請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈弘俊 | zh_TW |
| dc.contributor.advisor | Horn-Jiunn Sheen | en |
| dc.contributor.author | 陳冠霖 | zh_TW |
| dc.contributor.author | Kuan-Lin Chen | en |
| dc.date.accessioned | 2024-08-19T16:15:09Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-19 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] J. P. Desai, A. Pillarisetti, A. D. Brooks, "Engineering Approaches to Biomanipulation," Annual review of Biomedical Engineering, vol. 9, no. 1, p. 35-53, 2007.
[2] A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Physical Review Letters, vol. 24, no. 4, p. 156-159, 1970. [3] L. V. Panina, A. Gurevich, A. Beklemisheva, A. Omelyanchik, K. Levada, V. Rodionova, "Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces," Cells, vol. 11, no. 6, p. 950, 2022. [4] H. Afsaneh, R. Mohammadi, "Microfluidic platforms for the manipulation of cells and particles," Talanta Open, vol. 5, 2022. [5] S. Ghosal, "Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis," Electrophoresis, vol. 25, no. 2, p. 214-228, 2004. [6] M. Li, W. H. Li, J. Zhang, G. Alici, W. Wen, "A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation," Journal of Physics D: Applied Physics, vol. 47, no. 6, 2014. [7] H. A. Pohl, "The Motion and Precipitation of Suspensoids in Divergent Electric Fields," Journal of Applied Physics, vol. 22, no. 7, p. 869-871, 1951. [8] T. B. Jones, Electromechanics of Particles. 2009. [9] T. B. Jones, "Dielectrophoretic force calculation," Journal of Electrostatics, vol. 6, no. 1, p. 69-82, 1979. [10] S. Afshar, A. Fazelkhah, E. Salimi, M. Butler, D. Thomson, G. Bridges, "In-Flow Dielectrophoresis Sensor for Measuring the Dielectric Spectrum of Single Cells: Viable and Non-viable Cells," 2019 IEEE SENSORS, 2019. [11] M. Punjiya, H. R. Nejad, J. Mathews, M. Levin, S. Sonkusale, "A flow through device for simultaneous dielectrophoretic cell trapping and AC electroporation," Scientific Reports, vol. 9, no. 1, p. 11988, 2019. [12] P. R. Gascoyne, X. B. Wang, Y. Huang, F. F. Becker, "Dielectrophoretic Separation of Cancer Cells from Blood," IEEE Transactions on Industry Applications, vol. 33, no. 3, p. 670-678, 1997. [13] F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P. R. Gascoyne, "Separation of human breast cancer cells from blood by differential dielectric affinity," Proceedings of the National Academy of Sciences, vol. 92, no. 3, p. 860-4, 1995. [14] F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P. R. C. Gascoyne, "The removal of human leukaemia cells from blood using interdigitated microelectrodes," Journal of Physics D: Applied Physics, vol. 27, no. 12, p. 2659, 1994. [15] S. A. Faraghat, K. F. Hoettges, M. K. Steinbach, D. R. van der Veen, W. J. Brackenbury, E. A. Henslee, F. H. Labeed, M. P. Hughes, "High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment," Proceedings of the National Academy of Sciences, vol. 114, no. 18, p. 4591-4596, 2017. [16] A. Barik, X. Chen, L. J. Maher, A. E. Warrington, M. Rodriguez, S.-H. Oh, N. J. Wittenberg, "Nanogap dielectrophoresis combined with buffer exchange for detecting protein binding to trapped bioparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 611, 2021. [17] Y. Yoshimura, M. Tomita, F. Mizutani, T. Yasukawa, "Cell Pairing Using Microwell Array Electrodes Based on Dielectrophoresis," Analytical Chemistry, vol. 86, no. 14, p. 6818-6822, 2014. [18] M. Sun, X. Duan, "Recent advances in micro/nanoscale intracellular delivery," Nanotechnology and Precision Engineering, vol. 3, no. 1, p. 18-31, 2020. [19] D. E. Large, R. G. Abdelmessih, E. A. Fink, D. T. Auguste, "Liposome composition in drug delivery design, synthesis, characterization, and clinical application," Advanced Drug Delivery Reviews, vol. 176, 2021. [20] G. Bozzuto, A. Molinari, "Liposomes as nanomedical devices," International Journal of Nanomedicine, vol. 10, p. 975-999, 2015. [21] M. A. Barber, "A Technic for the Inoculation of Bacteria and Other Substances Into Living Cells," The Journal of Infectious Diseases, vol. 8, no. 3, p. 348-360, 1911. [22] Z. Zhang, Y. Wang, H. Zhang, Z. Tang, W. Liu, Y. Lu, Z. Wang, H. Yang, W. Pang, H. Zhang, D. Zhang, X. Duan, "Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device," Small, vol. 13, no. 18, 2017. [23] G. L. Szeto, D. Van Egeren, H. Worku, A. Sharei, B. Alejandro, C. Park, K. Frew, M. Brefo, S. Mao, M. Heimann, R. Langer, K. Jensen, D. J. Irvine, "Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines," Scientific Reports, vol. 5, p. 10276, 2015. [24] E. Neumann, M. Schaefer-Ridder, Y. Wang, P. H. Hofschneider, "Gene transfer into mouse lyoma cells by electroporation in high electric fields," Embo journal, vol. 1, no. 7, p. 841-5, 1982. [25] T. Kotnik, L. Rems, M. Tarek, D. Miklavčič, "Membrane Electroporation and Electropermeabilization: Mechanisms and Models," Annual Review of Biophysics, vol. 48, no. 1, p. 63-91, 2019. [26] I. P. Sugar, E. Neumann, "Stochastic model for electric field-induced membrane pores electroporation," Biophysical Chemistry, vol. 19, no. 3, p. 211-225, 1984. [27] M. S. Venslauskas, S. Satkauskas, "Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation," European Biophysics J, vol. 44, no. 5, p. 277-89, 2015. [28] E. Neumann, "The Relaxation Hysteresis of Membrane Electroporation," Electroporation and Electrofusion in Cell Biology, E. Neumann, A. E. Sowers, C. A. Jordan Eds. Boston, MA: Springer US, 1989, pp. 61-82. [29] B. Gabriel, J. Teissié, "Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane," Biophysical Journal, vol. 73, no. 5, p. 2630-2637, 1997. [30] Y. Li, M. Wu, D. Zhao, Z. Wei, W. Zhong, X. Wang, Z. Liang, Z. Li, "Electroporation on microchips: the harmful effects of pH changes and scaling down," Scientific Reports, vol. 5, no. 1, 2015. [31] C. Grosse, H. P. Schwan, "Cellular membrane potentials induced by alternating fields," Biophysical Journal, vol. 63, no. 6, p. 1632-42, 1992. [32] J. Teissié, M. P. Rols, "An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization," Biophysical Journal, vol. 65, no. 1, p. 409-13, 1993. [33] M. Hibino, H. Itoh, K. Kinosita, Jr., "Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential," Biophysical Journal, vol. 64, no. 6, p. 1789-800, 1993. [34] G. Saulis, M. S. Venslauskas, J. Naktinis, "Kinetics of pore resealing in cell membranes after electroporation," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 321, no. 1, p. 1-13, 1991. [35] K. Kinosita, T. Y. Tsong, "Formation and resealing of pores of controlled sizes in human erythrocyte membrane," Nature, vol. 268, no. 5619, p. 438-441, 1977. [36] T. Santra, F. Tseng, "Recent Trends on Micro/Nanofluidic Single Cell Electroporation," Micromachines, vol. 4, no. 3, p. 333-356, 2013. [37] Y. Cao, E. Ma, S. Cestellos-Blanco, B. Zhang, R. Qiu, Y. Su, J. A. Doudna, P. Yang, "Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules," Proceedings of the National Academy of Sciences, vol. 116, no. 16, p. 7899-7904, 2019. [38] D. Huang, D. Zhao, J. Li, Y. Wu, W. Zhou, W. Wang, Z. Liang, Z. Li, "High cell viability microfluidic electroporation in a curved channel," Sensors and Actuators B: Chemical, vol. 250, p. 703-711, 2017. [39] Z. Dong, S. Yan, B. Liu, Y. Hao, L. Lin, T. Chang, H. Sun, Y. Wang, H. Li, H. Wu, X. Hang, S. He, J. Hu, X. Xue, N. Wu, L. Chang, "Single Living Cell Analysis Nanoplatform for High-Throughput Interrogation of Gene Mutation and Cellular Behavior," Nano Letters Journal, vol. 21, no. 11, p. 4878-4886, 2021. [40] Y. C. Chung, W. J. Liao, Y. T. Huang, C. Y. Wu, "Study of gene transfection enhancement and parameters optimisation using electroporation microchip," Micro & Nano Letters, vol. 9, no. 3, p. 162-167, 2014. [41] F. R. Madiyar, S. L. Haller, O. Farooq, S. Rothenburg, C. Culbertson, J. Li, "AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays," Electrophoresis, vol. 38, no. 11, p. 1515-1525, 2017. [42] M. B. Sano, E. A. Henslee, E. Schmelz, R. V. Davalos, "Contactless dielectrophoretic spectroscopy: Examination of the dielectric properties of cells found in blood," Electrophoresis, vol. 32, no. 22, p. 3164-3171, 2011. [43] A. Garner, N. Chen, J. Yang, J. Kolb, R. J. Swanson, K. Loftin, S. Beebe, R. Joshi, K. Schoenbach, "Time Domain Dielectric Spectroscopy Measurements of HL-60 Cell Suspensions After Microsecond and Nanosecond Electrical Pulses," IEEE Transactions on Plasma Science, vol. 32, p. 2073-2084, 2004. [44] X. Wang, F. F. Becker, P. R. Gascoyne, "Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation," Biochim Biophys Acta, vol. 1564, no. 2, p. 412-20, 2002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94770 | - |
| dc.description.abstract | 本研究成功開發出可以對細胞進行電操縱 (Cell manipulation) 以及電穿刺 (Cell electroporation) 之裝置並可以即時觀察,使用雷射雕刻技術雕刻微孔陣列,微孔陣列在結構上產生不均勻電場,最終透過此裝置可以成功達成細胞電穿刺且能在此裝置進行細胞轉染,且透過流式細胞儀量測細胞在進行轉染後的螢光訊號以及細胞存活率。
本實驗裝置使用高透光性的氧化銦錫玻璃(Indium tin oxide glass, ITO glass) 作為裝置之電極,由於玻璃的高透光性,進行實驗可以即時透過實驗上的倒立式螢光顯微鏡觀察細胞操縱以及穿刺的效果,又由於此裝置僅需使用雷射雕刻即可完成,並且裝置在完成穿刺後將腔體內的樣本收集再充分清洗腔體,因此此裝置具有製備容易、體積小以及實驗重複性高的優勢。電訊號使用方波的交流訊號,過調整輸入電壓、頻率以及輸入時間來改變操縱及穿刺效率。由於雷射雕刻所產生的熱衝擊效應,可以在微孔的邊緣處產生凸起的幾何結構,該區域具有較強的電場,因此可以降低細胞電穿刺所需的電壓,使細胞不易受到過大的電訊號而死亡,最終細胞在完成實驗後保有7成的轉染效率並保有6成的細胞存活率。 本研究分為兩個部分,第一部分為電操縱,實驗會將細胞推移進入細胞執行電穿刺的目標區域,透過施加電操縱訊號,細胞會透過負介電泳力 (Negative dielectrophoresis, nDEP) 的技術將細胞推移至電場較弱的區域。第二部分為細胞電穿刺,透過施加電穿刺訊號,細胞表面會產生親水性的孔洞並使物質遞送至細胞中。實驗首先使用Yo-Pro細胞質染劑作為細胞運輸效率指標,找到最佳的穿刺參數後再使用GFP進行細胞轉染實驗,搭配PI染劑以及流式細胞儀觀察細胞存活率以及轉染效率。 | zh_TW |
| dc.description.abstract | This study successfully developed a device capable of cell manipulation and cell electroporation with real-time observation. The device employs laser engraving technology to create micro-pore arrays, which generate non-uniform electric fields. This device can successfully perform cell electroporation and transfection. Fluorescence signals and cell viability after transfection are measured using flow cytometry.
The experimental device uses highly transparent indium tin oxide (ITO) glass as electrodes. Due to the high transparency of the glass, real-time observation of cell manipulation and electroporation can be conducted using an inverted fluorescence microscope. The device is advantageous due to its ease of fabrication, small size, and high repeatability, as it only requires laser engraving. After electroporation, Sample collection and thorough cleaning of the chamber is easy to this device. The electrical signals used are AC square waves, with manipulation and electroporation efficiencies adjusted by varying input voltage, frequency, and duration. The thermal impact from laser engraving creates raised geometric structures at the edges of the micro-pores, which strengthen the electric field in those areas, thereby reducing the voltage needed for cell electroporation. This minimizes cell death caused by excessive electrical signals, resulting in a transfection efficiency of 70% and a cell survival rate of 60%. This study is divided into two parts. The first part involves cell manipulation, where cells are moved into the target area for electroporation. By applying manipulation signals, cells are moved to regions with weaker electric fields through negative dielectrophoresis (nDEP). The second part involves cell electroporation, where applying electroporation signals creates hydrophilic pores on the cell surface, allowing material delivery into the cells. Initially, the experiment uses Yo-Pro dye as an indicator of cell transport efficiency. After determining the optimal electroporation parameters, GFP is used for cell transfection experiments, and PI dye along with flow cytometry is used to observe cell viability and transfection efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:15:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-19T16:15:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III 英文摘要 IV 目次 VI 圖次 IX 表次 XIII 符號說明 XIV 第1章 導論 1 1.1 前言 1 1.2 研究動機及目的 1 1.3 論文架構 2 第2章 文獻回顧 3 2.1 細胞操縱 (Cell manipulation) 3 2.1.1 細胞操縱方法 3 2.1.2 介電泳 (Dielectrophoresis) 5 2.2 物質遞送 (Material delivery) 10 2.2.1 載體方法 11 2.2.2 細胞膜破壞技術 12 2.3 電穿孔 (Electroporation) 13 2.3.1 電場作用於細胞 14 2.3.2 親水性孔洞性質 16 2.3.3 電穿孔應用於物質遞送 17 第3章 研究方法與系統設計 30 3.1 研究材料 30 3.2 研究方法 30 3.2.1 細胞電操縱 (Cell manipulation) 31 3.2.2 細胞電穿刺 (Cell electroporation) 32 3.3 裝置設計 33 3.3.1 電極 34 3.3.2 雙面膠 39 3.4 實驗設備 40 3.5 細胞培養 45 3.6 實驗步驟 52 3.6.1 實驗樣本製備 52 3.6.2 實驗裝置準備 53 3.6.3 細胞電操縱實驗 53 3.6.4 細胞電穿刺實驗 54 3.6.5 螢光分析 55 3.6.6 24小時細胞存活率檢驗 56 第4章 實驗結果與討論 57 4.1 介電性質 57 4.2 細胞電操縱 57 4.2.1 介電泳力 57 4.2.2 細胞運動情形 59 4.2.3 細胞移動分析 62 4.3 細胞電穿刺 64 4.3.1 細胞跨膜電位 64 4.3.2 細胞電穿孔實驗 66 4.3.3 24小時細胞存活率 69 4.4 細胞轉染 72 4.4.1 HL-60細胞轉染實驗 72 4.4.2 AC-16細胞轉染實驗 76 4.4.3 電穿刺後電操縱 80 第5章 總結與未來展望 84 5.1 總結 84 5.2 未來展望 85 參考文獻 87 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微孔陣列 | zh_TW |
| dc.subject | 電操縱 | zh_TW |
| dc.subject | 電穿刺 | zh_TW |
| dc.subject | 細胞轉染 | zh_TW |
| dc.subject | Cell trapping | en |
| dc.subject | Electroporation | en |
| dc.subject | Microwell array | en |
| dc.subject | Transfection | en |
| dc.title | 雷射加工孔洞陣列用於 ITO 玻璃之即時細胞電操縱與物質遞送裝置開發 | zh_TW |
| dc.title | The development of laser engraved wells array on ITO glass for cell electrical manipulation and real-time material delivery | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 盧彥文;謝函芸;范育睿 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Wen Lu;Han-Yun Hsieh;Yu-Jui Fan | en |
| dc.subject.keyword | 微孔陣列,電操縱,電穿刺,細胞轉染, | zh_TW |
| dc.subject.keyword | Microwell array,Cell trapping,Electroporation,Transfection, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202403727 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
