Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94758
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭憶中zh_TW
dc.contributor.advisorI-Chung Chengen
dc.contributor.author何柏寬zh_TW
dc.contributor.authorPo-Kuan Hoen
dc.date.accessioned2024-08-19T16:08:11Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-19-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Active site engineering in porous electrocatalysts, Advanced Materials 32(44) (2020) 2002435.
[2] S. Polarz, B. Smarsly, Nanoporous materials, Journal of nanoscience and nanotechnology 2(6) (2002) 581-612.
[3] G.M. Lu, X.S. Zhao, Nanoporous materials: science and engineering, World Scientific2004.
[4] J. Li, C. Tian, W. Hong, S. Duan, Y. Zhang, W. Wu, G. Hu, R. Xia, Shock responses of nanoporous gold subjected to dynamic loadings: Energy absorption, International Journal of Mechanical Sciences 192 (2021) 106191.
[5] V. Bonu, S. Kumar, P. Sooraj, H.C. Barshilia, A novel solid particle erosion resistant Ti/TiN multilayer coating with additional energy absorbing nano-porous metal layers: Validation by FEM analysis, Materials & Design 198 (2021) 109389.
[6] G. Cao, Working mechanism of nanoporous energy absorption system under high speed loading, The Journal of Physical Chemistry C 116(14) (2012) 8278-8286.
[7] X. Wang, Y. Li, J. Xiong, P.D. Hodgson, Porous TiNbZr alloy scaffolds for biomedical applications, Acta biomaterialia 5(9) (2009) 3616-3624.
[8] G. He, P. Liu, Q. Tan, Porous titanium materials with entangled wire structure for load-bearing biomedical applications, Journal of the mechanical behavior of biomedical materials 5(1) (2012) 16-31.
[9] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27(13) (2006) 2651-2670.
[10] X. Hou, Y. Cai, D. Zhang, L. Li, X. Zhang, Z. Zhu, L. Peng, Y. Liu, J. Qiao, 3D core–shell porous-structured Cu@ Sn hybrid electrodes with unprecedented selective CO 2-into-formate electroreduction achieving 100%, Journal of materials chemistry A 7(7) (2019) 3197-3205.
[11] C. Zou, C. Xi, D. Wu, J. Mao, M. Liu, H. Liu, C. Dong, X.W. Du, Porous copper microspheres for selective production of multicarbon fuels via CO2 electroreduction, Small 15(42) (2019) 1902582.
[12] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature nanotechnology 6(4) (2011) 232-236.
[13] Y. Ding, Z. Zhang, Y. Ding, Z. Zhang, Nanoporous metals for supercapacitor applications, Nanoporous Metals for Advanced Energy Technologies (2016) 137-173.
[14] J. Lee, J.Y. Seok, S. Son, M. Yang, B. Kang, High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode, Journal of materials chemistry A 5(47) (2017) 24585-24593.
[15] R. Li, X. Liu, H. Wang, Y. Wu, Z. Lu, Development of electrochemical supercapacitors with uniform nanoporous silver network, Electrochimica Acta 182 (2015) 224-229.
[16] H.J. Jin, J. Weissmüller, Bulk nanoporous metal for actuation, Advanced engineering materials 12(8) (2010) 714-723.
[17] J. Biener, A. Wittstock, L. Zepeda-Ruiz, M. Biener, V. Zielasek, D. Kramer, R. Viswanath, J. Weissmüller, M. Bäumer, A. Hamza, Surface-chemistry-driven actuation in nanoporous gold, Nature materials 8(1) (2009) 47-51.
[18] D.J. Wales, J. Grand, V.P. Ting, R.D. Burke, K.J. Edler, C.R. Bowen, S. Mintova, A.D. Burrows, Gas sensing using porous materials for automotive applications, Chemical Society Reviews 44(13) (2015) 4290-4321.
[19] Q. Yang, K. Sun, C. Yang, M. Sun, H. Peng, X. Shen, S. Huang, J. Chen, Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting, Journal of Alloys and Compounds 858 (2021) 157674.
[20] T.D. Claar, C.-J. Yu, I. Hall, J. Banhart, J. Baumeister, W. Seeliger, Ultra-lightweight aluminum foam materials for automotive applications, SAE transactions (2000) 98-106.
[21] J. Liu, M. Xu, R. Zhang, X. Zhang, W. Xi, Progress of porous/lattice structures applied in thermal management technology of aerospace applications, Aerospace 9(12) (2022) 827.
[22] R. Talebitooti, M. Zarastvand, The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell, Aerospace Science and Technology 78 (2018) 157-170.
[23] P. Göransson, Tailored acoustic and vibrational damping in porous solids–engineering performance in aerospace applications, Aerospace Science and Technology 12(1) (2008) 26-41.
[24] D. Wang, Y. Yang, R. Liu, D. Xiao, J. Sun, Study on the designing rules and processability of porous structure based on selective laser melting (SLM), Journal of Materials Processing Technology 213(10) (2013) 1734-1742.
[25] H.A. Santos, Porous silicon for biomedical applications, (2014).
[26] Z. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, O.K. Farha, Porous materials for hydrogen storage, Chem (2022).
[27] Z. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, O.K. Farha, Porous materials for hydrogen storage, Chem 8(3) (2022) 693-716.
[28] X. Hu, X. Tian, Y.-W. Lin, Z. Wang, Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media, RSC advances 9(54) (2019) 31563-31571.
[29] M. Ledendecker, G. Clavel, M. Antonietti, M. Shalom, Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction, Advanced Functional Materials 25(3) (2015) 393-399.
[30] J.J. Lv, M. Jouny, W. Luc, W. Zhu, J.J. Zhu, F. Jiao, A highly porous copper electrocatalyst for carbon dioxide reduction, Advanced Materials 30(49) (2018) 1803111.
[31] Q. Yang, X. Liu, W. Peng, Y. Zhao, Z. Liu, M. Peng, Y.-R. Lu, T.-S. Chan, X. Xu, Y. Tan, Vanadium oxide integrated on hierarchically nanoporous copper for efficient electroreduction of CO 2 to ethanol, Journal of Materials Chemistry A 9(5) (2021) 3044-3051.
[32] Y.-R. Su, T.-H. Wu, I.-C. Cheng, Synthesis and catalytical properties of hierarchical nanoporous copper from θ and η phases in CuAl alloys, Journal of Physics and Chemistry of Solids 151 (2021) 109915.
[33] T.T. Hoang, S. Ma, J.I. Gold, P.J. Kenis, A.A. Gewirth, Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis, ACS catalysis 7(5) (2017) 3313-3321.
[34] G.S. Day, H.F. Drake, H.-C. Zhou, M.R. Ryder, Evolution of porous materials from ancient remedies to modern frameworks, Communications Chemistry 4(1) (2021) 114.
[35] G.A. Ozin, A. Kuperman, A. Stein, Advanced zeolite, materials science, Angewandte Chemie International Edition in English 28(3) (1989) 359-376.
[36] E. Kianfar, S. Hajimirzaee, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: a review, Microchemical Journal 156 (2020) 104822.
[37] O. Yaghi, H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels, Journal of the American Chemical Society 117(41) (1995) 10401-10402.
[38] F. García-Moreno, Commercial applications of metal foams: Their properties and production, Materials 9(2) (2016) 85.
[39] R. Neugebauer, T. Hipke, Machine tools with metal foams, Advanced Engineering Materials 8(9) (2006) 858-863.
[40] J.R. Greer, J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Progress in Materials Science 56(6) (2011) 654-724.
[41] O. Kraft, P.A. Gruber, R. Mönig, D. Weygand, Plasticity in confined dimensions, Annual review of materials research 40 (2010) 293-317.
[42] C. Frick, B. Clark, S. Orso, A. Schneider, E. Arzt, Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars, Materials Science and Engineering: A 489(1-2) (2008) 319-329.
[43] J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, F.F. Abraham, Size effects on the mechanical behavior of nanoporous Au, Nano letters 6(10) (2006) 2379-2382.
[44] D. Esqué-de Los Ojos, E. Pellicer, J. Sort, The influence of pore size on the indentation behavior of metallic nanoporous materials: a molecular dynamics study, Materials 9(5) (2016) 355.
[45] N.J. Briot, T.J. Balk, Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold, MRS Communications 8(1) (2018) 132-136.
[46] K. Wang, A. Kobler, C. Kübel, H. Jelitto, G. Schneider, J. Weissmüller, Nanoporous-gold-based composites: toward tensile ductility, NPG Asia materials 7(6) (2015) e187-e187.
[47] H. Kashani, M. Chen, Flaw-free nanoporous Ni for tensile properties, Acta Materialia 166 (2019) 402-412.
[48] P. Peng, H. Sun, A.P. Gerlich, W. Guo, Y. Zhu, L. Liu, G. Zou, C.V. Singh, N. Zhou, Near-ideal compressive strength of nanoporous silver composed of nanowires, Acta Materialia 173 (2019) 163-173.
[49] H.-J. Jin, L. Kurmanaeva, J. Schmauch, H. Rösner, Y. Ivanisenko, J. Weissmüller, Deforming nanoporous metal: Role of lattice coherency, Acta Materialia 57(9) (2009) 2665-2672.
[50] J.-H. Chen, W.-S. Luo, Flexural properties and fracture behavior of nanoporous alumina film by three-point bending test, Micromachines 8(7) (2017) 206.
[51] K. Wang, J. Weissmüller, Composites of nanoporous gold and polymer, Advanced Materials (Deerfield Beach, Fla.) 25(9) (2013) 1280.
[52] P. Ahn, O. Balogun, Elastic characterization of nanoporous gold foams using laser based ultrasonics, Ultrasonics 54(3) (2014) 795-800.
[53] J. Biener, A.V. Hamza, A. Hodge, Deformation behavior of nanoporous metals, Micro and nano mechanical testing of materials and devices, Springer2008, pp. 121-138.
[54] L.J. Gibson, Cellular solids, Mrs Bulletin 28(4) (2003) 270-274.
[55] Y. Li, B.-N.D. Ngô, J. Markmann, J. Weissmüller, Topology evolution during coarsening of nanoscale metal network structures, Physical review materials 3(7) (2019) 076001.
[56] H.-J. Jin, J. Weissmüller, D. Farkas, Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts, Mrs Bulletin 43(1) (2018) 35-42.
[57] C. Soyarslan, S. Bargmann, M. Pradas, J. Weissmüller, 3D stochastic bicontinuous microstructures: Generation, topology and elasticity, Acta materialia 149 (2018) 326-340.
[58] A.P. Roberts, E.J. Garboczi, Computation of the linear elastic properties of random porous materials with a wide variety of microstructure, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458(2021) (2002) 1033-1054.
[59] B. Zandersons, L. Lührs, Y. Li, J. Weissmüller, On factors defining the mechanical behavior of nanoporous gold, Acta Materialia 215 (2021) 116979.
[60] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying, nature 410(6827) (2001) 450-453.
[61] Z. Zhang, Y. Wang, Z. Qi, W. Zhang, J. Qin, J. Frenzel, Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying, The Journal of Physical Chemistry C 113(29) (2009) 12629-12636.
[62] L. Sun, C.-L. Chien, P.C. Searson, Fabrication of nanoporous nickel by electrochemical dealloying, Chemistry of materials 16(16) (2004) 3125-3129.
[63] Y. Zeng, B. Gaskey, E. Benn, I. McCue, G. Greenidge, K. Livi, X. Zhang, J. Jiang, J. Elebacher, Electrochemical dealloying with simultaneous phase separation, Acta Materialia 171 (2019) 8-17.
[64] T. Wada, K. Yubuta, A. Inoue, H. Kato, Dealloying by metallic melt, Materials Letters 65(7) (2011) 1076-1078.
[65] Z. Lu, C. Li, J. Han, F. Zhang, P. Liu, H. Wang, Z. Wang, C. Cheng, L. Chen, A. Hirata, Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying, Nature communications 9(1) (2018) 276.
[66] S.-R. Hsieh, N.-H. Lu, C.-H. Chen, Y.-L. Lee, I.-C. Cheng, Morphology, ligament strength, and energy absorption of nanoporous copper via vapor phase dealloying, Materials Science and Engineering: A 857 (2022) 144131.
[67] Y. Shi, Y. Zhang, J. Qin, Z. Zhang, Macro-/micro-coupling regulation of nanoporous metals via vapor phase alloying-dealloying, Science China Materials 64(6) (2021) 1521-1533.
[68] A. Pinna, G. Pia, M.F. Casula, F. Delogu, E. Sogne, A. Falqui, L. Pilia, Fabrication of nanoporous Al by vapor-phase dealloying: morphology features, mechanical properties and model predictions, Applied Sciences 11(14) (2021) 6639.
[69] Z. Zhang, Y. Wang, X. Wang, Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid, Nanoscale 3(4) (2011) 1663-1674.
[70] T. Déronzier, F. Morfin, M. Lomello, J.-L. Rousset, Catalysis on nanoporous gold–silver systems: Synergistic effects toward oxidation reactions and influence of the surface composition, Journal of catalysis 311 (2014) 221-229.
[71] C. Xu, R. Wang, M. Chen, Y. Zhang, Y. Ding, Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties, Physical Chemistry Chemical Physics 12(1) (2010) 239-246.
[72] A.A. Vega, R.C. Newman, Nanoporous metals fabricated through electrochemical dealloying of Ag-Au-Pt with systematic variation of Au: Pt ratio, Journal of the Electrochemical Society 161(1) (2013) C1.
[73] J. Snyder, P. Asanithi, A.B. Dalton, J. Erlebacher, Stabilized nanoporous metals by dealloying ternary alloy precursors, Advanced Materials 20(24) (2008) 4883-4886.
[74] F. Saba, E. Garmroudi-Nezhad, F. Zhang, L. Wang, Fabrication, mechanical property and in vitro bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys, Journal of Materials Research 35(19) (2020) 2597-2609.
[75] H. Li, A. Misra, A dramatic increase in the strength of a nanoporous Pt–Ni alloy induced by annealing, Scripta Materialia 63(12) (2010) 1169-1172.
[76] H. Li, A. Misra, J.K. Baldwin, S. Picraux, Synthesis and characterization of nanoporous Pt–Ni alloys, Applied Physics Letters 95(20) (2009).
[77] Z. Dan, F. Qin, Y. Sugawara, I. Muto, N. Hara, Elaboration of nanoporous copper by modifying surface diffusivity by the minor addition of gold, Microporous and mesoporous materials 165 (2013) 257-264.
[78] Z. Dan, F. Qin, Y. Sugawara, I. Muto, N. Hara, Fabrication of ultrafine nanoporous copper by the minor addition of gold, Materials Transactions 53(10) (2012) 1765-1769.
[79] M. Hakamada, M. Mabuchi, Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys, Journal of Alloys and Compounds 485(1-2) (2009) 583-587.
[80] Y.-C. Liu, S.-J. Yang, Improved surface-enhanced Raman scattering based on Ag–Au bimetals prepared by galvanic replacement reactions, Electrochimica acta 52(5) (2007) 1925-1931.
[81] X. Ren, X. Meng, F. Tang, Preparation of Ag–Au nanoparticle and its application to glucose biosensor, Sensors and Actuators B: Chemical 110(2) (2005) 358-363.
[82] J. Wang, X. Liu, R. Li, Z. Li, X. Wang, H. Wang, Y. Wu, S. Jiang, Z. Lu, Formation mechanism and characterization of immiscible nanoporous binary Cu–Ag alloys with excellent surface-enhanced Raman scattering performance by chemical dealloying of glassy precursors, Inorganic Chemistry Frontiers 7(5) (2020) 1127-1139.
[83] Y.Y. Ochejah, O. Cyril, I.F. Omaone, A.F. Ogwudubi, O.A. Onakemu, Cupola Furnace Design and Fabrication for Industrial Development, International Journal of Scientific Advances 2(2) (2021) 102-106.
[84] O. Lucia, P. Maussion, E.J. Dede, J.M. Burdío, Induction heating technology and its applications: past developments, current technology, and future challenges, IEEE Transactions on industrial electronics 61(5) (2013) 2509-2520.
[85] E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, J. Bohacek, A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling, Metallurgical and Materials Transactions B 51 (2020) 222-235.
[86] Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al− Cu alloys, The Journal of Physical Chemistry C 113(16) (2009) 6694-6698.
[87] J. Han, C. Li, Z. Lu, H. Wang, Z. Wang, K. Watanabe, M. Chen, Vapor phase dealloying: A versatile approach for fabricating 3D porous materials, Acta Materialia 163 (2019) 161-172.
[88] V. Celante, M. Freitas, Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques, Journal of applied electrochemistry 40 (2010) 233-239.
[89] X. Guo, C. Zhang, Q. Tian, D. Yu, Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review, Materials Today Communications 26 (2021) 102007.
[90] Y. Xia, Z. Lu, J. Han, F. Zhang, D. Wei, K. Watanabe, M. Chen, Bulk diffusion regulated nanopore formation during vapor phase dealloying of a Zn-Cu alloy, Acta Materialia 238 (2022) 118210.
[91] B. Lin, Y. Wang, X. Hu, W. Zhang, H. Qin, Rapid preparation of nanoporous copper by transient joule heating vapor phase dealloying, Materials Science and Engineering: B 300 (2024) 117085.
[92] W.-H. Tsai, W. Widyanata, C.-Y. Chien, I.-C. Cheng, Dealloying kinetic and catalytic applications of hierarchical porous copper via hot-dip galvanization and subsequent vapor phase dealloying, Journal of Alloys and Compounds 934 (2023) 167866.
[93] Z. Lu, F. Zhang, D. Wei, J. Han, Y. Xia, J. Jiang, M. Zhong, A. Hirata, K. Watanabe, A. Karma, Vapor phase dealloying kinetics of MnZn alloys, Acta Materialia 212 (2021) 116916.
[94] Y. Shi, Y. Wang, W. Yang, J. Qin, Q. Bai, Z. Zhang, Vapor phase dealloying-driven synthesis of bulk nanoporous cobalt with a face-centered cubic structure, CrystEngComm 23(37) (2021) 6526-6532.
[95] Y. Li, X. Han, Z. Lu, L. Ying, X. Wang, Y. Zeng, Y. Gao, Q. Chen, P. Liu, Crystal plane-orientation dependent phase evolution from precursor to porous intermediate phase in the vapor phase dealloying of a Co-Zn alloy, Acta Materialia 245 (2023) 118617.
[96] S. Saager, B. Scheffel, T. Modes, O. Zywitzki, Synthesis of porous silicon, nickel and carbon layers by vapor phase dealloying, Surface and Coatings Technology 427 (2021) 127812.
[97] R. Li, X. Liu, H. Wang, D. Zhou, Y. Wu, Z. Lu, Formation mechanism and characterization of nanoporous silver with tunable porosity and promising capacitive performance by chemical dealloying of glassy precursor, Acta Materialia 105 (2016) 367-377.
[98] Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin, Core–shell nanostructured catalysts, Accounts of Chemical Research 46(8) (2013) 1816-1824.
[99] X. Liu, J. Du, Y. Shao, S.-F. Zhao, K.-F. Yao, One-pot preparation of nanoporous Ag-Cu@ Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity, Scientific reports 7(1) (2017) 10249.
[100] Y. Cui, L. Peng, L. Lei, Y. Gao, J.N. Thathsarani, E. Podlaha, L. Liang, X. Shi, Synthesis and photocatalytic performance of superparamagnetic Fe-Ag@ AgCl nanowire with 1-D core–shell structure under visible light, Journal of Photochemistry and Photobiology A: Chemistry 397 (2020) 112586.
[101] Y.-Z. Lee, W.-Y. Zeng, I.-C. Cheng, Synthesis and characterization of nanoporous copper thin films by magnetron sputtering and subsequent dealloying, Thin Solid Films 699 (2020) 137913.
[102] D. Lee, X. Wei, X. Chen, M. Zhao, S.C. Jun, J. Hone, E.G. Herbert, W.C. Oliver, J.W. Kysar, Microfabrication and mechanical properties of nanoporous gold at the nanoscale, Scripta materialia 56(5) (2007) 437-440.
[103] N. Badwe, X. Chen, K. Sieradzki, Mechanical properties of nanoporous gold in tension, Acta Materialia 129 (2017) 251-258.
[104] D. Farkas, A. Caro, E. Bringa, D. Crowson, Mechanical response of nanoporous gold, Acta Materialia 61(9) (2013) 3249-3256.
[105] M.F. Ashby, R.M. Medalist, The mechanical properties of cellular solids, Springer, 1983.
[106] C.A. Volkert, E.T. Lilleodden, Size effects in the deformation of sub-micron Au columns, Philosophical Magazine 86(33-35) (2006) 5567-5579.
[107] J. Biener, A. Hodge, J. Hayes, C. Volkert, L. Zepeda-Ruiz, A. Hamza, F. Abraham, Nanoporous Metal-Combining Strength and Porosity, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2006.
[108] T. Juarez, J. Biener, J. Weissmüller, A.M. Hodge, Nanoporous metals with structural hierarchy: A review, Advanced engineering materials 19(12) (2017) 1700389.
[109] J. Weissmüller, R.C. Newman, H.-J. Jin, A.M. Hodge, J.W. Kysar, Nanoporous metals by alloy corrosion: formation and mechanical properties, Mrs Bulletin 34(8) (2009) 577-586.
[110] R. Mead-Hunter, A.J. King, B.J. Mullins, Plateau Rayleigh instability simulation, Langmuir 28(17) (2012) 6731-6735.
[111] L.-Z. Liu, H.-J. Jin, Scaling equation for the elastic modulus of nanoporous gold with “fixed” network connectivity, Applied Physics Letters 110(21) (2017).
[112] L.-Z. Liu, X.-L. Ye, H.-J. Jin, Interpreting anomalous low-strength and low-stiffness of nanoporous gold: Quantification of network connectivity, Acta Materialia 118 (2016) 77-87.
[113] Z. Ma, D.Z. Zhang, F. Liu, J. Jiang, M. Zhao, T. Zhang, Lattice structures of Cu-Cr-Zr copper alloy by selective laser melting: Microstructures, mechanical properties and energy absorption, Materials & Design 187 (2020) 108406.
[114] C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, Journal of Materials Processing Technology 214(4) (2014) 856-864.
[115] D.R. Askeland, P.P. Phulé, W.J. Wright, D. Bhattacharya, The science and engineering of materials, (2003).
[116] H. Okamoto, H. Okamoto, Phase diagrams for binary alloys, ASM international Materials Park, OH2000.
[117] G.E. Lloyd, Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques, Mineralogical Magazine 51(359) (1987) 3-19.
[118] C.B. Alcock, V. Itkin, M. Horrigan, Vapour pressure equations for the metallic elements: 298–2500K, Canadian Metallurgical Quarterly 23(3) (1984) 309-313.
[119] Y.-c.K. Chen-Wiegart, S. Wang, I. McNulty, D.C. Dunand, Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation, Acta materialia 61(15) (2013) 5561-5570.
[120] Y. Zhong, J. Markmann, H.J. Jin, Y. Ivanisenko, L. Kurmanaeva, J. Weissmüller, Crack Mitigation during Dealloying of Au25 C u75, Advanced Engineering Materials 16(4) (2014) 389-398.
[121] X. Lu, T. Balk, R. Spolenak, E. Arzt, Dealloying of Au–Ag thin films with a composition gradient: Influence on morphology of nanoporous Au, Thin solid films 515(18) (2007) 7122-7126.
[122] T. Song, Y. Gao, Z. Zhang, Q. Zhai, Microstructure and phase evolution during the dealloying of bi-phase Al–Ag alloy, Corrosion science 68 (2013) 256-262.
