請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94725完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭靜穎 | zh_TW |
| dc.contributor.advisor | Ching-Ying Kuo | en |
| dc.contributor.author | 賈子怡 | zh_TW |
| dc.contributor.author | Tzu-Yi Chia | en |
| dc.date.accessioned | 2024-08-16T17:45:39Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | Organization, W.H. Breast cancer. (2024).
Bray, F. et al. Global cancer statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Cancer Journal for Clinicians 74(3), 229-263. (2024). 衛生福利部 國民健康署. 癌症登記報告. (110年). Sun, Y.S. et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci 13, 1387-1397 (2017). Feng, Y. et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5, 77-106 (2018). Won, K.A. & Spruck, C. Triple‑negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol 57, 1245-1261 (2020). Marina Carla Cabrera, R.E.H., Elaine M Hurt. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells (2015). Shao, J., Fan, W., Ma, B. & Wu, Y. Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Molecular Medicine Reports 14, 4991-4998 (2016 ). Du, J. & Qin, H. Lipid metabolism dynamics in cancer stem cells: Potential targets for cancers. Frontiers in Pharmacology 15, 1367981. (2024). Ehmsen, S. et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome. . Cell. Rep. 27, 3927–3938.(2019). Kuramoto, K.Y., M.; Suzuki, S.T., K.;, Sanomachi, T.K., C.; Okada, & M. Inhibition of the Lipid Droplet–Peroxisome Proliferator-Activated Receptor α Axis Suppresses Cancer Stem Cell Properties. Genes 12(2021). Li, J. et al. Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells. . Cell Stem Cell 20, 303-314.e5. (2017). Tirinato, L. et al. Lipid Droplets: A New Player in Colorectal Cancer Stem Cells Unveiled by Spectroscopic Imaging. . Stem Cells 33, 35-44 (2014). Hershey, B.J., Vazzana, R., Joppi, D.L. & Havas, K.M. Lipid Droplets Define a Sub-Population of Breast Cancer Stem Cells. . Journal of Clinical Medicine 9, 87 (2019). Pal China, S., Sanyal, S. & Chattopadhyay, N. Adiponectin signaling and its role in bone metabolism. Cytokine 112, 116-131 (2018). Khoramipour, K. et al. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 13(2021). Ruiz, M., Stahlman, M., Boren, J. & Pilon, M. AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin. J Lipid Res 60, 995-1004 (2019). Ruiz, M. et al. AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity. J Biol Chem 299, 104799 (2023). Towler, M.C. & Hardie, D.G. AMP-activated protein kinase in metabolic control and insulin signaling. . Circ. Res. 100, 328–341. (2007). Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946. (2001). Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. . J. Clin. Investig. 112, 91–100. (2003). Pham, D.V. & Park, P.H. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res 41, 9 (2022). Dalamaga, M., Diakopoulos, K.N. & Mantzoros, C.S. The role of adiponectin in cancer: a review of current evidence. Endocr Rev 33, 547-94 (2012). Nakajima. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. International Journal of Oncology (1992). Dieudonne, M. et al. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochemical and Biophysical Research Communications 345(1), 271-279. (2006). Wang, Y. et al. Adiponectin Modulates the Glycogen Synthase Kinase-3β/β-Catenin Signaling Pathway and Attenuates Mammary Tumorigenesis of MDA-MB-231 Cells in Nude Mice. Cancer Res 66 (23): 11462–11470. (2006). Nigro, E. et al. AdipoRon and Other Adiponectin Receptor Agonists as Potential Candidates in Cancer Treatments. Int J Mol Sci 22(2021). Yamauchi, T. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. . Nature 503(7477), 493-499. (2013). Akimoto, M., Maruyama, R., Kawabata, Y., Tajima, Y. & Takenaga, K. Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death & Disease (2018). Latunde-Dada, G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj 1861, 1893-1900 (2017). Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res 31, 107-125 (2021). Chen, X., Yu, C., Kang, R. & Tang, D. Iron Metabolism in Ferroptosis. Front Cell Dev Biol 8, 590226 (2020). Gao, M. et al. Ferroptosis is an autophagic cell death process. Cell Res 26, 1021-32 (2016). Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. & Kimmelman, A.C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-9 (2014). Fang, Y. et al. Inhibiting Ferroptosis through Disrupting the NCOA4-FTH1 Interaction: A New Mechanism of Action. ACS Cent Sci 7, 980-989 (2021). Xiu, Z. et al. Inhibitory Effects of Esculetin on Liver Cancer Through Triggering NCOA4 Pathway-Mediation Ferritinophagy in vivo and in vitro. J Hepatocell Carcinoma 10, 611-629 (2023). De Domenico, I., Ward, D.M. & Kaplan, J. Specific iron chelators determine the route of ferritin degradation. Blood 114, 4546-51 (2009). Chen, C., Liu, P., Duan, X., Cheng, M. & Xu, L.X. Deferoxamine-induced high expression of TfR1 and DMT1 enhanced iron uptake in triple-negative breast cancer cells by activating IL-6/PI3K/AKT pathway. Onco Targets Ther 12, 4359-4377 (2019). Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015). Yan, C. et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy 16, 419-434 (2020). Ziegler, P.K. et al. Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell 174, 88-101 e16 (2018). Yu, F. et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov 8, 40 (2022). Basit, F. et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death & Disease 8, e2716 (2017). Yang, P. et al. Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death Differ 30, 2432-2445 (2023). Liu, K. & Czaja, M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20, 3-11 (2013). Schroeder, B. et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896-907 (2015). Lei, G., Zhuang, L. & Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22, 381-396 (2022). Li, F.J. et al. System X(c) (-)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 13, 910292 (2022). Yang, W.S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317-331 (2014). Dixon, S.J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-72 (2012). Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57-62 (2015). Wang, Z. et al. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol 28, 101343 (2020). Jia, W., Chen, P. & Cheng, Y. PRDX4 and Its Roles in Various Cancers. Technol Cancer Res Treat 18, 1533033819864313 (2019). Kim, T.H. et al. Suppression of peroxiredoxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth. PLoS One 7, e42818 (2012). Broadfield, L.A., Pane, A.A., Talebi, A., Swinnen, J.V. & Fendt, S. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Developmental Cell 56, 1363-1393 (2021). Sawyer, B.T. et al. Targeting Fatty Acid Oxidation to Promote Anoikis and Inhibit Ovarian Cancer Progression. Mol Cancer Res 1 July 2020 18, 1088–1098 (2020). Szutowicz, A., Kwiatkowski, J. & Angielski, S. Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. British Journal of Cancer 39, 681-687 (1979). E, H., K, P. & R, P. Fatty acid composition of phospholipids and neutral lipids and lipid peroxidation in human breast cancer and lipoma tissue. . Carcinogenesis 7:1965-9.(1986). LZ, M., LA, W. & GR, P. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 3:2115-20.(1997). PL, A., P, V. & A, M. Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer (1996). Guo, W., Abudumijiti, H., Xu, L. & Hasim, A. CD147 promotes cervical cancer migration and invasion by up-regulating fatty acid synthase expression. Int. J. Clin. Exp. Pathol 12, 4280–4288 (2019). H, A., J, S. & M, K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 140:2224-35.(2015). Rozeveld, C.N., Johnson, K.M., Zhang, L. & Razidlo, G.L. KRAS controls pancreatic cancer celllipid metabolism andinvasivepotential through the lipase HSL. . Cancer Res. 80, 4932–4945 (2020). Pucer A, B.V., Payre C, P.J. & Lambeau G, P.T. Group X secreted phospholipase A2 induces lipid droplet formation and prolongs breast cancer cell survival. . Molecular Cancer. 12: 111. (2013). Dierge, E. et al. Peroxidation ofn-3and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to fer roptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715.e5. (2021). Li, S. et al. Obesity promotes gastric cancer metas tasis via diacylglycerol acyltransferase 2-dependent lipid droplets accumula tion and redox homeostasis. . Redox Biol. 36, 101596. (2020). Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. . Nature 541, 41–45. (2017). Yoshida, T. et al. ASO author reflections: CD36 expression is associated with cancer aggressiveness and energy source in esophageal squamous cell carcinoma. . Ann. Surg. Oncol. , 27, 791–792. (2020). Li, L., Tian, H., Jiang, J., Zhang, Y. & Qi, W. Multifaceted regulation and functions of fatty acid desaturase 2 in human cancers. . American Journal of Cancer Research 10, 4098-4111. (2020). Zhao, T. et al. Investigating the role of FADS family members in breast cancer based on bioinformatic analysis and experimental validation. Frontiers in Immunology 14(2023). WJ., P., KS., K., P., L., C., T. & JT., B. An alternate pathway to long chain polyunsaturates: the FADS2 gene prod uct Delta8-desaturates 20:2n-6 and 20:3n-3. J Lipid Res 50, 1195-1202. (2009). WJ., P., KS., K., P., L. & JT., B. FADS2 function loss at the cancer hotspot 11q13 locus diverts lipid signaling precursor synthesis to unusual eicosanoid fat ty acids. . PLoS One 6: e28186.(2011). H., C., MT., N. & SD., C. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. MT., N. & TY., N. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. . Annu Rev Nutr 24: 345 376.(2004). W., S. et al. Delta6 desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. . EMBO J 27: 2281-2292.(2008). Chen, E., Wang, C. & Lv, H. The role of fatty acid desaturase 2 in multiple tumor types revealed by bulk and single-cell transcriptomes. . Lipids Health Dis 22, 25 (2023). M., V. et al. FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue. . J Lipid Res. 57, 56–65. (2016). J, K. et al. Expression of SCD and FADS2 Is Lower in the Necrotic Core and Growing Tumor Area than in the Peritumoral Area of Glioblastoma Multiforme. . Biomolecules 10, 727. (2020). W., S. et al. Obesity resistance and deregulation of lipogenesis in Δ6-fatty acid desaturase (FADS2) defciency. . EMBO Rep. 15, 110–20. (2014). Lee, J.-Y. et al. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. . Proc. Natl. Acad. Sci. USA. , 32433–32442. (2020). Lorito, N.e.a. FADS1/2-mediated lipid metabolic reprogramming drives ferroptosis sensitivity in triple-negative breast cancer. bioRxiv 2023.06.30.547227 (2023). Yamane, D. et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication. . Cell Chem. Biol. (2021). Xuan, Y. et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics 12, 3534-3552. (2022). Li, P. et al. Inhibition of cannabinoid receptor type 1 sensitizes triple-negative breast cancer cells to ferroptosis via regulating fatty acid metabolism. . Cell Death & Disease 13, 1-15. (2022). Jiang, Y. et al. EGLN1/c-Myc Induced Lymphoid-Specific Helicase Inhibits Ferroptosis through Lipid Metabolic Gene Expression Changes. Theranostics 7, 3293-3305. (2017). Yang, H.-Y. Investigating the Cytotoxic Effects of an Adiponectin Receptor Agonist, Adiporon, on Breast Cancer Cell Lines, (2022). Das, A., Nag, S., Mason, A.B. & Barroso, M.M. Endosome-mitochondria interactions are modulated by iron release from transferrin. J Cell Biol 214, 831-45 (2016). Richardson, D.R. et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107, 10775-82 (2010). Ding, Q., Wang, Z. & Chen, Y. Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Res 19, 317-27 (2009). Bortoli, M.D. et al. Lipid accumulation in human breast cancer cells injured by iron depletors. . Journal of Experimental & Clinical Cancer Research CR,37(2018). Chen, C., Liu, P., Duan, X., Cheng, M. & Xu, L.X. Deferoxamine-induced high expression of TfR1 and DMT1 enhanced iron uptake in triple-negative breast cancer cells by activating IL-6/PI3K/AKT pathway. OncoTargets and Therapy. 12, 4359-4377 (2019). Jarc, E. & Petan, T. Focus: Organelles: Lipid Droplets and the Management of Cellular Stress. The Yale Journal of Biology and Medicine 92, 435-452 (2019). Walther TC & Farese RV., J. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 81, 687–714 (2012). Zhao, J., Xie, F., Yang, Y. & Wang, S. Reprogramming of fatty acid metabolism in breast cancer: a narrative review. Translational Breast Cancer Research 2, 5-5 (2021). Achari, A.E. & Jain, S.K. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci 18(2017). Grignano, E. et al. Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: Links to iron metabolism and metallothionein. Cell Death Discovery 9. (2023). Eggers, C.T., Schafer, J.C., Goldenring, J.R. & Taylor, S.S. D-AKAP2 Interacts with Rab4 and Rab11 through Its RGS Domains and Regulates Transferrin Receptor Recycling. Journal of Biological Chemistry 284, 32869-32880 (2009). <Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes.pdf>. Khoo, T.C. et al. Quantitative label-free imaging of iron-bound transferrin in breast cancer cells and tumors. Redox Biol 36, 101617 (2020). M, T. et al. mTOR signaling and SREBP activity increase FADS2 expression and can activate sapienate biosynthesis. Cell Rep 31(12):107806(2020). Sozio, M.S., Lu, C., Zeng, Y., Liangpunsakul, S. & Crabb, D.W. Activated AMPK inhibits PPAR-α and PPAR-γ transcriptional activity in hepatoma cells. American ,Journal of Physiology - Gastrointestinal and Liver Physiology 301(4), G739(2011). Guillou, H. et al. Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor α-deficient mice. Lipids 37, 981-989 (2002). Witt, A. et al. Fatty acid desaturase 2 determines the lipidomic landscape and steroidogenic function of the adrenal gland. Science Advances 9(29)(2023). Chen, Q., Vazquez, E.J., Moghaddas, S., Hoppel, C.L. & Lesnefsky, E.J. Production of Reactive Oxygen Species by Mitochondria: CENTRAL ROLE OF COMPLEX III. Journal of Biological Chemistry 278(38), 36027-36031 (2003). Margherita Protasoni et al. Respiratory supercomplexes act as a platform for complex III‐mediated maturation of human mitochondrial complexes I and IV. EMBO J 39: e102817(2020). A, E., WC, C. & DM, S. Nutrient-sensing mechanisms and pathways. . Nature 517(7534):302–10.(2015. January). R, Z., F, M. & D, K. Cytosolic lipolysis and lipophagy: two sides of the same coin. . Nat Rev Mol Cell Biol 18(11):671–84. (2017. November). S, K. & AM, C. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. . Nat Cell Biol June;17(6):759–70. (2015). S, K. & AM, C. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. . Autophagy 12(2):432–8.(2016). M, K. et al. mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. . Mol Metab 5(8):646–55.(2016. June;). J, Z. et al. Phosphorylation of PLIN3 by AMPK promotes dispersion of lipid droplets during starvation. . Protein Cell 10(5):382–7. (2019. May;). Zadoorian, A., Du, X. & Yang, H. Lipid droplet biogenesis and functions in health and disease. Nature Reviews Endocrinology 19(8), 443-459. (2023). Teissier, E. et al. Peroxisome proliferator-activated receptor alpha induces NADPH oxidase activity in macrophages, leading to the generation of LDL with PPAR-alpha activation properties. Circ Res 95, 1174-82 (2004). Liang, K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 14, 1160440 (2023). Joshi, M. et al. CPT1A Over-Expression Increases Reactive Oxygen Species in the Mitochondria and Promotes Antioxidant Defenses in Prostate Cancer. Cancers (Basel) 12(2020). Stading, R., Chu, C., Couroucli, X., Lingappan, K. & Moorthy, B. Molecular role of cytochrome P4501A enzymes inoxidative stress. Curr Opin Toxicol 20-21, 77-84 (2020). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94725 | - |
| dc.description.abstract | 乳癌是全球最常見的癌症之一,也是導致女性死亡的主要疾病。脂質代謝失調為乳癌的重要特徵,許多研究表明脂肪素與乳癌發生風險、進程及預後有密切關係。脂聯素是脂肪素的一種,能夠經由調節脂質和葡萄糖代謝來改善細胞的胰島素敏感性。根據臨床研究,血清中脂聯素降低與高乳癌風險顯著相關,因此後續有多項研究顯示施予脂聯素對癌細胞具有細胞毒性作用。然而,脂聯素的不穩定性和短半衰期是其應用於臨床的潛在阻礙。因此,小分子脂聯素受體促效劑AdipoRon則被提出作為脂聯素替代品。AdipoRon可經由激活脂聯素受體1和2(AdipoR1/2)展示出與脂聯素相似的藥理特性,也能透過阻斷細胞週期或是促進細胞凋亡來抑制癌細胞生長,也因此被視為一種有潛力的抗癌藥物。
在實驗室先前的研究中,已觀察到AdipoRon會增加乳癌細胞中的脂質活性氧類和鐵離子水平,最終導致鐵依賴性死亡。此外, AdipoRon也能在細胞中引起自噬作用且降低運鐵蛋白的快速循環速率。這些初步結果暗示AdipoRon可能經由鐵蛋白自噬引起鐵依賴性死亡。因此本篇研究旨在闡明AdipoRon調節乳癌細胞的鐵相關代謝機制,及其引起的細胞毒性效應。 目前的研究結果顯示AdipoRon會引起鐵蛋白自噬,但不會影響鐵蛋白水平,也不會影響與鐵代謝相關的基因,如TFRC和FTH1。我們也排除細胞中增加的鐵質水平是導致活性氧類水平上升的可能性。另一方面,我們觀察到,AdipoRon可以經由粒線體自噬促進鐵依賴性死亡。此外,AdipoRon可以引起脂肪代謝重組、減少脂肪酸去飽和酶表現量,和減少脂肪油滴的形成。最後,本研究更提出剝奪葡萄糖將使乳癌細胞對AdipoRon感受性更佳,能做為AdipoRon降低治療所需劑量的潛在策略。 | zh_TW |
| dc.description.abstract | Breast cancer is one of the most common cancers worldwide, and also a major disease that leads to female death. Dysregulation of lipid metabolism has been considered as a hallmark of breast cancer. Studies have shown that adipokines are tightly associated with breast cancer risk, progression, and prognosis. Adiponectin, an adipokine, improves the insulin sensitivity of cells by regulating lipid and glucose metabolism. In addition, clinical research shows that lower serum adiponectin levels are significantly associated with a higher risk of breast cancer. Therefore, several studies demonstrate that the administration of adiponectin shows cytotoxic effects against cancer cells. However, poor stability and short half-life are the major limitations of adiponectin in clinical application. Therefore, a small molecule compound, AdipoRon, has been proposed to be a substitute. AdipoRon resembles adiponectin by demonstrating similar pharmacological properties via activating adiponectin receptor 1 and 2 (AdipoR1/2). The molecule has been reported as a potential anti-cancer drug as it also shows cytotoxicity in cancer via apoptosis and cell cycle arrest.
In our previous findings, it was observed that AdipoRon increased lipid ROS and iron levels in breast cancer cells, ultimately resulting in ferroptosis. Additionally, the findings demonstrated an elevated induction of autophagy and reduction in transferrin fast recycling rate in cells treated with AdipoRon. These findings suggest that AdipoRon might induce ferroptosis via ferritinophagy. In this study, we aimed to illuminate the underlying mechanism of AdipoRon regulating iron metabolism in breast cancer cells, and the subsequent cytotoxic effect. Our current findings showed that AdipoRon induces ferritinophagy but does not impact iron-related genes such as TFRC and FTH1. We also ruled out the possibility that elevated iron levels are responsible for the increased ROS pool. On the other hand, we observed that AdipoRon can promote ferroptosis via mitophagy. Additionally, AdipoRon induced lipid metabolic reprogramming, reduced the expression of fatty acid desaturase, and decreased lipid droplet content. Finally, this study suggests that glucose deprivation can enhance the sensitivity of breast cancer cells to AdipoRon, which could serve as a potential strategy to reduce the required therapeutic dose of AdipoRon. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:45:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:45:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii List of Abbreviations v List of Figure x Chapter 1 Introduction 1 Chapter 2 Specific Aim 20 Chapter 3 Materials and Methods 21 Chapter 4 Results 28 Chapter 5 Discussion 35 Figures 39 Appendix 54 Reference 64 | - |
| dc.language.iso | en | - |
| dc.subject | 脂聯素 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 鐵依賴性細胞死亡 | zh_TW |
| dc.subject | AdipoRon | zh_TW |
| dc.subject | AdipoRon | en |
| dc.subject | ferroptosis | en |
| dc.subject | adiponectin | en |
| dc.subject | breast cancer | en |
| dc.title | 探討脂聯素受體促效劑AdipoRon 引起乳癌細胞株鐵依賴性死亡之機制 | zh_TW |
| dc.title | Investigating the mechanism of adiponectin receptor agonist, AdipoRon-induced ferroptosis in breast cancer cell lines | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林亮音;楊雅倩;蘇剛毅;卓爾婕 | zh_TW |
| dc.contributor.oralexamcommittee | Liang-In Lin;Ya-Chien Yang;Kang-Yi Su;Er-Chieh Cho | en |
| dc.subject.keyword | 乳癌,脂聯素,AdipoRon,鐵依賴性細胞死亡, | zh_TW |
| dc.subject.keyword | breast cancer,adiponectin,AdipoRon,ferroptosis, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202403894 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
