請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94744
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張以承 | zh_TW |
dc.contributor.advisor | Yi-Cheng Chang | en |
dc.contributor.author | 莊國璨 | zh_TW |
dc.contributor.author | Gwo-Tsann Chuang | en |
dc.date.accessioned | 2024-08-16T17:56:38Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-06-28 | - |
dc.identifier.citation | 1. Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005;6(4):287-298.
2. Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet. 2005;366(9490):1036-1044. 3. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467-484. 4. Plomin R, Haworth CM, Davis OS. Common disorders are quantitative traits. Nat Rev Genet. 2009;10(12):872-878. 5. Chuang GT, Liu PH, Chyan TW, et al. Genome-wide association study for circulating fibroblast growth factor 21 and 23. Sci Rep. 2020;10(1):14578. 6. Liu PH, Chuang GT, Hsiung CN, et al. A genome-wide association study for melatonin secretion. Sci Rep. 2022;12(1):8025. 7. Yang WS, Chuang GT, Che TP, et al. Genome-Wide Association Studies for Albuminuria of Nondiabetic Taiwanese Population. Am J Nephrol. 2023;54(9-10):359-369. 8. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7-11. 9. Rosansky SJ. Renal function trajectory is more important than chronic kidney disease stage for managing patients with chronic kidney disease. Am J Nephrol. 2012;36(1):1-10. 10. Levey AS, Gansevoort RT, Coresh J, et al. Change in Albuminuria and GFR as End Points for Clinical Trials in Early Stages of CKD: A Scientific Workshop Sponsored by the National Kidney Foundation in Collaboration With the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis. 2020;75(1):84-104. 11. McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356-369. 12. Yang J, Wray NR, Visscher PM. Comparing apples and oranges: equating the power of case-control and quantitative trait association studies. Genet Epidemiol. 2010;34(3):254-257. 13. Turley P, Walters RK, Maghzian O, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG [published correction appears in Nat Genet. 2019 Jul;51(7):1190] [published correction appears in Nat Genet. 2019 Aug;51(8):1295]. Nat Genet. 2018;50(2):229-237. 14. Ringnér M. What is principal component analysis?. Nat Biotechnol. 2008;26(3):303-304. 15. Fan CT, Lin JC, Lee CH. Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics. 2008;9(2):235-246. 16. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575. 17. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10(1):5-6. 18. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955-959. 19. Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics. 2008;9:516. 20. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). 21. Turner, S. qqman: An R package for visualizing GWAS results using Q–Q and Manhattan plots. J. Open Source Softw. 3, 731 (2018). 22. Inker LA, Eneanya ND, Coresh J, et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N Engl J Med. 2021;385(19):1737-1749. 23. Tajti F, Kuppe C, Antoranz A, et al. A Functional Landscape of CKD Entities From Public Transcriptomic Data. Kidney Int Rep. 2019;5(2):211-224. 24. Hishida A, Takashima N, Turin TC, et al. GCK, GCKR polymorphisms and risk of chronic kidney disease in Japanese individuals: data from the J-MICC Study. J Nephrol. 2014;27(2):143-149. 25. Wang K, Shi M, Yang A, et al. GCKR and GCK polymorphisms are associated with increased risk of end-stage kidney disease in Chinese patients with type 2 diabetes: The Hong Kong Diabetes Register (1995-2019). Diabetes Res Clin Pract. 2022;193:110118. 26. Ho LJ, Lu CH, Su RY, et al. Association between glucokinase regulator gene polymorphisms and serum uric acid levels in Taiwanese adolescents. Sci Rep. 2022;12(1):5519. 27. Matsuo H, Yamamoto K, Nakaoka H, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis. 2016;75(4):652-659. 28. Yuan S, Larsson SC. Coffee and Caffeine Consumption and Risk of Kidney Stones: A Mendelian Randomization Study. Am J Kidney Dis. 2022;79(1):9-14.e1. 29. Oh H, Kwon O, Kong MJ, Park KM, Baek JH. Macrophages promote Fibrinogenesis during kidney injury. Front Med (Lausanne). 2023;10:1206362. 30. Cabrera-Serrano M, Caccavelli L, Savarese M, et al. Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain. 2022;145(11):3985-3998. 31. Stahl K, Rastelli E, Schoser B. A systematic review on the definition of rhabdomyolysis. J Neurol. 2020;267(4):877-882. 32. Rawson ES, Clarkson PM, Tarnopolsky MA. Perspectives on Exertional Rhabdomyolysis. Sports Med. 2017;47(Suppl 1):33-49. 33. Levey AS, James MT. Acute Kidney Injury [published correction appears in Ann Intern Med. 2018 Jan 2;168(1):84]. Ann Intern Med. 2017;167(9):ITC66-ITC80. 34. Sone H, Lee TJ, Lee BR, Heo D, Oh S, Kwon SH. MicroRNA-mediated attenuation of branched-chain amino acid catabolism promotes ferroptosis in chronic kidney disease. Nat Commun. 2023;14(1):7814. 35. Gillies CE, Putler R, Menon R, et al. An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. Am J Hum Genet. 2018;103(2):232-244. 36. Stavarachi M, Panduru NM, Serafinceanu C, et al. Investigation of P213S SELL gene polymorphism in type 2 diabetes mellitus and related end stage renal disease. A case-control study. Rom J Morphol Embryol. 2011;52(3 Suppl):995-998. 37. Baker MA, Wang F, Liu Y, et al. MiR-192-5p in the Kidney Protects Against the Development of Hypertension. Hypertension. 2019;73(2):399-406. 38. Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther. 2023;8(1):129. 39. Wright JT Jr, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial [published correction appears in JAMA. 2006 Jun 21;295(23):2726]. JAMA. 2002;288(19):2421-2431. 40. Agrawal PB, Greenleaf RS, Tomczak KK, et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet. 2007;80(1):162-167. 41. Hari P, Bagga A, Mahajan P, Lakshmy R. Effect of malnutrition on serum creatinine and cystatin C levels. Pediatr Nephrol. 2007;22(10):1757-1761. 42. Li GS, Zhu L, Zhang H, et al. Variants of the ST6GALNAC2 promoter influence transcriptional activity and contribute to genetic susceptibility to IgA nephropathy. Hum Mutat. 2007;28(10):950-957. 43. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368(25):2402-2414. 44. Randi EB, Vervaet B, Tsachaki M, et al. The Antioxidative Role of Cytoglobin in Podocytes: Implications for a Role in Chronic Kidney Disease. Antioxid Redox Signal. 2020;32(16):1155-1171. 45. GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group; Statistical Methods groups—Analysis Working Group; Genetic effects on gene expression across human tissues [published correction appears in Nature. 2017 Dec 20;:]. Nature. 2017;550(7675):204-213. 46. Hurskainen T, Moilanen J, Sormunen R, et al. Transmembrane collagen XVII is a novel component of the glomerular filtration barrier. Cell Tissue Res. 2012;348(3):579-588. 47. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904-909. 48. Holberg CJ, Halonen M, Solomon S, et al. Factor analysis of asthma and atopy traits shows 2 major components, one of which is linked to markers on chromosome 5q. J Allergy Clin Immunol. 2001;108(5):772-780. 49. Tran NK, Lea RA, Holland S, et al. Multi-phenotype genome-wide association studies of the Norfolk Island isolate implicate pleiotropic loci involved in chronic kidney disease. Sci Rep. 2021;11(1):19425. 50. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-753. 51. Marouli E, Graff M, Medina-Gomez C, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017;542(7640):186-190. 52. Mola-Caminal M, Carrera C, Soriano-Tárraga C, et al. PATJ Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome. Circ Res. 2019;124(1):114-120. 53. Akiyama M, Ishigaki K, Sakaue S, et al. Characterizing rare and low-frequency height-associated variants in the Japanese population [published correction appears in Nat Commun. 2020 Mar 9;11(1):1350]. Nat Commun. 2019;10(1):4393. 54. Pang H, Xia Y, Luo S, et al. Emerging roles of rare and low-frequency genetic variants in type 1 diabetes mellitus. J Med Genet. 2021;58(5):289-296. 55. Chang X, Gurung RL, Wang L, et al. Low frequency variants associated with leukocyte telomere length in the Singapore Chinese population. Commun Biol. 2021;4(1):519. 56. Clarelli F, Barizzone N, Mangano E, et al. Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population. Front Genet. 2022;12:800262. 57. Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032-2045. 58. Christensen PK, Gall MA, Parving HH. Course of glomerular filtration rate in albuminuric type 2 diabetic patients with or without diabetic glomerulopathy. Diabetes Care. 2000;23 Suppl 2:B14-B20. 59. Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH. Progression of diabetic nephropathy. Kidney Int. 2001;59(2):702-709. 60. Zoppini G, Targher G, Chonchol M, et al. Predictors of estimated GFR decline in patients with type 2 diabetes and preserved kidney function. Clin J Am Soc Nephrol. 2012;7(3):401-408. 61. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol. 2017;28(4):1023-1039. 62. Delgado C, Baweja M, Crews DC, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2022;79(2):268-288.e1. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94744 | - |
dc.description.abstract | 慢性腎臟病是全球各國的重要醫療議題,因為其影響醫療資源甚鉅。已經有許多流行病學研究尋找出慢性腎臟病傳統的危險因子,在許多這類的研究,慢性腎臟病通常被操作定義為腎絲球過濾率估值(estimated glomerular filtration rate; eGFR) < 60ml/min/1.73m2。然而許多慢性腎臟病第三至第五期的人,仍然可以保有穩定的腎功能,所以事實上腎功能的變化軌跡比慢性腎臟病的現下分期還來的重要,而其中白蛋白尿(albuminuria)的程度又是影響腎功能變化的主因。近年National Kidney Foundation也已經建議針對臨床試驗案,可以在相對較短期的追蹤年限使用白蛋白尿和eGFR下降速率(eGFR slope)來替代傳統長期追蹤到腎功能大幅下降30%或是進入腎衰竭等等定義。藉由執行白蛋白尿、eGFR以及eGFR slope個別的全基因組關聯分析(genome-wide association study; GWAS)可以尋找腎臟功能惡化進而發展慢性腎臟病的遺傳風險因子。近年在GWAS的領域,亦提倡藉由多性狀研究的方式來增加GWAS的檢力。比較廣為人知的是Multi-Trait Analysis of GWAS (MTAG),其方式為對數個性狀的 GWAS summary應用廣義逆方差加權法統合分析 (generalized inverse-variance-weighted meta-analysis)。從另一個面向來看,由於以上三種性狀因為都是連續變項, 我們也可以用主成分分析將這些數量性狀先轉化成不同的主成分(principal component; PC),再對這些PC進行GWAS (PC-GWAS)。本研究執行了白蛋白尿、eGFR和eGFR slope的單性狀GWAS,以PC-GWAS。藉由比較不同方法之間的結果,以及對比文獻之後可以發現PC-GWAS找到20個新位點,其中有些鄰近的基因從文獻上由其功能描述或是小鼠實驗結果已經可以推估和腎臟功能或疾病相關;另外有4個位點在腎臟表現數量性狀基因座資料庫發現其具顯著的影響。未來設計功能分析研究來這些新位點是否和腎臟功能確實相關仍然是目前檢視GWAS結果的黃金標準。藉由本研究的經驗,PC-GWAS的方式也值得在適合的疾病和族群應用和推廣。 | zh_TW |
dc.description.abstract | Chronic kidney disease (CKD) is an important issue global-wide, as it possesses tremendous medical resource burden。There are numerous epidemiologic studies finding conventional risk factors for CKD, and the operational definition for CKD patients in these studies is usually individuals with estimated glomerular filtration rate (eGFR) <60ml/min/1.73m2. However, many patients with CKD stage 3-5 have stable renal function for years, and thus the change of renal function with time is more important than the current CKD stage. Proteinuria/albuminuria is the major determinant of eGFR trajectory. National Kidney Foundation has suggested change in albuminuria and eGFR slope fulfill criteria for surrogate end points in clinical trials for chronic kidney disease progression. We can apply genome-wide association study (GWAS) on complex diseases such as CKD to find its heritable factors. Only few individuals of Taiwan biobank have eGFR below 60ml/min/1.73m2, and thus a case-control GWAS may not be appropriate. In addition, evaluating the risk factor for eGFR change and albuminuria is even more important for renal prognosis. We have performed quantitative GWASs regarding eGFR per se, eGFR slope and albuminuria to find risk loci for CKD progression. There were also several multi-trait methods developed in recent years to enhance the power of GWAS. We used principal component analysis to convert these quantitative traits in to pseudotraits (principal components; PC), and then perform the GWAS of the pseudotraits (PC-based GWAS). A comparison of result of different methods and literature review were done. Twenty novel risk loci associated with kidney traits were identified by PC-based GWAS. Subsequent post-GWAS analyses and functional analyses will be done accordingly in future. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:56:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:56:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 vii 表次 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 研究方法 5 2.1 研究架構 5 2.2 研究對象 5 2.3 基因體資料 6 2.3.1 全基因體定型資料 6 2.3.2 基因體定型資料品質管制 7 2.3.3 基因型插補以及插補後之資料品質管制 8 2.3.4 TWB v10和TWB v20插補後資料合併 8 2.4 全基因組關聯分析 8 2.4.1 單性狀全基因組關聯分析 8 2.4.2 主成分分析多性狀全基因組關聯分析 9 第三章 結果 10 3.1 單性狀全基因組關聯分析結果 10 3.1.1 Albuminuria GWAS results 10 3.1.2 eGFR GWAS results 12 3.1.3 eGFR slope GWAS results 14 3.2 主成分分析多性狀全基因組關聯分析 16 3.2.1 eGFR, eGFR slope, albuminuria主成分分析 16 3.2.2主成分進行GWAS之結果 19 3.2.3 主成分分析多性狀全基因關聯分析額外得到之位點 24 第四章 討論與結論 48 4.1 結果討論 48 4.2 結論 50 參考文獻 51 附錄 57 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用主成分分析多性狀全基因組關聯分析尋找慢性腎臟病的新風險位點 | zh_TW |
dc.title | Discovering Novel Loci of Chronic Kidney Disease via Principal Component Analysis based Multiple-trait Genome‑wide Association Study | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 盧子彬;李妮鍾;陳建勳;許書睿 | zh_TW |
dc.contributor.oralexamcommittee | Tzu-Pin Lu;Ni-Chung Lee;Chien-Hsiun Chen;Jacob Shujui Hsu | en |
dc.subject.keyword | 慢性腎臟病,白蛋白尿,腎絲球過濾率預估值,全基因組關聯分析,多性狀全基因組關聯分析, | zh_TW |
dc.subject.keyword | chronic kidney disease,albuminuria,estimated glomerular filtration rate,genome-wide association study,multi-trait genome-wide association study, | en |
dc.relation.page | 63 | - |
dc.identifier.doi | 10.6342/NTU202401345 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-06-28 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
顯示於系所單位: | 基因體暨蛋白體醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 13.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。