[123] A. Forty, Micromorphological studies of the corrosion of gold alloys, Gold Bulletin 14(1) (1981) 25-35.
[124] J. Snyder, J. Erlebacher, Kinetics of crystal etching limited by terrace dissolution, Journal of the Electrochemical Society 157(3) (2010) C125.
[125] S.P. Dimitrijević, D. Manasijević, Ž. Kamberović, S.B. Dimitrijević, M. Mitrić, M. Gorgievski, S. Mladenović, Experimental investigation of microstructure and phase transitions in Ag-Cu-Zn brazing alloys, Journal of Materials Engineering and Performance 27 (2018) 1570-1579.
[126] T. Ungar, Microstructural parameters from X-ray diffraction peak broadening, Scripta Materialia 51(8) (2004) 777-781.
[127] J. Dona, J. Gonzalez-Velasco, Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution, The Journal of Physical Chemistry 97(18) (1993) 4714-4719.
[128] J.W. Kim, M. Tsuda, T. Wada, K. Yubuta, S.G. Kim, H. Kato, Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors, Acta Materialia 84 (2015) 497-505.
[129] L. Qian, M. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation, Applied Physics Letters 91(8) (2007).
[130] T. Wada, K. Yubuta, H. Kato, Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction, Scripta Materialia 118 (2016) 33-36.
[131] T. Fujita, M.W. Chen, Characteristic length scale of bicontinuous nanoporous structure by fast fourier transform, Japanese journal of applied physics 47(2R) (2008) 1161.
[132] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of physics and chemistry of solids 19(1-2) (1961) 35-50.
[133] F. Yuan, X. Wu, Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression, AIP Advances 4(12) (2014).
[134] A. Ardell, The effect of volume fraction on particle coarsening: theoretical considerations, Acta metallurgica 20(1) (1972) 61-71.
[135] V.S. Solomatov, D.J. Stevenson, Can sharp seismic discontinuities be caused by non-equilibrium phase transformations?, Earth and planetary science letters 125(1-4) (1994) 267-279.
[136] S. Divinski, M. Lohmann, C. Herzig, Grain boundary diffusion and linear and non-linear segregation of Ag in Cu, Interface science 11 (2003) 21-31.
[137] W. Gust, J. Beuers, J. Steffen, S. Stiltz, B. Predel, Diffusion along migrating and stationary grain boundaries in the Cu Ag system, Acta Metallurgica 34(8) (1986) 1671-1680.
[138] J. Sommer, T. Muschik, C. Herzig, W. Gust, Silver tracer diffusion in oriented AgCu interphase boundaries and correlation to the boundary structure, Acta materialia 44(1) (1996) 327-334.
[139] B. Jiang, Z. Wang, N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scripta materialia 56(2) (2007) 169-172.
[140] G.M. Gladysz, K.K. Chawla, Voids in materials: from unavoidable defects to designed cellular materials, Elsevier2020.
[141] Q. Kong, L. Lian, Y. Liu, J. Zhang, Fabrication and compression properties of bulk hierarchical nanoporous copper with fine ligament, Materials Letters 127 (2014) 59-62.
[142] A. Gaganov, J. Freudenberger, E. Botcharova, L. Schultz, Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu–7 wt.% Ag alloys, Materials Science and Engineering: A 437(2) (2006) 313-322.
[143] P. Li, Z. Wang, N. Petrinic, C. Siviour, Deformation behaviour of stainless steel microlattice structures by selective laser melting, Materials Science and Engineering: A 614 (2014) 116-121.
[144] I. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials, Proceedings of the royal society of London. A. Mathematical and physical sciences 382(1782) (1982) 43-59.
[145] H. Huang, F. Spaepen, Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers, Acta Materialia 48(12) (2000) 3261-3269.
[146] Y. Zhang, J. Li, Y. Hu, S. Ding, F. Du, R. Xia, Characterization of the deformation behaviors under uniaxial stress for bicontinuous nanoporous amorphous alloys, Physical Chemistry Chemical Physics 24(2) (2022) 1099-1112.
[147] W. Li, K. Xu, H. Li, H. Jia, X. Liu, J. Xie, Energy absorption and deformation mechanism of lotus-type porous coppers in perpendicular direction, Journal of materials science & technology 33(11) (2017) 1353-1361.
[148] S. Hyun, H. Nakajima, Anisotropic compressive properties of porous copper produced by unidirectional solidification, Materials Science and Engineering: A 340(1-2) (2003) 258-264.
[149] W. Li, H. Jia, C. Pu, X. Liu, J. Xie, Cell wall buckling mediated energy absorption in lotus-type porous copper, Journal of Materials Science & Technology 31(10) (2015) 1018-1026.
[150] J. Xiao, Y. Li, J. Liu, Q. Zhao, Fabrication and characterization of porous copper with ultrahigh porosity, Metals 12(8) (2022) 1263.
[151] G. Singh, P.M. Pandey, Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: surface morphology, mechanical properties and energy absorption capacity, Materials Science and Engineering: A 761 (2019) 138035.
[152] M. Sabzevari, S.A. Sajjadi, A. Moloodi, Physical and mechanical properties of porous copper nanocomposite produced by powder metallurgy, Advanced Powder Technology 27(1) (2016) 105-111.
[153] Y. Hangai, K. Zushida, H. Fujii, R. Ueji, O. Kuwazuru, N. Yoshikawa, Friction powder compaction process for fabricating open-celled Cu foam by sintering-dissolution process route using NaCl space holder, Materials Science and Engineering: A 585 (2013) 468-474.
[154] H. Jeon, S. Lee, J.-Y. Kim, Tension-compression asymmetry in plasticity of nanoporous gold, Acta Materialia 199 (2020) 340-351.
[155] M.H. Saffarini, G.Z. Voyiadjis, C.J. Ruestes, Temperature effect on nanoporous gold under uniaxial tension and compression, Computational Materials Science 200 (2021) 110766.
[156] J. Zhang, W. Zhang, Unique tension-compression asymmetry of nanoporous metallic glasses induced by surface effects, Journal of Applied Physics 125(7) (2019).
[157] V.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, S.G. Rassolov, The effect of the melt-spinning processing parameters on the rate of cooling, Materials Science and Engineering: A 323(1-2) (2002) 91-96.
[158] G. Li, X. Song, Z. Sun, S. Yang, B. Ding, S. Yang, Z. Yang, F. Wang, Nanoporous Ag prepared from the melt-spun Cu-Ag alloys, Solid state sciences 13(7) (2011) 1379-1384.
[159] Y.-C. Kim, E.-J. Gwak, S.-m. Ahn, N.-R. Kang, H.N. Han, J.-i. Jang, J.-Y. Kim, Indentation size effect for spherical nanoindentation on nanoporous gold, Scripta Materialia 143 (2018) 10-14.
[160] Y.-C. Kim, E.-J. Gwak, S.-m. Ahn, J.-i. Jang, H.N. Han, J.-Y. Kim, Indentation size effect in nanoporous gold, Acta Materialia 138 (2017) 52-60.
[161] E.L. Clark, C. Hahn, T.F. Jaramillo, A.T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity, Journal of the American Chemical Society 139(44) (2017) 15848-15857.
[162] Z. Chang, S. Huo, W. Zhang, J. Fang, H. Wang, The tunable and highly selective reduction products on Ag@ Cu bimetallic catalysts toward CO2 electrochemical reduction reaction, The Journal of Physical Chemistry C 121(21) (2017) 11368-11379.
[163] Q. Sang, S. Hao, J. Han, Y. Ding, Dealloyed nanoporous materials for electrochemical energy conversion and storage, EnergyChem 4(1) (2022) 100069.
[164] Y. Sakai, K. Inoue, T. Asano, H. Wada, H. Maeda, Development of high‐strength, high‐conductivity Cu–Ag alloys for high‐field pulsed magnet use, Applied Physics Letters 59(23) (1991) 2965-2967.
[165] H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie, X. Liu, S. Sun, Nanoporous high-entropy alloys for highly stable and efficient catalysts, Journal of materials chemistry A 7(11) (2019) 6499-6506.
[166] A.V. Okulov, S.-H. Joo, H.S. Kim, H. Kato, I.V. Okulov, Nanoporous high-entropy alloy by liquid metal dealloying, Metals 10(10) (2020) 1396.
[167] P. Xie, Y. Yao, Z. Huang, Z. Liu, J. Zhang, T. Li, G. Wang, R. Shahbazian-Yassar, L. Hu, C. Wang, Highly efficient decomposition of ammonia using high-entropy alloy catalysts, Nature communications 10(1) (2019) 4011.
[168] Z. Jin, J. Lv, H. Jia, W. Liu, H. Li, Z. Chen, X. Lin, G. Xie, X. Liu, S. Sun, Nanoporous Al‐Ni‐Co‐Ir‐Mo high‐entropy alloy for record‐high water splitting activity in acidic environments, Small 15(47) (2019) 1904180.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94758-
dc.description.abstract氣相去合金法是一種已經被證實可回收的去合金方法,用於合成奈米多孔金屬而不產生化學廢物,例如先前研究透過銅-鋅前驅合金合成奈米多孔銅。然而目前仍然缺乏透過氣相去合金法從三元前驅合金中合成奈米多孔雙金/合金的相關研究。本研究使用了銅-銀-鋅當作前驅合金,並透過氣相去合金法製作奈米多孔銅-銀結構,並且探討貴金屬銀的添加對生長動力學與機械性質的影響。實驗結果顯示銀在氣相去合金過程中抑制了銅-銀原子之間的擴散和重組,因此有效減小了多孔結構的支架尺寸。此外,在機械性質表現上,擁有相似相對密度的奈米孔洞銅-銀的能量吸收達75.4 MJ/cm³,比起奈米孔洞銅的42.5 MJ/cm³能量吸收要來的高出許多,也超過了透過其他方法合成的多孔銅或銅複合材料的能量吸收表現,這是由於支架連接性、銅-銀雙金屬強化機制與奈米尺寸效應的協同效應讓其機械性質得到大幅的提升,提供了航太材料或是汽車產業等需要高強度輕量化需求的材料選擇。此外,實驗中也觀察到銅-銀支架的生長會有中間相的形成,且在特定比例的前驅合金經過氣相去合金後會有明顯的前驅合金母相相邊界的保留,這是由於銀的偏析現象以及不同合金相會有不同的支架形貌與尺寸。最後再藉由支架生長活化能預測確定了奈米多孔銅-銀的活化能約為1.3 eV與1.57 eV,這意味著銅-銀支架的形成可能是一種晶界擴散或是相界面擴散的過程。zh_TW
dc.description.abstractThe vapor phase dealloying (VPD) has been demonstrated as a recyclable dealloying technique for synthesizing nanoporous metals without chemical waste, such as nanoporous Cu (NPC) from Cu-Zn precursor alloys. However, there was still a lack of utilizing the VPD method to synthesize nanoporous bimetallic/alloy structures from ternary precursor alloys. In this study, copper-silver-zinc was utilized as the precursor alloy, and nanoporous copper-silver structures (NPCS) were synthesized via the VPD process, investigating the influence of noble metal Ag addition on ligament growth kinetics and mechanical properties. Experimental results revealed that silver suppressed the diffusion and rearrangement of the remaining atoms Cu-Ag during the VPD process, effectively reducing the ligament size and increasing mechanical properties. However, in terms of the mechanical properties, the energy absorption capacity of NPCSs is up to 75.4 MJ/cm³, which is considerably higher than the 42.5 MJ/cm³ energy absorption of NPC via VPD at a similar relative density. It also exceeds the energy absorption performance of porous copper or copper composites synthesized by other methods. This significant enhancement in mechanical properties is attributed to the synergistic effects of ligament connectivity, Cu-Ag strengthening mechanisms and nano size effects, providing materials choices for industries such as aerospace or automotive, which demand high-strength lightweight materials. Moreover, it was observed that the morphology of the precursor phase boundary can be preserved after VPD, due to the segregation of silver and the different ligament morphologies and sizes of different alloy phases. Through varying VPD times and temperatures, the calculated activation energy for ligament growth was determined to be approximately 1.3eV and 1.57eV, suggesting that the formation of the Cu-Ag ligaments was dominated by grain boundary diffusion or interphase boundary diffusion.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:08:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-19T16:08:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 xii
第 1 章、 緒論 1
1.1、 前言 1
1.2、 研究目的 4
第 2 章、 文獻回顧 5
2.1、 Cu-Ag-Zn前驅合金熔煉 5
2.2、 氣相去合金製程 9
2.3、 奈米多孔雙金屬 15
2.4、 奈米孔洞材料機械性質評估 18
第 3 章、 實驗步驟 29
3.1、 Cu-Ag-Zn前驅合金製備 29
3.2、 氣相去合金製程 30
3.3、 NPCS支架尺寸量測 31
3.4、 NPCS相對密度量測 32
3.5、 NPCS壓應力測試 33
3.6、 材料分析儀器 34
第 4 章、 結果與討論 35
4.1、 Cu-Ag-Zn前驅合金之形貌與成分分析 35
4.2、 奈米多孔Cu-Ag結構的製備 38
4.3、 VPD時間效應對NPCS的影響 44
4.4、 VPD溫度效應對NPCS的影響 53
4.5、 VPD支架生長動力學分析 58
4.6、 NPCS壓應力測試 60
4.7、 NPCS結構之能量吸收 64
第 5 章、 結論 69
第 6 章、 未來展望 71
第 7 章、 附錄 73
7.1、 壓應力測試 73
參考文獻 76
-
dc.language.isozh_TW-
dc.title以氣相去合金法合成奈米多孔銅銀之動力學與機械性質分析zh_TW
dc.titleKinetic Analysis and Mechanical Properties of Nanoporous Copper-Silver via Vapor Phase Dealloyingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳志軒; 李岳聯zh_TW
dc.contributor.oralexamcommitteeChih-Hsuan Chen;Yueh-Lien Lien
dc.subject.keyword銅-銀奈米多孔結構,氣相去合金法,活化能,機械性質測試,能量吸收,zh_TW
dc.subject.keywordCopper-Silver nanoporous structure,Vapor phase dealloying,Activation energy,Mechanical testing,Energy absorption,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202403644-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2026-08-14-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-08-14
10.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved