfur clusters (Isc) on its organelle membranes, suggesting that ancestors of Giardia once possessed mitochondria but gradually lost many of their original functions over the course of evolution, and then evolved vesicles called mitosomes, which retain some mitochondrial functions. Our lab identified an unknown molecule, named Myeloid Leukemia Factor (MLF) appearing in unidentified vesicles. They used Immunofluorescence Assay (IFA) to co-stain ISCU (mitosome marker) and MLF, finding no co-localization between two proteins. However, a mutant protein designed for co-staining with MLF in IFA showed co-localization, confirming that MLF is located in vesicles except mitosome and potentially involved in autophagy and proteasome degradation. In this study, we cloned eight mitosome-related proteins to investigate:(1) their expression in Giardia lamblia during trophozoite and encystation stage, assessing whether these proteins are involved in encystation, (2) their location within the organism and spatial relationship with MLF. According to the Western blot results, Giardia lamblia shows increased MLF expression levels upon overexpressing protein 7188, 8148, 9296, 10971, 12229, 16386, 16891 or 22587. In the case of overexpression of all eight proteins, Bip protein increases. An overexpressed protein 7188, 9296, 10971 or 16386 decreases CWP1, whereas overexpression of the other proteins increased CWP1 expression. The immunofluorescence analysis (IFA) showed partial colocalization between vesicles expressing 7188, 8148, 9296, 10971, 12229, 16386, 16891 or 22587 and the vesicles containing MLF.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:20:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:20:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
目次 (contents) V
圖次 (list of figures) X
表次 (list of tables) XII
第一章 前言 (introduction) 1
1.1 簡介 1
1.1.1 歷史與分類 1
1.1.2 流行病學 1
1.1.3 生活史 1
1.1.4 結構 2
1.2粒線體介紹 2
1.2.1 演化 2
1.2.2 結構與功能 3
1.2.3 TOM/TIM complex (Translocase of the outer membrane / translocase of the inner membrane complex) 3
1.2.4 Iron-sulfur cluster (Isc) 4
1.2.5 梨形鞭毛蟲mitosome 5
1.2.6 mitosome相關未知蛋白分離 5
1.3 細胞壓力相關蛋白 6
1.3.1 囊壁蛋白 (Cyst wall protein;CWP1) 6
1.3.2 Binding immunoglobulin protein (Bip) 7
1.3.3 骨髓性白血病因子 (Myeloid leukemia factor, MLF) 7
1.3.4梨形鞭毛蟲的自噬作用 8
1.4 研究動機 11
第二章 材料與方法 (meterials and methods) 13
2.1 質體建構 (plasmid construction) 13
2.1.1 資料庫查詢 (database research) 13
2.1.2 引子設計 (primer design) 13
2.1.3 聚合酶連鎖反應 (Polymerase chain reaction;PCR) 13
2.1.4 DNA clean up (QIAquick® Gel Extraction Kit) 14
2.1.5 限制酶切割 (restriction enzyme digestion) 14
2.1.6 接合反應 (ligation) 16
2.2 質體轉化 (transformation) 16
2.3 質體純化 (plasmid purification) 17
2.4 定序 (sequencing) 17
2.5 轉染 (transfection) 18
2.6 細胞培養 (cell culture) 18
2.7 蛋白質沉澱 (protein precipitation) 18
2.8 蛋白質定量與西方墨點法 (coomassie blue stain and Western blot) 19
2.9 免疫螢光染色法 (immunofluorescence assay;IFA) 19
2.10 統計 (statistics) 20
第三章 結果 (result) 21
3.1 基因編號7188 21
3.1.1 UniProt BLAST與文獻分析 21
3.1.2 Pfam預測結構組成 21
3.1.3 鑑定HA標記的7188蛋白 21
3.1.4 不同蟲株之間的MLF、CWP1、Bip蛋白 22
3.1.5 在囊體形成過程中的蛋白變化 22
3.1.6 IFA 22
3.2 基因編號8148 22
3.2.1 UniProt BLAST與文獻分析 22
3.2.2 Pfam預測結構組成 23
3.2.3 鑑定HA標記的8148蛋白 23
3.2.4 不同蟲株之間的MLF、CWP1、Bip蛋白 23
3.2.5 在囊體形成過程中的蛋白變化 23
3.2.6 IFA 24
3.3 基因編號9296 24
3.3.1 UniProt BLAST、Pfam與文獻分析 24
3.3.2 鑑定HA標記的9296蛋白 24
3.3.3 不同蟲株之間的MLF、CWP1、Bip蛋白 25
3.3.4 在囊體形成過程中的蛋白變化 25
3.3.5 IFA 25
3.4 基因編號10971 25
3.4.1 UniProt BLAST、Pfam資料庫與文獻分析 25
3.4.2 鑑定HA標記的10971蛋白 26
3.4.3 不同蟲株之間的MLF、CWP1、Bip蛋白 26
3.4.4 在囊體形成過程中的蛋白變化 26
3.4.5 IFA 27
3.5 基因編號12229 27
3.5.1 UniProt BLAST、Pfam資料庫與文獻分析 27
3.5.2 鑑定HA標記的12229蛋白 28
3.5.3 不同蟲株之間的MLF、CWP1、Bip蛋白 28
3.5.4 在囊體形成過程中的蛋白變化 28
3.5.5 IFA 28
3.6 基因編號16386 29
3.6.1 UniProt BLAST與文獻分析 29
3.6.2 Pfam預測結構組成 29
3.6.3 鑑定HA標記的16386蛋白 29
3.6.4 不同蟲株之間的MLF、CWP1、Bip蛋白 29
3.6.5 在囊體形成過程中的蛋白變化 30
3.6.6 IFA 30
3.7 基因編號16891 30
3.7.1 UniProt BLAST與文獻分析 30
3.7.2 Pfam預測結構組成 31
3.7.3 鑑定HA標記的16891蛋白 31
3.7.4 不同蟲株之間的MLF、CWP1、Bip蛋白 31
3.7.5 在囊體形成過程中的蛋白變化 32
3.7.6 IFA 32
3.8 基因編號22587 32
3.8.1 UniProt BLAST與文獻分析 32
3.8.2 Pfam預測結構組成 32
3.8.3 鑑定HA標記的22587蛋白 33
3.8.4 不同蟲株之間的MLF、CWP1、Bip蛋白 33
3.8.5 在囊體形成過程中的蛋白變化 33
3.8.6 IFA 33
第四章 討論 (Discussion) 35
附圖 (figures) 37
附表 (Tables) 68
參考文獻 (reference) 72
-
dc.language.isozh_TW-
dc.subject梨形鞭毛蟲zh_TW
dc.subject粒線體zh_TW
dc.subjectMLFzh_TW
dc.subject自噬作用zh_TW
dc.subjectmitosomeen
dc.subjectMLFen
dc.subjectGiardia lambliaen
dc.subjectautophagyen
dc.title鑑定梨形鞭毛蟲mitosome相關因子與囊體形成之間的關係zh_TW
dc.titleIdentification of the relationship between mitosome-related factors and the encystation of Giardia lambliaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹迺立;蕭信宏zh_TW
dc.contributor.oralexamcommitteeNei-Li Chan;Shin-Hong Shiaen
dc.subject.keyword梨形鞭毛蟲,粒線體,MLF,自噬作用,zh_TW
dc.subject.keywordGiardia lamblia,mitosome,MLF,autophagy,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202404144-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved