請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94737完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳冠元 | zh_TW |
| dc.contributor.advisor | Guan-Yuan Chen | en |
| dc.contributor.author | 賴甫睿 | zh_TW |
| dc.contributor.author | FU-RUEI LAI | en |
| dc.date.accessioned | 2024-08-16T17:54:06Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-21 | - |
| dc.identifier.citation | 1. Peacock, A., et al., New psychoactive substances: challenges for drug surveillance, control, and public health responses. The Lancet, 2019. 394(10209): p. 1668-1684.
2. Substances, U.E.W.A.o.N.P. What are NPS? 2024; Available from: https://www.unodc.org/LSS/Page/NPS. 3. Substances, U.E.W.A.o.N.P. NPS Data Visualisations. 2024; Available from: https://www.unodc.org/LSS/Page/NPS/DataVisualisations. 4. Crime, U.N.O.o.D.a., Current NPS Threats. 2023. VI. 2023. 5. Substances, U.E.W.A.o.N.P., NPS Substance Groups. 2024. 6. Nations, U., World Drug Report 2020. 2020. 7. Addiction, E.M.C.f.D.a.D., European Drug Report 2023: Trends and Developments. 2024. 8. Chang, H., et al., Psychiatric profiles and clinical manifestations of cathinone users: case series of analytically confirmed cathinone use in Taiwan. J Addict Addictv Disord, 2019. 6: p. 023. 9. Guirguis, A., New psychoactive substances: A public health issue. 2017, Oxford University Press. p. 323-325. 10. Weinstein, A.M., et al., Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Frontiers in psychiatry, 2017. 8: p. 283579. 11. Lin, C.-C., et al., Emergency department visits due to new psychoactive substances and other illicit drugs in Taiwan: preliminary results of the Taiwan Emergency Department Drug Abuse Surveillance (TEDAS) project. Clinical toxicology, 2022. 60(6): p. 708-715. 12. Weng, T.-I., et al., Analytically confirmed 4-Methyl-N-ethylnorpentedrone (4-MEAP), a synthetic cathinone, in cases presenting to an emergency department. Clinical Toxicology, 2020. 58(1): p. 65-66. 13. Ling, D.-A., et al., Clinical manifestation and quantitative urinary analysis of N-ethylnorpentylone abuse in patients to the emergency department. Clinical Toxicology, 2020. 58(9): p. 935-937. 14. Chen, W.J., et al., Differences in prevalence, socio-behavioral correlates, and psychosocial distress between club drug and hard drug use in Taiwan: Results from the 2014 National Survey of Substance Use. International Journal of Drug Policy, 2017. 48: p. 99-107. 15. Administration, T.F.a.D., 我國檢出新興影響精神物質(NPS)品項表. 2024. 16. Lee, S.-F., J. Hsu, and W.-I. Tsay, The trend of drug abuse in Taiwan during the years 1999 to 2011. journal of food and drug analysis, 2013. 21(4): p. 390-396. 17. Feng, L.-Y. and J.-H. Li, New psychoactive substances in Taiwan: challenges and strategies. Current Opinion in Psychiatry, 2020. 33(4): p. 306-311. 18. Wu, S.-C., et al., The use of premixed drugs in commodity packets in the population: prevalence and correlates revealed by the 2018 National Survey of Substance Use in Taiwan. Journal of Epidemiology, 2024. 34(5): p. 218-227. 19. Weng, T.-I., et al., Characteristics of analytically confirmed illicit substance-using patients in the Emergency Department. Journal of the Formosan Medical Association, 2020. 119(12): p. 1827-1834. 20. Kimergård, A., et al., The challenge of complex drug use: Associated use of codeine‐containing medicines and new psychoactive substances in a European cross‐sectional online population. Human Psychopharmacology: Clinical and Experimental, 2017. 32(3): p. e2611. 21. Fernández-Calderón, F., C.M. Cleland, and J.J. Palamar, Polysubstance use profiles among electronic dance music party attendees in New York City and their relation to use of new psychoactive substances. Addictive behaviors, 2018. 78: p. 85-93. 22. Chou, H., et al., Synthetic cathinone poisoning from ingestion of drug-laced “instant coffee packets” in Taiwan. Human & Experimental Toxicology, 2021. 40(9): p. 1403-1412. 23. Helander, A., et al., Detection of new psychoactive substance use among emergency room patients: results from the Swedish STRIDA project. Forensic Science International, 2014. 243: p. 23-29. 24. Chen, Y.-H., et al., Survey of substance use among adolescent drug offenders referred from juvenile courts in Taiwan: Clinical epidemiology of single versus multiple illicit substance use. Journal of the Formosan Medical Association, 2022. 121(11): p. 2257-2264. 25. Madras, B.K., The growing problem of new psychoactive substances (NPS). Neuropharmacology of New Psychoactive Substances (NPS) The Science Behind the Headlines, 2017: p. 1-18. 26. Reuter, P. and B. Pardo, Can new psychoactive substances be regulated effectively? An assessment of the British Psychoactive Substances Bill. Addiction, 2017. 112(1): p. 25-31. 27. Brandt, S.D. and M. Collins, Addressing the challenges in forensic drug chemistry II. Drug Test Anal, 2022. 14(3): p. 400-403. 28. Namera, A., et al., Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic toxicology, 2015. 33: p. 175-194. 29. Stolker, A.A., et al., Liquid chromatography with triple-quadrupole and quadrupole-time-of-flight mass spectrometry for the determination of micro-constituents–a comparison. Analytical and bioanalytical chemistry, 2004. 378: p. 1754-1761. 30. Giorgetti, A., et al., Development and validation of a rapid LC‐MS/MS method for the detection of 182 novel psychoactive substances in whole blood. Drug testing and analysis, 2022. 14(2): p. 202-223. 31. Adamowicz, P. and B. Tokarczyk, Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography‐tandem mass spectrometry. Drug testing and Analysis, 2016. 8(7): p. 652-667. 32. Chen, J.-Y., et al., Development of an analytical method to detect simultaneously 219 new psychoactive substances and 65 other substances in urine specimens using LC-QqQ MS/MS with CriticalPairFinder and TransitionFinder. Talanta, 2022. 238: p. 122979. 33. Kong, T.Y., et al., Rapid analysis of drugs of abuse and their metabolites in human urine using dilute and shoot liquid chromatography–tandem mass spectrometry. Archives of pharmacal research, 2017. 40: p. 180-196. 34. Tang, M.H., et al., Simultaneous detection of 93 conventional and emerging drugs of abuse and their metabolites in urine by UHPLC-MS/MS. Journal of Chromatography B, 2014. 969: p. 272-284. 35. Klesper, K., High pressure gas chromatog raphy above critical temperatures. J. Org. Cher, 1962. 27: p. 700-701. 36. Tarafder, A., Metamorphosis of supercritical fluid chromatography to SFC: an overview. TrAC Trends in Analytical Chemistry, 2016. 81: p. 3-10. 37. Nováková, L., et al., Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial. Analytica chimica acta, 2014. 824: p. 18-35. 38. West, C., Current trends in supercritical fluid chromatography. Analytical and bioanalytical chemistry, 2018. 410: p. 6441-6457. 39. Berger, T.A., Packed column SFC. Vol. 2. 1995: Royal society of chemistry. 40. Klesper, E. and W. Hartmann, Parameters in supercritical fluid chromatography of styrene oligomers. Journal of Polymer Science: Polymer Letters Edition, 1977. 15(12): p. 707-712. 41. Corporation, W., Beginner's Guide to Convergence Chromatography. 2017. 42. Pauk, V. and K. Lemr, Forensic applications of supercritical fluid chromatography–mass spectrometry. Journal of Chromatography B, 2018. 1086: p. 184-196. 43. Perrenoud, A.G.-G., J.-L. Veuthey, and D. Guillarme, Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. Journal of Chromatography A, 2012. 1266: p. 158-167. 44. Ashraf-Khorassani, M., et al., Ultrahigh performance supercritical fluid chromatography of lipophilic compounds with application to synthetic and commercial biodiesel. Journal of Chromatography B, 2015. 983: p. 94-100. 45. Pauk, V., et al., Fast separation of selected cathinones and phenylethylamines by supercritical fluid chromatography. Journal of Chromatography A, 2015. 1423: p. 169-176. 46. Carnes, S., et al., Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. Journal of separation science, 2017. 40(17): p. 3545-3556. 47. Breitenbach, S., et al., Assessment of ultra high performance supercritical fluid chromatography as a separation technique for the analysis of seized drugs: Applicability to synthetic cannabinoids. Journal of Chromatography A, 2016. 1440: p. 201-211. 48. Leere Øiestad, Å.M., et al., Separation of isomers of new psychoactive substances and isotope-labeled amphetamines using UHPSFC-MS/MS and UHPLC-MS/MS. Journal of Liquid Chromatography & Related Technologies, 2018. 41(7): p. 391-400. 49. Dejaegher, B. and Y. Vander Heyden, Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. Journal of pharmaceutical and biomedical analysis, 2011. 56(2): p. 141-158. 50. Montgomery, D.C. and 正. 黎, 實驗設計與分析 / Douglas C. Montgomery原著 ; 黎正中譯. 初版 ed. 2010, 臺北市: 高立圖書. 51. Dejaegher, B. and Y. Vander Heyden, The use of experimental design in separation science. Acta Chromatographica, 2009. 21(2): p. 161-201. 52. Thorsteinsdóttir, U.A. and M. Thorsteinsdóttir, Design of experiments for development and optimization of a liquid chromatography coupled to tandem mass spectrometry bioanalytical assay. J Mass Spectrom, 2021. 56(9): p. e4727. 53. Sahu, P.K., et al., An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal, 2018. 147: p. 590-611. 54. Bruce, S.J., et al., Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical chemistry, 2009. 81(9): p. 3285-3296. 55. Landagaray, E., et al., Design of experiments for enantiomeric separation in supercritical fluid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2016. 120: p. 297-305. 56. de Lima, K.P., I.C. Sales Fontes Jardim, and M.C. Breitkreitz, Study of the chromatographic parameters of ultra‐high‐performance supercritical fluid chromatography and method development using a design of experiments approach for the quantification of pesticides in lettuce. Journal of separation science, 2018. 41(16): p. 3339-3345. 57. Dispas, A., et al., Innovative green supercritical fluid chromatography development for the determination of polar compounds. Journal of Chromatography A, 2012. 1256: p. 253-260. 58. Riter, L.S., et al., Statistical design of experiments as a tool in mass spectrometry. Journal of mass spectrometry, 2005. 40(5): p. 565-579. 59. Hecht, E.S., A.L. Oberg, and D.C. Muddiman, Optimizing mass spectrometry analyses: a tailored review on the utility of design of experiments. Journal of the American Society for Mass Spectrometry, 2016. 27(5): p. 767-785. 60. S, N.P., et al., Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm, 2017. 43(6): p. 889-901. 61. Fukuda, I.M., et al., Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazilian journal of pharmaceutical sciences, 2018. 54. 62. Jacyna, J., M. Kordalewska, and M.J. Markuszewski, Design of Experiments in metabolomics-related studies: An overview. Journal of pharmaceutical and biomedical analysis, 2019. 164: p. 598-606. 63. Eliasson, M., et al., Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach. Analytical chemistry, 2012. 84(15): p. 6869-6876. 64. Food and D. Administration, Guidance for industry on bioanalytical method validation. Federal Register, 2001. 66(100): p. 28526. 65. MacLean, B., et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 2010. 26(7): p. 966-968. 66. West, C. and E. Lemasson, Unravelling the effects of mobile phase additives in supercritical fluid chromatography—Part II: Adsorption on the stationary phase. Journal of Chromatography A, 2019. 1593: p. 135-146. 67. Corporation, W., ACQUITY UPC2 BEH, CSH, and HSS Columns. 2015. 68. Desfontaine, V., et al., Applicability of supercritical fluid chromatography–mass spectrometry to metabolomics. I–Optimization of separation conditions for the simultaneous analysis of hydrophilic and lipophilic substances. Journal of Chromatography A, 2018. 1562: p. 96-107. 69. Losacco, G.L., et al., Applicability of Supercritical fluid chromatography–Mass spectrometry to metabolomics. II–Assessment of a comprehensive library of metabolites and evaluation of biological matrices. Journal of Chromatography a, 2020. 1620: p. 461021. 70. Scholz, K., et al., Hyphenation of supercritical fluid chromatography with different detection methods for identification and quantification of liamocin biosurfactants. Journal of Chromatography a, 2020. 1631: p. 461584. 71. Bieber, S., et al., RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Analytical chemistry, 2017. 89(15): p. 7907-7914. 72. Losacco, G.L., J.-L. Veuthey, and D. Guillarme, Metamorphosis of supercritical fluid chromatography: a viable tool for the analysis of polar compounds? TrAC Trends in Analytical Chemistry, 2021. 141: p. 116304. 73. Taguchi, K., E. Fukusaki, and T. Bamba, Simultaneous analysis for water-and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. Journal of chromatography A, 2014. 1362: p. 270-277. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94737 | - |
| dc.description.abstract | 新興影響精神物質(New psychoactive substances, NPS)的出現,對於個人健康及公共衛生造成重大的威脅。目前濫用藥物檢驗實驗室主要利用液相層析串聯質譜儀來分析新興影響精神物質,但液相層析串聯質譜儀分離分析物的過程耗時,無法快速地分析大量檢體。且有越來越多新興影響精神物質的同分異構物出現在非法藥物市場,它們的結構相似、滯留時間接近以及幾乎相同的碎片離子,使得液相層析串聯質譜在區分新興影響精神物質及它們的同分異構物造成挑戰。極致效能合相層析(UltraPerformance Convergence Chromatography™, UPCC)的發展,對新興影響精神物質的分析提供了一個全新的選擇。合相層析相較於液相層析有許多優勢,擁有類似氣體的低黏滯性及高擴散性,能夠更快速且有效率的分離分析物,協助快速分析大量檢體。並且合相層析能夠藉由調整壓力和溫度來調節移動相溶劑化能力來獲得樣品分離的高解析度和選擇性,展現出能夠分離同分異構物的優勢,相當適合用於分析新興影響精神物質和其大量的同分異構物。除此之外,合相層析使用的移動相為二氧化碳,便宜、安全、無毒、不易燃及容易回收,且能夠降低有毒、具揮發性的有機溶劑的使用,大幅降低分析成本及環境傷害。
本研究以極致效能合相層析(UltraPerformance Convergence Chromatography™, UPCC)串聯質譜儀開發同時檢測尿液檢體中185項新興影響精神物質與常見傳統濫用藥物的分析方法,利用實驗設計 (design of experiment)方法協助層析分離條件系統性地最佳化,最終合相層析條件為: 固定相使用BEH管柱,移動相共溶劑MeOH/IPA (85/15, v/v),管柱溫度為55℃,自動化背壓調節器設定為2040 psi,流速為1.7 ml/min,甲酸銨添加劑濃度為25 mM,在此條件下同分異構物JWH-019和JWH-122間的解析度能夠達到1.18。此合相層析方法經過方法確校,包含線性、精確度、準確度,確效結果顯示大部分化合物判定係數大於0.99,準確度介於80-120%,95%的化合物精確度之相對標準差值小於15%。完成確效後與現行實驗室常規液相層析串聯質譜法進行比較,結果顯示對於過去液相層析不易分離之同分異構物,合相層析能夠提供良好的分離效果。本研究亦將合相層析串聯質譜法運用於分析真實濫用藥物尿液檢體,結果顯示和實驗室常規液相層析串聯質譜法分析結果相符。我們預期極致效能合相層析未來能夠提供全新的快速、可信賴、具有選擇性且能和液相層析互補的濫用藥物分析平台。 | zh_TW |
| dc.description.abstract | The emergence of new psychoactive substances (NPS) poses significant threats to individual health and public health. Currently, analytical laboratories primarily utilize liquid chromatography-tandem mass spectrometry (LC-MS/MS) for analyzing NPS. However, LC-MS/MS methods for separating analytes are time-consuming and cannot rapidly analyze a large number of samples. Moreover, the increasing presence of NPS isomers in the illicit drug market, which have similar structures, close retention times, and nearly identical fragment ions, poses challenges for LC-MS/MS in differentiating NPS and their isomers. The development of UltraPerformance Convergence Chromatography™ (UPCC) offers a new option for the analysis of NPS. Convergence chromatography, compared to liquid chromatography, has many advantages, including gas-like low viscosity and high diffusion capabilities, enabling faster and more efficient separation of analytes and facilitating the rapid analysis of a large number of samples. Additionally, convergence chromatography can achieve high resolution and selectivity in sample separation by adjusting the pressure and temperature to modulate the solvating power of the mobile phase, proving advantageous for separating isomers and particularly suitable for analyzing NPS and their numerous isomers. Moreover, the mobile phase used in convergence chromatography is carbon dioxide, which is inexpensive, safe, non-toxic, non-flammable, and easy to recover, significantly reducing the use of toxic, volatile organic solvents, thereby lowering analysis costs and environmental impact.
This study develops a method using UPCC-MS/MS for simultaneous detection of 185 new psychoactive substances and common traditional illicit drugs in urine samples. The design of experiments (DOE) approach assists in systematically optimizing chromatographic conditions. The final conditions for convergence chromatography include using a BEH column, a mobile phase co-solvent of MeOH/IPA (85/15, v/v), a column temperature of 55°C, an automated back-pressure regulator (ABPR) set at 2040 psi, a flow rate of 1.7 ml/min, and an ammonium formate additive concentration of 25 mM, achieving a resolution of 1.18 between the isomers JWH-019 and JWH-122. Method validation, including linearity, precision, and accuracy, shows that most compounds have a coefficient of determination greater than 0.99, accuracy between 80-120%, and the relative standard deviation of precision for 95% of the compounds is less than 15%. Upon completion of validation, a comparison with the current routine liquid chromatography-tandem mass spectrometry indicates that convergence chromatography provides good separation for isomers previously difficult to separate by liquid chromatography. This study also applies convergence chromatography-tandem mass spectrometry to the analysis of real drug abuse urine samples, showing results consistent with the liquid chromatography-tandem mass spectrometry method. We anticipate that UltraPerformance Convergence Chromatography will offer a new, rapid, reliable, selective, and complementary analytical platform to the conventional liquid chromatography for drug abuse analysis in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:54:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:54:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Ch1. Introduction 1 1.1 Emerging NPS in society 1 1.2 NPS in Taiwan 2 1.3 Current platforms for analyzing NPS and the analytical challenges 4 1.4 UltraPerformance Convergence Chromatography™, UPCC 5 1.5 Design of experiment 7 1.6 Aim of study 9 Ch2. Material and methods 10 2.1 Chemicals and reagents 10 2.2 Sample preparation 19 2.3 UPCC-MS/MS condition 19 2.4 LC-MS/MS condition 21 2.5 Design of experiment (DOE) 22 2.5.1 Parameter screening 22 2.5.2 Method optimization 27 2.6 Method validation 28 2.7 Data analysis 29 Ch3. Result and discussion 30 3.1 Characterization of the analyzed drugs 30 3.2 Development of UPCC analytical method 34 3.2.1 Stationary phase selection 34 3.2.2 Important factor screen using a DOE approach 35 3.2.3 Factor level optimization using a DOE approach 42 3.3 Method comparison with UPLC method 51 3.4 Method validation 52 3.5 Method application 71 Ch4. Conclusion 74 Reference 75 | - |
| dc.language.iso | en | - |
| dc.subject | 合相層析技術 | zh_TW |
| dc.subject | 新興影響精神物質 | zh_TW |
| dc.subject | 實驗設計 | zh_TW |
| dc.subject | 質譜儀 | zh_TW |
| dc.subject | 尿液分析 | zh_TW |
| dc.subject | Urine analysis | en |
| dc.subject | Design of experiments | en |
| dc.subject | Mass spectrometry | en |
| dc.subject | New psychoactive substances | en |
| dc.subject | Convergence chromatography | en |
| dc.title | 透過極致效能合相層析和實驗設計建立具選擇性之尿液檢體中新興影響精神物質分析方法 | zh_TW |
| dc.title | Development of selective method for determining new psychoactive substances in urine using ultraperformance convergence chromatography and design of experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 翁德怡;廖曉偉 | zh_TW |
| dc.contributor.oralexamcommittee | Te-I Weng;Hsiao-Wei Liao | en |
| dc.subject.keyword | 合相層析技術,新興影響精神物質,實驗設計,質譜儀,尿液分析, | zh_TW |
| dc.subject.keyword | Convergence chromatography,New psychoactive substances,Design of experiments,Mass spectrometry,Urine analysis, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202401260 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-06-21 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 法醫學研究所 | - |
| 顯示於系所單位: | 法醫學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
