Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94756
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳永芳zh_TW
dc.contributor.advisorYang-Fang Chenen
dc.contributor.author賴孟晴zh_TW
dc.contributor.authorMeng-Ching Laien
dc.date.accessioned2024-08-16T18:00:48Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citationGu, L., Poddar, S., Lin, Y., Long, Z., Zhang, D., Zhang, Q., Shu, L., Qiu, X., Kam, M., Javey, A., & Fan, Z. (2020). A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 581(7808), 278–282. https://doi.org/10.1038/s41586-020-2285-x
Konstantatos, G. (2018). Current status and technological prospect of photodetectors based on two-dimensional materials. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07643-7
Long, M., Wang, P., Fang, H., & Hu, W. (2018). Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 29(19). https://doi.org/10.1002/adfm.201803807
Yang, Z., Dou, J., & Wang, M. (2018). Graphene, transition metal dichalcogenides, and perovskite photodetectors. In InTech eBooks. https://doi.org/10.5772/intechopen.74021
Zhang, Y., Liu, T., Meng, B., Li, X., Liang, G., Hu, X., & Wang, Q. J. (2013). Broadband high photoresponse from pure monolayer graphene photodetector. Nature Communications, 4(1). https://doi.org/10.1038/ncomms2830
Lei, T., Tu, H., Lv, W., Ma, H., Wang, J., Hu, R., Wang, Q., Zhang, L., Fang, B., Liu, Z., Shi, W., & Zeng, Z. (2021). Ambipolar photoresponsivity in an ultrasensitive photodetector based on a WSE2/INSE heterostructure by a photogating effect. ACS Applied Materials & Interfaces, 13(42), 50213–50219. https://doi.org/10.1021/acsami.1c12330
Hao, J., Peng, R., Ren, M., He, J., Zhou, Y., Yang, Z., Li, C. Y., Liu, Y., Guo, X., Zhu, Y., Wang, D., Su, J., Sun, C., Bao, W., & Wang, M. (2020). Flexible ultrathin Single-Crystalline perovskite photodetector. Nano Letters, 20(10), 7144–7151. https://doi.org/10.1021/acs.nanolett.0c02468
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenović, A., & Kis, A. (2013). Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 8(7), 497–501. https://doi.org/10.1038/nnano.2013.100
Deng, W., Chen, Y., You, C., Liu, B., Yang, Y., Shen, G., Li, S., Sun, L., Zhang, Y., & Yan, H. (2018). High Detectivity from a Lateral Graphene–MoS2 Schottky Photodetector Grown by Chemical Vapor Deposition. Advanced Electronic Materials, 4(9). https://doi.org/10.1002/aelm.201800069
Gao, S., Wang, Z., Wang, H., Meng, F., Wang, P., Chen, S., Zeng, Y., Zhao, J., Hu, H., Cao, R., Xu, Z., Guo, Z., & Zhang, H. (2020). Graphene/MoS 2 /Graphene Vertical Heterostructure‐Based Broadband Photodetector with High Performance. Advanced Materials Interfaces, 8(3). https://doi.org/10.1002/admi.202001730
Chang, P., Liu, S., Lan, Y., Tsai, Y., You, X., Li, C., Huang, K., Chou, A., Wu, C., Wang, J., & Wu, C. (2017). Ultrahigh responsivity and detectivity Graphene–Perovskite hybrid phototransistors by sequential vapor deposition. Scientific Reports, 7(1). https://doi.org/10.1038/srep46281
De Fazio, D., Goykhman, I., Yoon, D., Bruna, M., Eiden, A., Milana, S., Sassi, U., Barbone, M., Dumcenco, D., Marinov, K., Kis, A., & Ferrari, A. C. (2016). High responsivity, Large-Area Graphene/MOS2 flexible photodetectors. ACS Nano, 10(9), 8252–8262. https://doi.org/10.1021/acsnano.6b05109
Feng, X., He, Z., Zhu, W., Zhao, M., Liu, Z., Yang, S., Tang, S., Guo, Q., Jin, Z., Chen, D., Ding, G., & Wang, G. (2021). Perovskite quantum dots integrated with vertically aligned graphene toward ambipolar multifunctional photodetectors. Journal of Materials Chemistry. C, 9(2), 609–619. https://doi.org/10.1039/d0tc04932h
Chien, Y., Shen, T. L., Wu, W., Li, C., Chin, H., Chang, C., Lin, T., Chang, S. H., Shen, J., & Chen, Y. (2022). Ultrathin, transparent, flexible, and dual-side white light-responsive two-dimensional molybdenum disulfide quantum disk light-emitting diodes. Materials Today Nano, 18, 100173. https://doi.org/10.1016/j.mtnano.2022.100173
Bera, K. P., Haider, G., Huang, Y., Roy, P. K., Inbaraj, C. R. P., Liao, Y., Lin, H., Lu, C., Shen, C., Shih, W., Shih, W., & Chen, Y. (2019). Graphene Sandwich Stable perovskite Quantum-Dot Light-Emissive ultrasensitive and ultrafast broadband vertical phototransistors. ACS Nano, 13(11), 12540–12552. https://doi.org/10.1021/acsnano.9b03165
Massicotte, M., Schmidt, P., Vialla, F., Schädler, K. G., Reserbat‐Plantey, A., Watanabe, K., Taniguchi, T., Tielrooij, K., & Koppens, F. H. L. (2015). Picosecond photoresponse in van der Waals heterostructures. Nature Nanotechnology, 11(1), 42–46. https://doi.org/10.1038/nnano.2015.227
Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022c). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1
Indukuri, S. R. K. C., Frydendahl, C., Bar-David, J., Mazurski, N., & Levy, U. (2020). WS2 Monolayers Coupled to Hyperbolic Metamaterial Nanoantennas: Broad Implications for Light–Matter-Interaction Applications. ACS Applied Nano Materials, 3(10), 10226–10233. https://doi.org/10.1021/acsanm.0c02186
Li, J., Han, J., Li, H., Fan, X., & Huang, K. (2020). Large-area, flexible broadband photodetector based on WS2 nanosheets films. Materials Science in Semiconductor Processing, 107, 104804. https://doi.org/10.1016/j.mssp.2019.104804
Gao, W., Zhang, S., Zhang, F., Wen, P., Zhang, L., Sun, Y., Chen, H., Zheng, Z., Yang, M., Luo, D., Huo, N., & Li, J. (2020b). 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 7(7). https://doi.org/10.1002/aelm.202000964
Britnell, L., Ribeiro, R. M., Eckmann, A., Jalil, R., Belle, B. D., Mishchenko, A., Kim, Y., Gorbachev, R., Georgiou, T., Морозов, С. В., Григоренко, А. Н., Geǐm, A. K., Casiraghi, C., Neto, A. H. C., & Новоселов, К. С. (2013). Strong Light-Matter interactions in heterostructures of atomically thin films. Science, 340(6138), 1311–1314. https://doi.org/10.1126/science.1235547
Lan, C., Li, C., Wang, S., He, T., Zhou, Z., Wei, D., Guo, H., Yang, H., & Liu, Y. (2017). Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. Journal of Materials Chemistry. C, 5(6), 1494–1500. https://doi.org/10.1039/c6tc05037a
Krishnamoorthy, D., & Prakasam, A. (2020). Graphene Hybridized with Tungsten disulfide (WS2) Based Heterojunctions Photoanode Materials for High Performance Dye Sensitized Solar Cell Device (DSSCs) Applications. Journal of Cluster Science, 32(3), 621–630. https://doi.org/10.1007/s10876-020-01828-1
Xiao, R., Lan, C., Li, Y., Zeng, C., He, T., Wang, S., Li, C., Yin, Y., & Liu, Y. (2019). High Performance Van der Waals Graphene–WS 2 –Si Heterostructure Photodetector. Advanced Materials Interfaces, 6(24). https://doi.org/10.1002/admi.201901304
Lü, H., Tian, W., Cao, F., Ma, Y., Gu, B., & Li, L. (2016). A Self‐Powered and stable All‐Perovskite Photodetector–Solar cell nanosystem. Advanced Functional Materials, 26(8), 1296–1302. https://doi.org/10.1002/adfm.201504477
Cai, S., Xu, X., Yang, W., Chen, J., & Fang, X. (2019). Materials and designs for wearable photodetectors. Advanced Materials, 31(18). https://doi.org/10.1002/adma.201808138
Tian, W., Wang, Y., Chen, L., & Li, L. (2017). Self-Powered Nanoscale Photodetectors. Small, 13(45). https://doi.org/10.1002/smll.201701848
Wang, X., Liu, B., Liu, R., Wang, Q., Hou, X., Chen, D., Wang, R., & Shen, G. (2014). Fiber‐Based flexible All‐Solid‐State asymmetric supercapacitors for integrated photodetecting system. Angewandte Chemie, 126(7), 1880–1884. https://doi.org/10.1002/ange.201307581
Yang, W., Hu, K., Teng, F., Weng, J., Zhang, Y., & Fang, X. (2018). High-Performance Silicon-Compatible Large-Area UV-to-Visible broadband photodetector based on integrated Lattice-Matched Type II SE/N-SI heterojunctions. Nano Letters (Print), 18(8), 4697–4703. https://doi.org/10.1021/acs.nanolett.8b00988
Li, J., Yuan, S., Tang, G., Li, G., Liŭ, D., Li, J., Hu, X., Liu, Y., Li, J., Yang, Z., Liu, S., Liu, Z., Gao, F., & Yan, F. (2017). High-Performance, Self-Powered photodetectors based on perovskite and graphene. ACS Applied Materials & Interfaces, 9(49), 42779–42787. https://doi.org/10.1021/acsami.7b14110
Li, C. Y., Wu, Z., Zhang, C., Peng, S., Han, J., He, M., Dong, X., Gou, J., Wang, J., & Jiang, Y. (2023). Self‐Powered Photodetector with High Performance Based on All‐2D NbSe2/MoSe2 van der Waals Heterostructure. Advanced Optical Materials, 11(22). https://doi.org/10.1002/adom.202300905
Tan, C., Wang, H., Zhu, X., Gao, W., Li, H., Chen, J., Li, G., Chen, L., Xu, J., Hu, X., Li, L., & Zhai, T. (2020). A Self-Powered photovoltaic photodetector based on a lateral WSE2-WSE2 homojunction. ACS Applied Materials & Interfaces, 12(40), 44934–44942. https://doi.org/10.1021/acsami.0c11456
Gao, W., Zhang, S., Zhang, F., Wen, P., Zhang, L., Sun, Y., Chen, H., Zheng, Z., Yang, M., Luo, D., Huo, N., & Li, J. (2020). 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 7(7). https://doi.org/10.1002/aelm.202000964
Sundararaju, U., Haniff, M. a. S. M., Ker, P. J., & Menon, P. S. (2021). MOS2/H-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review. Materials, 14(7), 1672. https://doi.org/10.3390/ma14071672
Lin, J., Hsu, F., Chang, C., & Chen, Y. (2021b). Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry. C (Print), 9(15), 5190–5197. https://doi.org/10.1039/d1tc00433f
Chang, C., Huang, H., Tsai, H., Lin, S., Liu, P., Chen, W., Hsu, F., Nie, W., Chen, Y., & Wang, L. (2021b). Facile fabrication of Self‐Assembly functionalized polythiophene hole transporting layer for high performance perovskite solar cells. Advanced Science (Weinheim), 8(5). https://doi.org/10.1002/advs.202002718
Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & Khan, A. U. (2021b). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163
Gosling, J., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., Wildman, R., Tuck, C., Turyanska, L., & Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00518-2
Zhu, S., Yuan, S., & Janssen, G. C. a. M. (2014). Optical transmittance of multilayer graphene. Europhysics Letters, 108(1), 17007. https://doi.org/10.1209/0295-5075/108/17007
Xiong, X., Jiang, C., & Quan, X. (2019). Broadband transmission properties of graphene-dielectric interfaces. Results in Physics, 14, 102521. https://doi.org/10.1016/j.rinp.2019.102521
Peres, N. M. R. (2009). Graphene, new physics in two dimensions. Europhysics News, 40(3), 17–20. https://doi.org/10.1051/epn/2009501
Kholmanov, I., Magnuson, C. W., Aliev, A. E., Li, H., Zhang, B., Suk, J. W., Zhang, L. L., Peng, E. D., Mousavi, S. H., Khanikaev, A. B., Piner, R. D., Shvets, G., & Ruoff, R. S. (2012). Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Letters, 12(11), 5679–5683. https://doi.org/10.1021/nl302870x
Lee, J., Yoon, D., & Cheong, H. (2012). Estimation of Young’s modulus of graphene by Raman Spectroscopy. Nano Letters, 12(9), 4444–4448. https://doi.org/10.1021/nl301073q
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of Single-Layer graphene. Nano Letters, 8(3), 902–907. https://doi.org/10.1021/nl0731872
Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1
Reale, F., Palczynski, P., Amit, I., Jones, G. J. F., Mehew, J. D., Bacon, A., Ni, N., Sherrell, P. C., Agnoli, S., Craciun, M. F., Russo, S., & Mattevi, C. (2017). High-Mobility and High-Optical Quality atomically thin WS 2. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-14928-2
Yang, Y., Ding, S., Plovie, B., Li, W., & Shang, C. (2023). Soft and stretchable electronics design. In Elsevier eBooks (pp. 258–286). https://doi.org/10.1016/b978-0-12-822548-6.00087-x
Al-Janabi, S., Al-Janabi, I., & Al-Janabi, N. (2023). Analysis the structural, electronic and effect of light on PIN photodiode achievement through SILVACO software: a case study. In Elsevier eBooks (pp. 165–178). https://doi.org/10.1016/b978-0-323-98352-5.00003-3
Haque, F., Lim, S., & Mativenga, M. (2020). Ambient-Air-Processed Ambipolar Perovskite Phototransistor with High Photodetectivity. IEEE Transactions on Electron Devices, 67(8), 3215-3220. Article 9122458. https://doi.org/10.1109/TED.2020.3000980
Hughes, B. R., & Dahman, Y. (2016). Control, design, and understanding of molecular self-assembly. In Elsevier eBooks (pp. 431–458). https://doi.org/10.1016/b978-0-323-41533-0.00014-3
Liu, Y., Ji, D., & Hu, W. (2024). Recent progress of interface self-assembled monolayers engineering organic optoelectronic devices. DeCarbon, 100035. https://doi.org/10.1016/j.decarb.2024.100035
Liang, Y., Kumaran, S., Zharnikov, M., & Tai, Y. (2021). Reduction of leakage current in amorphous Oxide-Semiconductor Top-gated thin film transistors by interface engineering with dipolar Self-Assembled monolayers. Applied Surface Science, 569, 151029. https://doi.org/10.1016/j.apsusc.2021.151029
Lin, J., Hsu, F., Chang, C., & Chen, Y. (2021). Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry C, 9(15), 5190–5197. https://doi.org/10.1039/d1tc00433f
Chang, C., Huang, H., Tsai, H., Lin, S., Liu, P., Chen, W., Hsu, F., Nie, W., Chen, Y., & Wang, L. (2021). Facile fabrication of Self‐Assembly functionalized polythiophene hole transporting layer for high performance perovskite solar cells. Advanced Science, 8(5). https://doi.org/10.1002/advs.202002718
Jasinski, J. M., Meyerson, B. S., & Scott, B. A. (1987). Mechanistic studies of chemical vapor deposition. Annual Review of Physical Chemistry, 38(1), 109-140.
Park, J. H., & Sudarshan, T. S. (Eds.). (2001). Chemical vapor deposition (Vol. 2). ASM international.
Coppens, K., & Ferraris, E. (2019). Chemical Vapor deposition (CVD). In Springer eBooks (pp. 239–243). https://doi.org/10.1007/978-3-662-53120-4_16770
Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022b). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1
Malard, L., Pimenta, M., Dresselhaus, G., & Dresselhaus. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5–6), 51–87. https://doi.org/10.1016/j.physrep.2009.02.003
Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8(4), 235–246. https://doi.org/10.1038/nnano.2013.46
Indukuri, S. R. K. C., Frydendahl, C., Bar-David, J., Mazurski, N., & Levy, U. (2020). WS2 Monolayers Coupled to Hyperbolic Metamaterial Nanoantennas: Broad Implications for Light–Matter-Interaction Applications. ACS Applied Nano Materials, 3(10), 10226–10233. https://doi.org/10.1021/acsanm.0c02186
Gao, W., Zhang, S., Zhang, F., Wen, P., Zhang, L., Sun, Y., Chen, H., Zheng, Z., Yang, M., Luo, D., Huo, N., & Li, J. (2020b). 2D WS2 Based Asymmetric Schottky Photodetector with High Performance. Advanced Electronic Materials, 7(7). https://doi.org/10.1002/aelm.202000964
Cao, Y., Wang, Z., Bian, Q., Cheng, Z., Shao, Z., Zhang, Z., Sun, H., Zhang, X., Li, S., Gedeon, H., Liu, L., Wang, X., Yuan, H., & Pan, M. (2019). Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence. Applied Physics Letters, 114(13). https://doi.org/10.1063/1.5083104
Zhang, X., Qiao, X., Shi, W., Wu, J., Jiang, D., & Tan, P. (2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 44(9), 2757–2785. https://doi.org/10.1039/c4cs00282b
Zhou, K., Withers, F., Cao, Y., Hu, S., Yu, G., & Casiraghi, C. (2014). Raman Modes of MoS2 Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano, 8(10), 9914–9924. https://doi.org/10.1021/nn5042703
Bhanu, U., Islam, M. R., Tetard, L., & Khondaker, S. I. (2014). Photoluminescence quenching in gold - MoS2 hybrid nanoflakes. Scientific Reports, 4(1). https://doi.org/10.1038/srep05575
Paradisanos, I., McCreary, K. M., Adinehloo, D., Mouchliadis, L., Robinson, J. T., Chuang, H., Hanbicki, A. T., Perebeinos, V., Jonker, B. T., Stratakis, E., & Kioseoglou, G. (2020). Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition. Applied Physics Letters, 116(20). https://doi.org/10.1063/5.0002396
Sitek, J., Pasternak, I., Czerniak-Łosiewicz, K., Świniarski, M., Michałowski, P. P., McAleese, C., Wang, X., Conran, B. R., Wilczyński, K., Macha, M., Radenović, A., Zdrojek, M., & Strupiński, W. (2022). Three-step, transfer-free growth of MoS2/WS2/graphene vertical van der Waals heterostructure. 2D Materials, 9(2), 025030. https://doi.org/10.1088/2053-1583/ac5f6d
Kim, S., Kwak, J., Kim, J. H., Lee, J., Jo, Y., Kim, S. Y., Cheong, H., Lee, Z., & Kwon, S. (2016). Substantial improvements of long-term stability in encapsulation-free WS 2 using highly interacting graphene substrate. 2D Materials, 4(1), 011007. https://doi.org/10.1088/2053-1583/4/1/011007
Chen, Y., Chiu, S., Tsai, D., Liu, C., Ting, H., Yao, Y., Son, H., Haider, G., Kalbáč, M., Ting, C., Chen, Y., Hofmann, M., & Hsieh, Y. (2022c). Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic performance at multi-wafer scale. Npj 2D Materials and Applications, 6(1). https://doi.org/10.1038/s41699-022-00329-1
Chien, Y., Lu, G., Li, S., Chen, Y., Tsao, Y., Chao, Y., Shen, J., & Chen, Y. (2023). Wrinkled graphene structure and localized surface plasmon resonance induced stretchable white random lasers based on GLN‐functionalized 2D WS2 quantum dots. Advanced Optical Materials. https://doi.org/10.1002/adom.202302055
Lin, J., Hsu, F., Chang, C., & Chen, Y. (2021b). Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. Journal of Materials Chemistry. C (Print), 9(15), 5190–5197. https://doi.org/10.1039/d1tc00433f
Kim, B. H., Yoon, H., Kwon, S. H., Kim, D. W., & Yoon, Y. J. (2021). Direct WS2 photodetector fabrication on a flexible substrate. Vacuum, 184, 109950. https://doi.org/10.1016/j.vacuum.2020.109950
Pataniya, P. M., & Sumesh, C. K. (2020). WS2 Nanosheet/Graphene Heterostructures for Paper-Based flexible photodetectors. ACS Applied Nano Materials, 3(7), 6935–6944. https://doi.org/10.1021/acsanm.0c01276
Jang, C. W., & Choi, S. (2022). Self-powered semitransparent/flexible doped-graphene/WS2 vertical-heterostructure photodetectors. Journal of Alloys and Compounds, 901, 163685. https://doi.org/10.1016/j.jallcom.2022.163685
Quereda, J., Kuriakose, S., Munuera, C., Mompean, F. J., Al-Enizi, A. M., Nafady, A., Diez, E., Frisenda, R., & Castellanos-Gomez, A. (2022). Scalable and low-cost fabrication of flexible WS2 photodetectors on polycarbonate. Npj Flexible Electronics, 6(1). https://doi.org/10.1038/s41528-022-00157-9
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94756-
dc.description.abstract在光偵測器中,可彎曲性、透明和無需外加電壓即可操作的能力是三個理想的特性。在此研究中,我們提出並展示了一種由全二維材料製成的超薄、可彎曲性、自供電和透明的光偵測器。該元件是由一層石墨烯作為透明電極,單層的二硫化鎢(WS2)作為吸光層,還包含了自組裝的P3HT-COOH極性單分子層(SAM),用以提供元件中的內建電場,以及鍍有氧化銦錫、可彎曲的聚對苯二甲酸乙二酯(PET)基板組成。憑藉所選材料的透明特性和自組裝單層的極性特性,可以實現一種透明的自供電光偵測器。在可見光範圍內,此光偵測器的平均透射率約為67%。在無外加偏壓下,該偵測器量測出 1.58 mA∙W-1的光響應度以及 3.29 × 109 Jones的探測率。除此之外,這個可彎曲的光電探測器在經過150次的彎曲循環後在光響應度上無顯著的變化,並且在彎曲時仍可以運作。通過結合上述特性,這種基於全二維材料的光偵測器為開發先進的光電子技術提供了一個具有吸引力的選擇。zh_TW
dc.description.abstractFlexibility, transparency and the capability to operate without external power supply are three desirable features for the practical application of advanced photodetectors. In this work, an ultrathin, flexible, self-powered, and transparent photodetector made with all two-dimensional (2D) materials is proposed and demonstrated. This device consists of a layer of graphene serving as a transparent electrode, a single-layer tungsten disulfide (WS2) acting as a light-absorbing layer, and a self-assembled P3HT-COOH polar monolayer (SAM) to provide an additional built-in electric field, and an indium tin oxide-coated polyethylene terephthalate (PET) flexible substrate. The average transmittance in the visible light regime is around 67%. Under zero bias voltage, the photodetector exhibits a responsivity of 1.58 mA∙W-1 and a detectivity of 3.29 × 109 Jones. Additionally, this flexible photodetector demonstrates good retention, retaining its original responsivity magnitude after 150 bending cycles without too much significant change. Based on the aforementioned properties, this all 2D material-based ultrathin, transparent, flexible, and self-powered photodetector offers an attractive option for developing advanced optoelectronic technologies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T18:00:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T18:00:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 I
Abstract II
Contents III
List of Figures V
Chapter 1 Introduction 1
References 6
Chapter 2 Theoretical Background 14
2.1 Graphene 14
2.2 Tungsten Disulfide (WS2) 15
2.3 Photodetector 17
2.4 Self-Assembled Monolayer (SAM) 19
References 21
Chapter 3 Experimental Details 25
3.1 Chemical Vapor Deposition System 25
3.2 Synthesis of Monolayer Graphene and WS2 26
3.3 Photoresponsive Properties Measurements 28
3.4 Raman Spectrometer 28
3.5 Photoluminescence Spectrometer 30
3.6 Device Fabrication 31
3.6.1 The cleaning procedures for the substrates 31
3.6.2 The self-assembled monolayer on ITO 32
3.6.3 Two-dimensional materials-based photodetector 32
References 36
Chapter 4 Results and Discussion 37
4.1 Characteristics of the Materials 37
4.2 Structure of the Devices 39
4.3 Photodetection Performance 44
4.4 Electrical Characteristics 47
4.5 Flexibility Tests and Optical Communication 49
References 53
Chapter 5 Conclusion 57
-
dc.language.isoen-
dc.subject二硫化鎢zh_TW
dc.subject光偵測器zh_TW
dc.subject自供電zh_TW
dc.subject透明zh_TW
dc.subject極性自組裝單層zh_TW
dc.subject可彎曲zh_TW
dc.subjectphotodetectoren
dc.subjectself-powereden
dc.subjecttransparenten
dc.subjectpolar self-assembled monolayeren
dc.subjectflexibleen
dc.subjectWS2en
dc.title透明、可撓式、自供電的二維材料及自組裝極性單層光偵測器zh_TW
dc.titleUltrathin, Transparent, Flexible, and Self-Powered Photodetector Based on Two-Dimensional Materials and Self-Assembled Monolayeren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許芳琪;沈志霖zh_TW
dc.contributor.oralexamcommitteeFang-Chi Hsu;Ji-Lin Shenen
dc.subject.keyword二硫化鎢,可彎曲,極性自組裝單層,透明,自供電,光偵測器,zh_TW
dc.subject.keywordWS2,flexible,polar self-assembled monolayer,transparent,self-powered,photodetector,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202401329-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
2.41 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved