Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94756Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | zh_TW |
| dc.contributor.advisor | Yang-Fang Chen | en |
| dc.contributor.author | 賴孟晴 | zh_TW |
| dc.contributor.author | Meng-Ching Lai | en |
| dc.date.accessioned | 2024-08-16T18:00:48Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Gu, L., Poddar, S., Lin, Y., Long, Z., Zhang, D., Zhang, Q., Shu, L., Qiu, X., Kam, M., Javey, A., & Fan, Z. (2020). A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 581(7808), 278–282. https://doi.org/10.1038/s41586-020-2285-x
Konstantatos, G. (2018). Current status and technological prospect of photodetectors based on two-dimensional materials. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07643-7 Long, M., Wang, P., Fang, H., & Hu, W. (2018). Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 29(19). https://doi.org/10.1002/adfm.201803807 Yang, Z., Dou, J., & Wang, M. (2018). Graphene, transition metal dichalcogenides, and perovskite photodetectors. In InTech eBooks. https://doi.org/10.5772/intechopen.74021 Zhang, Y., Liu, T., Meng, B., Li, X., Liang, G., Hu, X., & Wang, Q. J. (2013). Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 4(1). https://doi.org/10.1038/ncomms2830 Lei, T., Tu, H., Lv, W., Ma, H., Wang, J., Hu, R., Wang, Q., Zhang, L., Fang, B., Liu, Z., Shi, W., & Zeng, Z. (2021). Ambipolar photoresponsivity in an ultrasensitive photodetector based on a WSE2/INSE heterostructure by a photogating effect. ACS Applied Materials & Interfaces, 13(42), 50213–50219. https://doi.org/10.1021/acsami.1c12330 Hao, J., Peng, R., Ren, M., He, J., Zhou, Y., Yang, Z., Li, C. Y., Liu, Y., Guo, X., Zhu, Y., Wang, D., Su, J., Sun, C., Bao, W., & Wang, M. (2020). Flexible ultrathin Single-Crystalline perovskite photodetector. Nano Letters, 20(10), 7144–7151. https://doi.org/10.1021/acs.nanolett.0c02468 Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenović, A., & Kis, A. (2013). Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 8(7), 497–501. https://doi.org/10.1038/nnano.2013.100 Deng, W., Chen, Y., You, C., Liu, B., Yang, Y., Shen, G., Li, S., Sun, L., Zhang, Y., & Yan, H. (2018). High Detectivity from a Lateral Graphene–MoS2 Schottky Photodetector Grown by Chemical Vapor Deposition. Advanced Electronic Materials, 4(9). https://doi.org/10.1002/aelm.201800069 Gao, S., Wang, Z., Wang, H., Meng, F., Wang, P., Chen, S., Zeng, Y., Zhao, J., Hu, H., Cao, R., Xu, Z., Guo, Z., & Zhang, H. (2020). Graphene/MoS 2 /Graphene Vertical Heterostructure‐Based Broadband Photodetector with High Performance. Advanced Materials Interfaces, 8(3). https://doi.org/10.1002/admi.202001730 Chang, P., Liu, S., Lan, Y., Tsai, Y., You, X., Li, C., Huang, K., Chou, A., Wu, C., Wang, J., & Wu, C. (2017). Ultrahigh responsivity and detectivity Graphene–Perovskite hybrid phototransistors by sequential vapor deposition. Scientific Reports, 7(1). https://doi.org/10.1038/srep46281 De Fazio, D., Goykhman, I., Yoon, D., Bruna, M., Eiden, A., Milana, S., Sassi, U., Barbone, M., Dumcenco, D., Marinov, K., Kis, A., & Ferrari, A. C. (2016). High responsivity, Large-Area Graphene/MOS2 flexible photodetectors. ACS Nano, 10(9), 8252–8262. https://doi.org/10.1021/acsnano.6b05109 Feng, X., He, Z., Zhu, W., Zhao, M., Liu, Z., Yang, S., Tang, S., Guo, Q., Jin, Z., Chen, D., Ding, G., & Wang, G. (2021). Perovskite quantum dots integrated with vertically aligned graphene toward ambipolar multifunctional photodetectors. Journal of Materials Chemistry. C, 9(2), 609–619. https://doi.org/10.1039/d0tc04932h Chien, Y., Shen, T. L., Wu, W., Li, C., Chin, H., Chang, C., Lin, T., Chang, S. H., Shen, J., & Chen, Y. (2022). Ultrathin, transparent, flexible, and dual-side white light-responsive two-dimensional molybdenum disulfide quantum disk light-emitting diodes. Materials Today Nano, 18, 100173. https://doi.org/10.1016/j.mtnano.2022.100173 Bera, K. P., Haider, G., Huang, Y., Roy, P. K., Inbaraj, C. R. P., Liao, Y., Lin, H., Lu, C., Shen, C., Shih, W., Shih, W., & Chen, Y. (2019). Graphene Sandwich Stable perovskite Quantum-Dot Light-Emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano, 13(11), 12540–12552. https://doi.org/10.1021/acsnano.9b03165 Massicotte, M., Schmidt, P., Vialla, F., Schädler, K. G., Reserbat‐Plantey, A., Watanabe, K., Taniguchi, T., Tielrooij, K., & Koppens, F. H. L. (2015). Picosecond photoresponse in van der Waals heterostructures. Nature Nanotechnology, 11(1), 42–46. https://doi.org/10.1038/nnano.2015.227 Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022c). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1 Indukuri, S. R. K. C., Frydendahl, C., Bar-David, J., Mazurski, N., & Levy, U. (2020). WS2 Monolayers Coupled to Hyperbolic Metamaterial Nanoantennas: Broad Implications for Light–Matter-Interaction Applications. ACS Applied Nano Materials, 3(10), 10226–10233. https://doi.org/10.1021/acsanm.0c02186 Li, J., Han, J., Li, H., Fan, X., & Huang, K. (2020). Large-area, flexible broadband photodetector based on WS2 nanosheets films. Materials Science in Semiconductor Processing, 107, 104804. https://doi.org/10.1016/j.mssp.2019.104804 Gao, W., Zhang, S., Zhang, F., Wen, P., Zhang, L., Sun, Y., Chen, H., Zheng, Z., Yang, M., Luo, D., Huo, N., & Li, J. (2020b). 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 7(7). https://doi.org/10.1002/aelm.202000964 Britnell, L., Ribeiro, R. M., Eckmann, A., Jalil, R., Belle, B. D., Mishchenko, A., Kim, Y., Gorbachev, R., Georgiou, T., Морозов, С. В., Григоренко, А. Н., Geǐm, A. K., Casiraghi, C., Neto, A. H. C., & Новоселов, К. С. (2013). Strong Light-Matter interactions in heterostructures of atomically thin films. Science, 340(6138), 1311–1314. https://doi.org/10.1126/science.1235547 Lan, C., Li, C., Wang, S., He, T., Zhou, Z., Wei, D., Guo, H., Yang, H., & Liu, Y. (2017). Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. Journal of Materials Chemistry. C, 5(6), 1494–1500. https://doi.org/10.1039/c6tc05037a Krishnamoorthy, D., & Prakasam, A. (2020). Graphene Hybridized with Tungsten disulfide (WS2) Based Heterojunctions Photoanode Materials for High Performance Dye Sensitized Solar Cell Device (DSSCs) Applications. Journal of Cluster Science, 32(3), 621–630. https://doi.org/10.1007/s10876-020-01828-1 Xiao, R., Lan, C., Li, Y., Zeng, C., He, T., Wang, S., Li, C., Yin, Y., & Liu, Y. (2019). High Performance Van der Waals Graphene–WS 2 –Si Heterostructure Photodetector. Advanced Materials Interfaces, 6(24). https://doi.org/10.1002/admi.201901304 Lü, H., Tian, W., Cao, F., Ma, Y., Gu, B., & Li, L. (2016). A Self‐Powered and stable All‐Perovskite Photodetector–Solar cell nanosystem. Advanced Functional Materials, 26(8), 1296–1302. https://doi.org/10.1002/adfm.201504477 Cai, S., Xu, X., Yang, W., Chen, J., & Fang, X. (2019). Materials and designs for wearable photodetectors. Advanced Materials, 31(18). https://doi.org/10.1002/adma.201808138 Tian, W., Wang, Y., Chen, L., & Li, L. (2017). Self-Powered Nanoscale Photodetectors. Small, 13(45). https://doi.org/10.1002/smll.201701848 Wang, X., Liu, B., Liu, R., Wang, Q., Hou, X., Chen, D., Wang, R., & Shen, G. (2014). Fiber‐Based flexible All‐Solid‐State asymmetric supercapacitors for integrated photodetecting system. Angewandte Chemie, 126(7), 1880–1884. https://doi.org/10.1002/ange.201307581 Yang, W., Hu, K., Teng, F., Weng, J., Zhang, Y., & Fang, X. (2018). High-Performance Silicon-Compatible Large-Area UV-to-Visible broadband photodetector based on integrated Lattice-Matched Type II SE/N-SI heterojunctions. Nano Letters (Print), 18(8), 4697–4703. https://doi.org/10.1021/acs.nanolett.8b00988 Li, J., Yuan, S., Tang, G., Li, G., Liŭ, D., Li, J., Hu, X., Liu, Y., Li, J., Yang, Z., Liu, S., Liu, Z., Gao, F., & Yan, F. (2017). High-Performance, Self-Powered photodetectors based on perovskite and graphene. ACS Applied Materials & Interfaces, 9(49), 42779–42787. https://doi.org/10.1021/acsami.7b14110 Li, C. Y., Wu, Z., Zhang, C., Peng, S., Han, J., He, M., Dong, X., Gou, J., Wang, J., & Jiang, Y. (2023). Self‐Powered Photodetector with High Performance Based on All‐2D NbSe2/MoSe2 van der Waals Heterostructure. Advanced Optical Materials, 11(22). https://doi.org/10.1002/adom.202300905 Tan, C., Wang, H., Zhu, X., Gao, W., Li, H., Chen, J., Li, G., Chen, L., Xu, J., Hu, X., Li, L., & Zhai, T. (2020). A Self-Powered photovoltaic photodetector based on a lateral WSE2-WSE2 homojunction. ACS Applied Materials & Interfaces, 12(40), 44934–44942. https://doi.org/10.1021/acsami.0c11456 Gao, W., Zhang, S., Zhang, F., Wen, P., Zhang, L., Sun, Y., Chen, H., Zheng, Z., Yang, M., Luo, D., Huo, N., & Li, J. (2020). 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 7(7). https://doi.org/10.1002/aelm.202000964 Sundararaju, U., Haniff, M. a. S. M., Ker, P. J., & Menon, P. S. (2021). MOS2/H-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review. Materials, 14(7), 1672. https://doi.org/10.3390/ma14071672 Lin, J., Hsu, F., Chang, C., & Chen, Y. (2021b). Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry. C (Print), 9(15), 5190–5197. https://doi.org/10.1039/d1tc00433f Chang, C., Huang, H., Tsai, H., Lin, S., Liu, P., Chen, W., Hsu, F., Nie, W., Chen, Y., & Wang, L. (2021b). Facile fabrication of Self‐Assembly functionalized polythiophene hole transporting layer for high performance perovskite solar cells. Advanced Science (Weinheim), 8(5). https://doi.org/10.1002/advs.202002718 Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & Khan, A. U. (2021b). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163 Gosling, J., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., Wildman, R., Tuck, C., Turyanska, L., & Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00518-2 Zhu, S., Yuan, S., & Janssen, G. C. a. M. (2014). Optical transmittance of multilayer graphene. Europhysics Letters, 108(1), 17007. https://doi.org/10.1209/0295-5075/108/17007 Xiong, X., Jiang, C., & Quan, X. (2019). Broadband transmission properties of graphene-dielectric interfaces. Results in Physics, 14, 102521. https://doi.org/10.1016/j.rinp.2019.102521 Peres, N. M. R. (2009). Graphene, new physics in two dimensions. Europhysics News, 40(3), 17–20. https://doi.org/10.1051/epn/2009501 Kholmanov, I., Magnuson, C. W., Aliev, A. E., Li, H., Zhang, B., Suk, J. W., Zhang, L. L., Peng, E. D., Mousavi, S. H., Khanikaev, A. B., Piner, R. D., Shvets, G., & Ruoff, R. S. (2012). Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Letters, 12(11), 5679–5683. https://doi.org/10.1021/nl302870x Lee, J., Yoon, D., & Cheong, H. (2012). Estimation of Young’s modulus of graphene by Raman Spectroscopy. Nano Letters, 12(9), 4444–4448. https://doi.org/10.1021/nl301073q Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of Single-Layer graphene. Nano Letters, 8(3), 902–907. https://doi.org/10.1021/nl0731872 Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1 Reale, F., Palczynski, P., Amit, I., Jones, G. J. F., Mehew, J. D., Bacon, A., Ni, N., Sherrell, P. C., Agnoli, S., Craciun, M. F., Russo, S., & Mattevi, C. (2017). High-Mobility and High-Optical Quality atomically thin WS 2. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14928-2 Yang, Y., Ding, S., Plovie, B., Li, W., & Shang, C. (2023). Soft and stretchable electronics design. In Elsevier eBooks (pp. 258–286). https://doi.org/10.1016/b978-0-12-822548-6.00087-x Al-Janabi, S., Al-Janabi, I., & Al-Janabi, N. (2023). Analysis the structural, electronic and effect of light on PIN photodiode achievement through SILVACO software: a case study. In Elsevier eBooks (pp. 165–178). https://doi.org/10.1016/b978-0-323-98352-5.00003-3 Haque, F., Lim, S., & Mativenga, M. (2020). Ambient-Air-Processed Ambipolar Perovskite Phototransistor with High Photodetectivity. IEEE Transactions on Electron Devices, 67(8), 3215-3220. Article 9122458. https://doi.org/10.1109/TED.2020.3000980 Hughes, B. R., & Dahman, Y. (2016). Control, design, and understanding of molecular self-assembly. In Elsevier eBooks (pp. 431–458). https://doi.org/10.1016/b978-0-323-41533-0.00014-3 Liu, Y., Ji, D., & Hu, W. (2024). Recent progress of interface self-assembled monolayers engineering organic optoelectronic devices. DeCarbon, 100035. https://doi.org/10.1016/j.decarb.2024.100035 Liang, Y., Kumaran, S., Zharnikov, M., & Tai, Y. (2021). Reduction of leakage current in amorphous Oxide-Semiconductor Top-gated thin film transistors by interface engineering with dipolar Self-Assembled monolayers. Applied Surface Science, 569, 151029. https://doi.org/10.1016/j.apsusc.2021.151029 Lin, J., Hsu, F., Chang, C., & Chen, Y. (2021). Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry C, 9(15), 5190–5197. https://doi.org/10.1039/d1tc00433f Chang, C., Huang, H., Tsai, H., Lin, S., Liu, P., Chen, W., Hsu, F., Nie, W., Chen, Y., & Wang, L. (2021). Facile fabrication of Self‐Assembly functionalized polythiophene hole transporting layer for high performance perovskite solar cells. Advanced Science, 8(5). https://doi.org/10.1002/advs.202002718 Jasinski, J. M., Meyerson, B. S., & Scott, B. A. (1987). Mechanistic studies of chemical vapor deposition. Annual Review of Physical Chemistry, 38(1), 109-140. Park, J. H., & Sudarshan, T. S. (Eds.). (2001). Chemical vapor deposition (Vol. 2). ASM international. Coppens, K., & Ferraris, E. (2019). Chemical Vapor deposition (CVD). In Springer eBooks (pp. 239–243). https://doi.org/10.1007/978-3-662-53120-4_16770 Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022b). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1 Malard, L., Pimenta, M., Dresselhaus, G., & Dresselhaus. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. https://doi.org/10.1016/j.physrep.2009.02.003 Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235–246. https://doi.org/10.1038/nnano.2013.46 Indukuri, S. R. K. C., Frydendahl, C., Bar-David, J., Mazurski, N., & Levy, U. (2020). WS2 Monolayers Coupled to Hyperbolic Metamaterial Nanoantennas: Broad Implications for Light–Matter-Interaction Applications. ACS Applied Nano Materials, 3(10), 10226–10233. https://doi.org/10.1021/acsanm.0c02186 Gao, W., Zhang, S., Zhang, F., Wen, P., Zhang, L., Sun, Y., Chen, H., Zheng, Z., Yang, M., Luo, D., Huo, N., & Li, J. (2020b). 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 7(7). https://doi.org/10.1002/aelm.202000964 Cao, Y., Wang, Z., Bian, Q., Cheng, Z., Shao, Z., Zhang, Z., Sun, H., Zhang, X., Li, S., Gedeon, H., Liu, L., Wang, X., Yuan, H., & Pan, M. (2019). Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Applied Physics Letters, 114(13). https://doi.org/10.1063/1.5083104 Zhang, X., Qiao, X., Shi, W., Wu, J., Jiang, D., & Tan, P. (2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 44(9), 2757–2785. https://doi.org/10.1039/c4cs00282b Zhou, K., Withers, F., Cao, Y., Hu, S., Yu, G., & Casiraghi, C. (2014). Raman Modes of MoS2 Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano, 8(10), 9914–9924. https://doi.org/10.1021/nn5042703 Bhanu, U., Islam, M. R., Tetard, L., & Khondaker, S. I. (2014). Photoluminescence quenching in gold - MoS2 hybrid nanoflakes. Scientific Reports, 4(1). https://doi.org/10.1038/srep05575 Paradisanos, I., McCreary, K. M., Adinehloo, D., Mouchliadis, L., Robinson, J. T., Chuang, H., Hanbicki, A. T., Perebeinos, V., Jonker, B. T., Stratakis, E., & Kioseoglou, G. (2020). Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition. Applied Physics Letters, 116(20). https://doi.org/10.1063/5.0002396 Sitek, J., Pasternak, I., Czerniak-Łosiewicz, K., Świniarski, M., Michałowski, P. P., McAleese, C., Wang, X., Conran, B. R., Wilczyński, K., Macha, M., Radenović, A., Zdrojek, M., & Strupiński, W. (2022). Three-step, transfer-free growth of MoS2/WS2/graphene vertical van der Waals heterostructure. 2D Materials, 9(2), 025030. https://doi.org/10.1088/2053-1583/ac5f6d Kim, S., Kwak, J., Kim, J. H., Lee, J., Jo, Y., Kim, S. Y., Cheong, H., Lee, Z., & Kwon, S. (2016). Substantial improvements of long-term stability in encapsulation-free WS 2 using highly interacting graphene substrate. 2D Materials, 4(1), 011007. https://doi.org/10.1088/2053-1583/4/1/011007 Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022c). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1 Chien, Y., Lu, G., Li, S., Chen, Y., Tsao, Y., Chao, Y., Shen, J., & Chen, Y. (2023). Wrinkled graphene structure and localized surface plasmon resonance induced stretchable white random lasers based on GLN‐functionalized 2D WS2 quantum dots. Advanced Optical Materials. https://doi.org/10.1002/adom.202302055 Lin, J., Hsu, F., Chang, C., & Chen, Y. (2021b). Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry. C (Print), 9(15), 5190–5197. https://doi.org/10.1039/d1tc00433f Kim, B. H., Yoon, H., Kwon, S. H., Kim, D. W., & Yoon, Y. J. (2021). Direct WS2 photodetector fabrication on a flexible substrate. Vacuum, 184, 109950. https://doi.org/10.1016/j.vacuum.2020.109950 Pataniya, P. M., & Sumesh, C. K. (2020). WS2 Nanosheet/Graphene Heterostructures for Paper-Based flexible photodetectors. ACS Applied Nano Materials, 3(7), 6935–6944. https://doi.org/10.1021/acsanm.0c01276 Jang, C. W., & Choi, S. (2022). Self-powered semitransparent/flexible doped-graphene/WS2 vertical-heterostructure photodetectors. Journal of Alloys and Compounds, 901, 163685. https://doi.org/10.1016/j.jallcom.2022.163685 Quereda, J., Kuriakose, S., Munuera, C., Mompean, F. J., Al-Enizi, A. M., Nafady, A., Diez, E., Frisenda, R., & Castellanos-Gomez, A. (2022). Scalable and low-cost fabrication of flexible WS2 photodetectors on polycarbonate. Npj Flexible Electronics, 6(1). https://doi.org/10.1038/s41528-022-00157-9 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94756 | - |
| dc.description.abstract | 在光偵測器中,可彎曲性、透明和無需外加電壓即可操作的能力是三個理想的特性。在此研究中,我們提出並展示了一種由全二維材料製成的超薄、可彎曲性、自供電和透明的光偵測器。該元件是由一層石墨烯作為透明電極,單層的二硫化鎢(WS2)作為吸光層,還包含了自組裝的P3HT-COOH極性單分子層(SAM),用以提供元件中的內建電場,以及鍍有氧化銦錫、可彎曲的聚對苯二甲酸乙二酯(PET)基板組成。憑藉所選材料的透明特性和自組裝單層的極性特性,可以實現一種透明的自供電光偵測器。在可見光範圍內,此光偵測器的平均透射率約為67%。在無外加偏壓下,該偵測器量測出 1.58 mA∙W-1的光響應度以及 3.29 × 109 Jones的探測率。除此之外,這個可彎曲的光電探測器在經過150次的彎曲循環後在光響應度上無顯著的變化,並且在彎曲時仍可以運作。通過結合上述特性,這種基於全二維材料的光偵測器為開發先進的光電子技術提供了一個具有吸引力的選擇。 | zh_TW |
| dc.description.abstract | Flexibility, transparency and the capability to operate without external power supply are three desirable features for the practical application of advanced photodetectors. In this work, an ultrathin, flexible, self-powered, and transparent photodetector made with all two-dimensional (2D) materials is proposed and demonstrated. This device consists of a layer of graphene serving as a transparent electrode, a single-layer tungsten disulfide (WS2) acting as a light-absorbing layer, and a self-assembled P3HT-COOH polar monolayer (SAM) to provide an additional built-in electric field, and an indium tin oxide-coated polyethylene terephthalate (PET) flexible substrate. The average transmittance in the visible light regime is around 67%. Under zero bias voltage, the photodetector exhibits a responsivity of 1.58 mA∙W-1 and a detectivity of 3.29 × 109 Jones. Additionally, this flexible photodetector demonstrates good retention, retaining its original responsivity magnitude after 150 bending cycles without too much significant change. Based on the aforementioned properties, this all 2D material-based ultrathin, transparent, flexible, and self-powered photodetector offers an attractive option for developing advanced optoelectronic technologies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T18:00:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T18:00:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Contents III List of Figures V Chapter 1 Introduction 1 References 6 Chapter 2 Theoretical Background 14 2.1 Graphene 14 2.2 Tungsten Disulfide (WS2) 15 2.3 Photodetector 17 2.4 Self-Assembled Monolayer (SAM) 19 References 21 Chapter 3 Experimental Details 25 3.1 Chemical Vapor Deposition System 25 3.2 Synthesis of Monolayer Graphene and WS2 26 3.3 Photoresponsive Properties Measurements 28 3.4 Raman Spectrometer 28 3.5 Photoluminescence Spectrometer 30 3.6 Device Fabrication 31 3.6.1 The cleaning procedures for the substrates 31 3.6.2 The self-assembled monolayer on ITO 32 3.6.3 Two-dimensional materials-based photodetector 32 References 36 Chapter 4 Results and Discussion 37 4.1 Characteristics of the Materials 37 4.2 Structure of the Devices 39 4.3 Photodetection Performance 44 4.4 Electrical Characteristics 47 4.5 Flexibility Tests and Optical Communication 49 References 53 Chapter 5 Conclusion 57 | - |
| dc.language.iso | en | - |
| dc.subject | 二硫化鎢 | zh_TW |
| dc.subject | 光偵測器 | zh_TW |
| dc.subject | 自供電 | zh_TW |
| dc.subject | 透明 | zh_TW |
| dc.subject | 極性自組裝單層 | zh_TW |
| dc.subject | 可彎曲 | zh_TW |
| dc.subject | photodetector | en |
| dc.subject | self-powered | en |
| dc.subject | transparent | en |
| dc.subject | polar self-assembled monolayer | en |
| dc.subject | flexible | en |
| dc.subject | WS2 | en |
| dc.title | 透明、可撓式、自供電的二維材料及自組裝極性單層光偵測器 | zh_TW |
| dc.title | Ultrathin, Transparent, Flexible, and Self-Powered Photodetector Based on Two-Dimensional Materials and Self-Assembled Monolayer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許芳琪;沈志霖 | zh_TW |
| dc.contributor.oralexamcommittee | Fang-Chi Hsu;Ji-Lin Shen | en |
| dc.subject.keyword | 二硫化鎢,可彎曲,極性自組裝單層,透明,自供電,光偵測器, | zh_TW |
| dc.subject.keyword | WS2,flexible,polar self-assembled monolayer,transparent,self-powered,photodetector, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202401329 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 2.41 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
