Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94724
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳允升zh_TW
dc.contributor.advisorVin-Cent Wuen
dc.contributor.author詹傑凱zh_TW
dc.contributor.authorChieh-Kai Chanen
dc.date.accessioned2024-08-16T17:45:18Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation1. Mills KT, Bundy JD, Kelly TN, et al. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016; 134(6): 441-50.
2. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 2012; 380(9859): 2224-60.
3. Vargas-Rodriguez JR, Garza-Veloz I, Flores-Morales V, et al. Hyperglycemia and Angiotensin-Converting Enzyme 2 in Pulmonary Function in the Context of SARS-CoV-2 Infection. Front Med (Lausanne) 2021; 8: 758414.
4. Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: renin-angiotensin-aldosterone system alterations. Circulation research 2015; 116(6): 960-75.
5. Conn JW. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med 1955; 45(1): 3-17.
6. Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96(4): 1327-84.
7. Reincke M, Bancos I, Mulatero P, Scholl UI, Stowasser M, Williams TA. Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol 2021; 9(12): 876-92.
8. Liu YY, King J, Kline GA, et al. Outcomes of a Specialized Clinic on Rates of Investigation and Treatment of Primary Aldosteronism. JAMA Surg 2021; 156(6): 541-9.
9. Cohen JB, Cohen DL, Herman DS, Leppert JT, Byrd JB, Bhalla V. Testing for Primary Aldosteronism and Mineralocorticoid Receptor Antagonist Use Among U.S. Veterans : A Retrospective Cohort Study. Ann Intern Med 2021; 174(3): 289-97.
10. Gkaniatsa E, Ekerstad E, Gavric M, et al. Increasing Incidence of Primary Aldosteronism in Western Sweden During 3 Decades - Yet An Underdiagnosed Disorder. J Clin Endocrinol Metab 2021; 106(9): e3603-e10.
11. Mulatero P, Stowasser M, Loh KC, et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab 2004; 89(3): 1045-50.
12. Douma S, Petidis K, Doumas M, et al. Prevalence of primary hyperaldosteronism in resistant hypertension: a retrospective observational study. Lancet (London, England) 2008; 371(9628): 1921-6.
13. Hiramatsu K, Yamada T, Yukimura Y, et al. A screening test to identify aldosterone-producing adenoma by measuring plasma renin activity. Results in hypertensive patients. Arch Intern Med 1981; 141(12): 1589-93.
14. Rossi GP, Bernini G, Caliumi C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. Journal of the American College of Cardiology 2006; 48(11): 2293-300.
15. Brown JM, Siddiqui M, Calhoun DA, et al. The Unrecognized Prevalence of Primary Aldosteronism: A Cross-sectional Study. Ann Intern Med 2020; 173(1): 10-20.
16. Markou A, Sertedaki A, Kaltsas G, et al. Stress-induced Aldosterone Hyper-Secretion in a Substantial Subset of Patients With Essential Hypertension. J Clin Endocrinol Metab 2015; 100(8): 2857-64.
17. Xu Z, Yang J, Hu J, et al. Primary Aldosteronism in Patients in China With Recently Detected Hypertension. Journal of the American College of Cardiology 2020; 75(16): 1913-22.
18. Buffolo F, Monticone S, Burrello J, et al. Is Primary Aldosteronism Still Largely Unrecognized? Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2017; 49(12): 908-14.
19. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 2002; 40(6): 892-6.
20. Parasiliti-Caprino M, Lopez C, Prencipe N, et al. Prevalence of primary aldosteronism and association with cardiovascular complications in patients with resistant and refractory hypertension. J Hypertens 2020; 38(9): 1841-8.
21. Acelajado MC, Hughes ZH, Oparil S, Calhoun DA. Treatment of Resistant and Refractory Hypertension. Circulation research 2019; 124(7): 1061-70.
22. Murase K, Nagaishi R, Takenoshita H, Nomiyama T, Akehi Y, Yanase T. Prevalence and clinical characteristics of primary aldosteronism in Japanese patients with type 2 diabetes mellitus and hypertension. Endocr J 2013; 60(8): 967-76.
23. Hu Y, Zhang J, Liu W, Su X. Determining the Prevalence of Primary Aldosteronism in Patients With New-Onset Type 2 Diabetes and Hypertension. J Clin Endocrinol Metab 2020; 105(4).
24. Newton-Cheh C, Guo CY, Gona P, et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertension 2007; 49(4): 846-56.
25. Marney AM, Brown NJ. Aldosterone and end-organ damage. Clin Sci (Lond) 2007; 113(6): 267-78.
26. Muiesan ML, Salvetti M, Paini A, et al. Inappropriate left ventricular mass in patients with primary aldosteronism. Hypertension 2008; 52(3): 529-34.
27. Hung CS, Chou CH, Liao CW, et al. Aldosterone Induces Tissue Inhibitor of Metalloproteinases-1 Expression and Further Contributes to Collagen Accumulation: From Clinical to Bench Studies. Hypertension 2016; 67(6): 1309-20.
28. Chang YY, Liao CW, Tsai CH, et al. Left Ventricular Dysfunction in Patients With Primary Aldosteronism: A Propensity Score-Matching Follow-Up Study With Tissue Doppler Imaging. Journal of the American Heart Association 2019; 8(22): e013263.
29. Monticone S, D'Ascenzo F, Moretti C, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018; 6(1): 41-50.
30. Bernini G, Galetta F, Franzoni F, et al. Arterial stiffness, intima-media thickness and carotid artery fibrosis in patients with primary aldosteronism. J Hypertens 2008; 26(12): 2399-405.
31. Demirkiran A, Everaars H, Elitok A, et al. Hypertension with primary aldosteronism is associated with increased carotid intima-media thickness and endothelial dysfunction. J Clin Hypertens (Greenwich) 2019; 21(7): 932-41.
32. Chen ZW, Tsai CH, Pan CT, et al. Endothelial Dysfunction in Primary Aldosteronism. Int J Mol Sci 2019; 20(20).
33. van der Heijden C, Smeets EMM, Aarntzen E, et al. Arterial Wall Inflammation and Increased Hematopoietic Activity in Patients With Primary Aldosteronism. J Clin Endocrinol Metab 2020; 105(5): e1967-80.
34. Sechi LA, Novello M, Lapenna R, et al. Long-term renal outcomes in patients with primary aldosteronism. Jama 2006; 295(22): 2638-45.
35. Monticone S, Sconfienza E, D'Ascenzo F, et al. Renal damage in primary aldosteronism: a systematic review and meta-analysis. J Hypertens 2020; 38(1): 3-12.
36. Gerards J, Heinrich DA, Adolf C, et al. Impaired Glucose Metabolism in Primary Aldosteronism Is Associated With Cortisol Cosecretion. J Clin Endocrinol Metab 2019; 104(8): 3192-202.
37. Adler GK, Murray GR, Turcu AF, et al. Primary Aldosteronism Decreases Insulin Secretion and Increases Insulin Clearance in Humans. Hypertension 2020; 75(5): 1251-9.
38. Huby AC, Antonova G, Groenendyk J, et al. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation 2015; 132(22): 2134-45.
39. Wolley MJ, Pimenta E, Calhoun D, Gordon RD, Cowley D, Stowasser M. Treatment of primary aldosteronism is associated with a reduction in the severity of obstructive sleep apnoea. J Hum Hypertens 2017; 31(9): 561-7.
40. Ohno Y, Sone M, Inagaki N, et al. Prevalence of Cardiovascular Disease and Its Risk Factors in Primary Aldosteronism: A Multicenter Study in Japan. Hypertension 2018; 71(3): 530-7.
41. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Renal Outcomes in Medically and Surgically Treated Primary Aldosteronism. Hypertension 2018; 72(3): 658-66.
42. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Incidence of Atrial Fibrillation and Mineralocorticoid Receptor Activity in Patients With Medically and Surgically Treated Primary Aldosteronism. JAMA Cardiol 2018; 3(8): 768-74.
43. Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. The lancet Diabetes & endocrinology 2018; 6(1): 51-9.
44. Inoue K, Goldwater D, Allison M, Seeman T, Kestenbaum BR, Watson KE. Serum Aldosterone Concentration, Blood Pressure, and Coronary Artery Calcium: The Multi-Ethnic Study of Atherosclerosis. Hypertension 2020; 76(1): 113-20.
45. Tomaschitz A, Ritz E, Pieske B, et al. Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metabolism 2014; 63(1): 20-31.
46. Wu VC, Chang CH, Wang CY, et al. Risk of Fracture in Primary Aldosteronism: A Population-Based Cohort Study. J Bone Miner Res 2017; 32(4): 743-52.
47. Reincke M, Fischer E, Gerum S, et al. Observational study mortality in treated primary aldosteronism: the German Conn's registry. Hypertension 2012; 60(3): 618-24.
48. Rossi GP. Surgically correctable hypertension caused by primary aldosteronism. Best Practice & Research Clinical Endocrinology & Metabolism 2006; 20(3): 385-400.
49. Rossi GP, Cesari M, Cuspidi C, et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 2013; 62(1): 62-9.
50. Schupp N, Queisser N, Wolf M, et al. Aldosterone causes DNA strand breaks and chromosomal damage in renal cells, which are prevented by mineralocorticoid receptor antagonists. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2010; 42(6): 458-65.
51. Gerling IC, Sun Y, Ahokas RA, et al. Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. American Journal of Physiology-Heart and Circulatory Physiology 2003; 285(2): H813-H21.
52. Funder JW, Carey RM, Mantero F, et al. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016; 101(5): 1889-916.
53. Mulatero P, Sechi LA, Williams TA, et al. Subtype diagnosis, treatment, complications and outcomes of primary aldosteronism and future direction of research: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens 2020; 38(10): 1929-36.
54. Williams TA, Lenders JWM, Mulatero P, et al. Outcomes after adrenalectomy for unilateral primary aldosteronism: an international consensus on outcome measures and analysis of remission rates in an international cohort. Lancet Diabetes Endocrinol 2017; 5(9): 689-99.
55. Arlt W, Lang K, Sitch AJ, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2017; 2(8).
56. Monticone S, Viola A, Rossato D, et al. Adrenal vein sampling in primary aldosteronism: towards a standardised protocol. Lancet Diabetes Endocrinol 2015; 3(4): 296-303.
57. Heinrich DA, Adolf C, Holler F, et al. Adrenal Insufficiency After Unilateral Adrenalectomy in Primary Aldosteronism: Long-Term Outcome and Clinical Impact. J Clin Endocrinol Metab 2019; 104(11): 5658-64.
58. Adolf C, Köhler A, Franke A, et al. Cortisol Excess in Patients With Primary Aldosteronism Impacts Left Ventricular Hypertrophy. J Clin Endocrinol Metab 2018; 103(12): 4543-52.
59. Katabami T, Fukuda H, Tsukiyama H, et al. Clinical and biochemical outcomes after adrenalectomy and medical treatment in patients with unilateral primary aldosteronism. J Hypertens 2019; 37(7): 1513-20.
60. Rossi GP, Maiolino G, Flego A, et al. Adrenalectomy Lowers Incident Atrial Fibrillation in Primary Aldosteronism Patients at Long Term. Hypertension 2018; 71(4): 585-91.
61. Ahmed AH, Gordon RD, Sukor N, Pimenta E, Stowasser M. Quality of life in patients with bilateral primary aldosteronism before and during treatment with spironolactone and/or amiloride, including a comparison with our previously published results in those with unilateral disease treated surgically. J Clin Endocrinol Metab 2011; 96(9): 2904-11.
62. Wu VC, Wang SM, Chang CH, et al. Long term outcome of Aldosteronism after target treatments. Sci Rep 2016; 6: 32103.
63. Chen YY, Lin YH, Huang WC, et al. Adrenalectomy Improves the Long-Term Risk of End-Stage Renal Disease and Mortality of Primary Aldosteronism. J Endocr Soc 2019; 3(6): 1110-26.
64. Chan CK, Lai TS, Wu V. Reply. J Hypertens 2017; 35(12): 2549-50.
65. Letavernier E, Peyrard S, Amar L, Zinzindohoue F, Fiquet B, Plouin PF. Blood pressure outcome of adrenalectomy in patients with primary hyperaldosteronism with or without unilateral adenoma. J Hypertens 2008; 26(9): 1816-23.
66. Aronova A, Gordon BL, Finnerty BM, Zarnegar R, Fahey TJ, 3rd. Aldosteronoma resolution score predicts long-term resolution of hypertension. Surgery 2014; 156(6): 1387-92; discussion 92-3.
67. Chan CK, Kim JH, Chueh E, et al. Aldosterone level after saline infusion test could predict clinical outcome in primary aldosteronism after adrenalectomy. Surgery 2019.
68. Weigel M, Riester A, Hanslik G, et al. Post-saline infusion test aldosterone levels indicate severity and outcome in primary aldosteronism. European journal of endocrinology 2015; 172(4): 443-50.
69. Chan CK, Yang WS, Lin YH, et al. Arterial Stiffness Is Associated with Clinical Outcome and Cardiorenal Injury in Lateralized Primary Aldosteronism. J Clin Endocrinol Metab 2020; 105(11).
70. Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central Artery Stiffness in Hypertension and Aging: A Problem With Cause and Consequence. Circulation research 2016; 118(3): 379-81.
71. Mattace-Raso FU, van der Cammen TJ, Hofman A, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006; 113(5): 657-63.
72. Sedaghat S, Mattace-Raso FU, Hoorn EJ, et al. Arterial Stiffness and Decline in Kidney Function. Clin J Am Soc Nephrol 2015; 10(12): 2190-7.
73. Santana LS, Guimaraes AG, Almeida MQ. Pathogenesis of Primary Aldosteronism: Impact on Clinical Outcome. Front Endocrinol (Lausanne) 2022; 13: 927669.
74. Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science (New York, NY) 2011; 331(6018): 768-72.
75. Nanba K, Omata K, Else T, et al. Targeted Molecular Characterization of Aldosterone-Producing Adenomas in White Americans. J Clin Endocrinol Metab 2018; 103(10): 3869-76.
76. Fernandes-Rosa FL, Williams TA, Riester A, et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 2014; 64(2): 354-61.
77. Scholl UI, Goh G, Stolting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nature genetics 2013; 45(9): 1050-4.
78. Azizan EA, Poulsen H, Tuluc P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nature genetics 2013; 45(9): 1055-60.
79. Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nature genetics 2013; 45(4): 440-4, 4e1-2.
80. Tadjine M, Lampron A, Ouadi L, Bourdeau I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin Endocrinol (Oxf) 2008; 68(2): 264-70.
81. Tauber P, Aichinger B, Christ C, et al. Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca(2+)-ATPase ATP2B3. Endocrinology 2016; 157(6): 2489-99.
82. Dutta RK, Arnesen T, Heie A, et al. A somatic mutation in CLCN2 identified in a sporadic aldosterone-producing adenoma. European journal of endocrinology 2019; 181(5): K37-k41.
83. Nanba K, Blinder AR, Rege J, et al. Somatic CACNA1H Mutation As a Cause of Aldosterone-Producing Adenoma. Hypertension 2020; 75(3): 645-9.
84. Zheng F-F, Zhu L-M, Nie A-F, et al. Clinical Characteristics of Somatic Mutations in Chinese Patients With Aldosterone-Producing Adenoma. Hypertension 2015; 65(3): 622-8.
85. Nanba K, Omata K, Gomez-Sanchez CE, et al. Genetic Characteristics of Aldosterone-Producing Adenomas in Blacks. Hypertension 2019; 73(4): 885-92.
86. Nishimoto K, Tomlins SA, Kuick R, et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proceedings of the National Academy of Sciences of the United States of America 2015; 112(33): E4591-9.
87. Omata K, Satoh F, Morimoto R, et al. Cellular and Genetic Causes of Idiopathic Hyperaldosteronism. Hypertension 2018; 72(4): 874-80.
88. Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015; 4: e06315.
89. Scholl UI, Stölting G, Schewe J, et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nature genetics 2018; 50(3): 349-54.
90. Williams TA, Monticone S, Mulatero P. KCNJ5 mutations are the most frequent genetic alteration in primary aldosteronism. Hypertension 2015; 65(3): 507-9.
91. Velarde-Miranda C, Gomez-Sanchez EP, Gomez-Sanchez CE. Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Clinical and experimental pharmacology & physiology 2013; 40(12): 895-901.
92. Cheng CJ, Sung CC, Wu ST, et al. Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.4 membrane abundance. J Clin Endocrinol Metab 2015; 100(1): E155-63.
93. Lenzini L, Rossitto G, Maiolino G, Letizia C, Funder JW, Rossi GP. A Meta-Analysis of Somatic KCNJ5 K(+) Channel Mutations In 1636 Patients With an Aldosterone-Producing Adenoma. J Clin Endocrinol Metab 2015; 100(8): E1089-95.
94. Wu VC, Huang KH, Peng KY, et al. Prevalence and clinical correlates of somatic mutation in aldosterone producing adenoma-Taiwanese population. Sci Rep 2015; 5: 11396.
95. Ip JC, Pang TC, Pon CK, et al. Mutations in KCNJ5 determines presentation and likelihood of cure in primary hyperaldosteronism. ANZ journal of surgery 2015; 85(4): 279-83.
96. Kitamoto T, Omura M, Suematsu S, Saito J, Nishikawa T. KCNJ5 mutation as a predictor for resolution of hypertension after surgical treatment of aldosterone-producing adenoma. J Hypertens 2018; 36(3): 619-27.
97. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37(12): 1595-607.
98. Alberti G. Introduction to the metabolic syndrome. European Heart Journal Supplements 2005; 7(suppl_D): D3-D5.
99. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Medicine 2011; 9(1): 48.
100. Sowers JR, Whaley-Connell A, Epstein M. Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Annals of internal medicine 2009; 150(11): 776-83.
101. Fallo F, Federspil G, Veglio F, Mulatero P. The metabolic syndrome in primary aldosteronism. Current hypertension reports 2007; 9(2): 106-11.
102. Fallo F, Pilon C, Urbanet R. Primary aldosteronism and metabolic syndrome. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2012; 44(3): 208-14.
103. Freel EM, Tsorlalis IK, Lewsey JD, et al. Aldosterone status associated with insulin resistance in patients with heart failure—data from the ALOFT study. Heart (British Cardiac Society) 2009; 95(23): 1920-4.
104. Akehi Y, Yanase T, Motonaga R, et al. High Prevalence of Diabetes in Patients With Primary Aldosteronism (PA) Associated With Subclinical Hypercortisolism and Prediabetes More Prevalent in Bilateral Than Unilateral PA: A Large, Multicenter Cohort Study in Japan. Diabetes Care 2019; 42(5): 938-45.
105. Wu VC, Chueh SJ, Chen L, et al. Risk of new-onset diabetes mellitus in primary aldosteronism: a population study over 5 years. Journal of hypertension 2017; 35(8): 1698-708.
106. Bellili NM, Foucan L, Fumeron F, et al. Associations of the −344 T>C and the 3097 G>A Polymorphisms of CYP11B2 Gene With Hypertension, Type 2 Diabetes, and Metabolic Syndrome in a French Population. American journal of hypertension 2010; 23(6): 660-7.
107. Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells. Hypertension (Dallas, Tex : 1979) 2007; 50(4): 750-5.
108. Sherajee SJ, Rafiq K, Nakano D, et al. Aldosterone aggravates glucose intolerance induced by high fructose. European Journal of Pharmacology 2013; 720(1): 63-8.
109. Li P, Zhang XN, Pan CM, et al. Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 2011; 43(7): 464-9.
110. Hanslik G, Wallaschofski H, Dietz A, et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn's Registry. Eur J Endocrinol 2015; 173(5): 665-75.
111. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7(1): 135.
112. Felizardo RJF, Watanabe IKM, Dardi P, Rossoni LV, Câmara NOS. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacol Res 2019; 141: 366-77.
113. Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65(6): 1331-40.
114. Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel) 2016; 8(11).
115. Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nature reviews Cardiology 2017; 14(2): 79-87.
116. Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. The Journal of clinical investigation 2014; 124(10): 4204-11.
117. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature medicine 2013; 19(5): 576-85.
118. Marques FZ, Nelson E, Chu PY, et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation 2017; 135(10): 964-77.
119. Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circulation Heart failure 2014; 7(3): 491-9.
120. Meijers BK, Evenepoel P. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant 2011; 26(3): 759-61.
121. Vanholder R, Glorieux G. The intestine and the kidneys: a bad marriage can be hazardous. Clin Kidney J 2015; 8(2): 168-79.
122. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 2016; 67(3): 483-98.
123. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 2017; 179: 24-37.
124. Hobby GP, Karaduta O, Dusio GF, Singh M, Zybailov BL, Arthur JM. Chronic kidney disease and the gut microbiome. Am J Physiol Renal Physiol 2019; 316(6): F1211-F7.
125. Poesen R, Viaene L, Verbeke K, et al. Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD. Clin J Am Soc Nephrol 2013; 8(9): 1508-14.
126. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. Journal of the American Society of Nephrology : JASN 2014; 25(9): 1897-907.
127. Ferrer M, Ruiz A, Lanza F, et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 2013; 15(1): 211-26.
128. Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI. Predominant role of host genetics in controlling the composition of gut microbiota. PloS one 2008; 3(8): e3064.
129. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell 2014; 159(4): 789-99.
130. Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature genetics 2007; 39(7): 830-2.
131. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474(7351): 307-17.
132. Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(44): 18933-8.
133. Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome medicine 2014; 6(12): 107.
134. Blekhman R, Goodrich JK, Huang K, et al. Host genetic variation impacts microbiome composition across human body sites. Genome biology 2015; 16: 191.
135. Cheng CL, Lee CH, Chen PS, Li YH, Lin SJ, Yang YH. Validation of acute myocardial infarction cases in the national health insurance research database in taiwan. J Epidemiol 2014; 24(6): 500-7.
136. Wu VC, Wu CH, Huang TM, et al. Long-term risk of coronary events after AKI. J Am Soc Nephrol 2014; 25(3): 595-605.
137. Chen HJ, Bai CH, Yeh WT, Chiu HC, Pan WH. Influence of metabolic syndrome and general obesity on the risk of ischemic stroke. Stroke 2006; 37(4): 1060-4.
138. CK C. Arterial stiffness is associated with PA outcomes: Supplemental Tables. Figshare; 2020. Deposited July 18, 2020.: https://figshare.com/articles/online_resource/Supplemental_Material_docx/12671147.
139. Halbritter J, Diaz K, Chaki M, et al. High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing. Journal of medical genetics 2012; 49(12): 756-67.
140. Azizan EA, Murthy M, Stowasser M, et al. Somatic mutations affecting the selectivity filter of KCNJ5 are frequent in 2 large unselected collections of adrenal aldosteronomas. Hypertension 2012; 59(3): 587-91.
141. Wang Z, Levison BS, Hazen JE, Donahue L, Li XM, Hazen SL. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Biochem 2014; 455: 35-40.
142. Kennedy EA, King KY, Baldridge MT. Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Frontiers in Physiology 2018; 9(1534).
143. Thackray LB, Handley SA, Gorman MJ, et al. Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell reports 2018; 22(13): 3440-53.e6.
144. Hung CS, Chou CH, Liao CW, et al. Aldosterone Induces Tissue Inhibitor of Metalloproteinases-1 Expression and Further Contributes to Collagen Accumulation: From Clinical to Bench Studies. Hypertension 2016; 67(6): 1309-20.
145. Kitamoto T, Suematsu S, Matsuzawa Y, Saito J, Omura M, Nishikawa T. Comparison of cardiovascular complications in patients with and without KCNJ5 gene mutations harboring aldosterone-producing adenomas. Journal of atherosclerosis and thrombosis 2015; 22(2): 191-200.
146. Zheng FF, Zhu LM, Nie AF, et al. Clinical characteristics of somatic mutations in Chinese patients with aldosterone-producing adenoma. Hypertension 2015; 65(3): 622-8.
147. Nanba K, Yamazaki Y, Bick N, et al. Prevalence of Somatic Mutations in Aldosterone-Producing Adenomas in Japanese Patients. The Journal of clinical endocrinology and metabolism 2020; 105(11): e4066-73.
148. Chang YY, Pan CT, Chen ZW, et al. KCNJ5 Somatic Mutations in Aldosterone-Producing Adenoma Are Associated with a Greater Recovery of Arterial Stiffness. Cancers 2021; 13(17).
149. Chang YY, Tsai CH, Peng SY, et al. KCNJ5 Somatic Mutations in Aldosterone-Producing Adenoma Are Associated With a Worse Baseline Status and Better Recovery of Left Ventricular Remodeling and Diastolic Function. Hypertension 2021; 77(1): 114-25.
150. Peng KY, Liao HW, Chan CK, et al. Presence of Subclinical Hypercortisolism in Clinical Aldosterone-Producing Adenomas Predicts Lower Clinical Success. Hypertension 2020; 76(5): 1537-44.
151. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021; 143(21): e984-e1010.
152. Chen KM, Chang YL, Wu TH, et al. Aldosterone-producing adenoma-harbouring KCNJ5 mutations is associated with lower prevalence of metabolic disorders and abdominal obesity. Journal of hypertension 2021.
153. Catena C, Colussi G, Nadalini E, et al. Relationships of plasma renin levels with renal function in patients with primary aldosteronism. Clin J Am Soc Nephrol 2007; 2(4): 722-31.
154. Liu L, Feng J, Zhang G, et al. Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Current Medical Research and Opinion 2018; 34(1): 123-9.
155. Er LK, Lin MC, Tsai YC, et al. Association of visceral adiposity and clinical outcome among patients with aldosterone producing adenoma. BMJ open diabetes research & care 2020; 8(1).
156. Chen KM, Lee BC, Chen PT, et al. Evaluation of Abdominal Computed Tomography Scans for Differentiating the Discrepancies in Abdominal Adipose Tissue Between Two Major Subtypes of Primary Aldosteronism. Front Endocrinol (Lausanne) 2021; 12: 647184.
157. Vilela LAP, Rassi-Cruz M, Guimaraes AG, et al. KCNJ5 Somatic Mutation Is a Predictor of Hypertension Remission After Adrenalectomy for Unilateral Primary Aldosteronism. J Clin Endocrinol Metab 2019; 104(10): 4695-702.
158. Yang L, Shao J, Bian Y, et al. Prevalence of type 2 diabetes mellitus among inland residents in China (2000-2014): A meta-analysis. Journal of diabetes investigation 2016; 7(6): 845-52.
159. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC public health 2009; 9: 88.
160. Chobot A, Górowska-Kowolik K, Sokołowska M, Jarosz-Chobot P. Obesity and diabetes—Not only a simple link between two epidemics. Diabetes/Metabolism Research and Reviews 2018; 34(7): e3042.
161. Lim V, Guo Q, Grant CS, et al. Accuracy of adrenal imaging and adrenal venous sampling in predicting surgical cure of primary aldosteronism. J Clin Endocrinol Metab 2014; 99(8): 2712-9.
162. Arnesen T, Glomnes N, Strømsøy S, et al. Outcome after surgery for primary hyperaldosteronism may depend on KCNJ5 tumor mutation status: a population-based study from Western Norway. Langenbeck's archives of surgery 2013; 398(6): 869-74.
163. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. Journal of the American Heart Association 2017; 6(7).
164. Senthong V, Wang Z, Li XS, et al. Intestinal Microbiota-Generated Metabolite Trimethylamine-N-Oxide and 5-Year Mortality Risk in Stable Coronary Artery Disease: The Contributory Role of Intestinal Microbiota in a COURAGE-Like Patient Cohort. Journal of the American Heart Association 2016; 5(6).
165. Shih DM, Wang Z, Lee R, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 2015; 56(1): 22-37.
166. Chou RH, Chen CY, Chen IC, et al. Trimethylamine N-Oxide, Circulating Endothelial Progenitor Cells, and Endothelial Function in Patients with Stable Angina. Sci Rep 2019; 9(1): 4249.
167. Wu P, Chen J, Chen J, et al. Trimethylamine N-oxide promotes apoE(-/-) mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J Cell Physiol 2020; 235(10): 6582-91.
168. Zhu W, Wang Z, Tang WHW, Hazen SL. Gut Microbe-Generated Trimethylamine N-Oxide From Dietary Choline Is Prothrombotic in Subjects. Circulation 2017; 135(17): 1671-3.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94724-
dc.description.abstract腎素-血管張力素-醛固酮系統(renin-angiotensin-aldosterone system, RAAS)在調節血容量、血中鈉濃度和血壓方面扮演著重要角色。高血壓影響全球超過14億成年人,且會影響人體全身的器官功能,是很重要的健康議題。醛固酮是RAAS的一部分,對維持血中鈉濃度、血容量和血壓的穩定性至關重要。
原發性高醛固酮症(primary aldosteronism, PA)首次由Jerome Conn於1954年發現,是次發性高血壓主要的原因之一,其特徵是不受腎素調控的醛固酮分泌過多。這種情況會導致鈉滯留、血容量增加、高血壓和低鉀血症。PA在嚴重或難治性高血壓以及伴有心房顫動或糖尿病的患者中發病率較高。
人體內高醛固酮血症與多種器官的不良影響有關,它會影響心臟、血管、大腦和腎臟等功能。PA還與胰島素敏感性降低和代謝綜合群及第2型糖尿病的風險增加有關。通過單側腎上腺切除術治療單側分泌PA (uPA)或使用礦物皮質素受體拮抗劑治療雙側分泌PA,可以有效降低血壓以及心血管、腦血管和腎臟併發症的風險。雖然單側腎上腺切除術目前是uPA患者的標準治療方法,但一些患者在腎上腺切除術後仍然患有高血壓或需要高血壓藥物的治療。因此,目前仍需更多的研究來闡明uPA患者在腎上腺切除術後未能完全緩解高血壓的原因並找出可能的預測因子來制定不同的術後追蹤計畫。同時,目前對於uPA患者術後長期預後的資料仍很缺乏,這也是很值得研究的主題。
我們的研究希望能找出uPA患者術後血壓控制和長期預後的預測因子以其制定個別化的追蹤計畫並對PA的病生理機轉有更進一步的了解。我們假設PA患者的不同基因變異可能會影響uPA患者的臨床表現以及在單側腎上腺切除術後的治療結果(血壓控制)和長期預後(心血管疾病和代謝症候群的發生)。我們進一步假設,uPA患者不同的基因變異可能通過消化道微生物相與其代謝產物 [三甲胺氧化物,Trimethylamine-N-oxide (TMAO)]來影響uPA患者的臨床表現,並可能與uPA患者術後的血壓控制以及心血管疾病和糖尿病的發生有關。
我們研究分析了358名接受單側腎上腺切除術的uPA患者,分析了他們臨床特徵和手術後的長期預後,同時也分析了他們的消化道微生物相及其TMAO血中濃度。我們的患者平均年齡為51.3±11.3歲,其中46.7%為男性,52.5%的患者帶有KCNJ5突變。與未有KCNJ5突變的患者相比,攜帶KCNJ5突變的患者年齡較小,有較低的糖尿病、代謝綜合群和高脂血症的患病率。同時,他們的血漿腎素活性和血中鉀離子濃度較低,但有較高的血中醛固酮濃度、腎絲球濾過率和蛋白尿的嚴重度。
在平均5.4±3.5年的追蹤時間中,攜帶KCNJ5突變的uPA患者在腎上腺切除術後一年內達到血壓良好控制的比例較高,且其死亡率和心腦血管疾病及新發糖尿病的發生率也較低。在多變量邏輯回歸分析中,我們也發現年齡、身體質量指數、血中鉀離子濃度和腫瘤大小是有否攜帶KCNJ5突變的預測因子。而與術後血壓控制成功與否的預測因子包括是否攜帶KCNJ5突變、高eGFR、較低的身體質量指數、較低的收縮壓和血中鉀離子濃度以及較短的高血壓患病時程。同時,在多變量回歸分析中也發現,攜帶KCNJ5突變的患者在長期追蹤中也有較佳的長期預後,包括有較低的死亡風險,較低的心血管疾病和新發生糖尿病的發生率。
在消化道微生物相的分析中,我們的研究結果發現uPA患者和原發性高血壓患者之間不論是在菌叢的豐富性或多樣性的部分都存在顯著差異。我們的研究也發現,uPA患者中的血中TMAO濃度比原發性高血壓族群高,且在uPA患者中,血中TMAO濃度也與心血管風險相關。腎上腺切除術似乎可以降低攜帶KCNJ5突變的uPA患者血中TMAO濃度,但在非攜帶KCNJ5突變的uPA患者中,TMAO的濃度在術後並沒有顯著的降低。
在這個研究中,我們發現攜帶KCNJ5突變的uPA患者在術後也更好的血壓控制與長期預後,包括較低的死亡率與較低的心腦血管疾病和新發糖尿病的發生率。根據我們的研究結果,我們建議非攜帶KCNJ5突變的uPA患者和具有特定臨床特徵的uPA患者在腎上腺切除術後可能需要更頻繁評估心腦血管的功能和追蹤血糖。我們的研究也發現,未來需要更進一步的研究來闡明消化道微生物相和血中TMAO濃度與uPA患者心血管風險與基因變異之間的關係。
zh_TW
dc.description.abstractThe renin-angiotensin-aldosterone system is pivotal in regulating blood volume, plasma sodium levels, and mean arterial pressure. As a result, it is a central component in managing arterial hypertension (HTN). Affecting over 1.4 billion adults worldwide and contributing to 7% of global disability-adjusted life years, HTN represents a significant global health challenge. Aldosterone is part of the RAAS, which is important for maintaining homeostasis of plasma sodium concentration, blood volume, and mean arterial blood pressure.
Primary aldosteronism (PA), first identified by Jerome Conn in 1954, is a leading form of secondary HTN characterized by excessive aldosterone production independent of renin. This condition increases sodium retention, volume expansion, elevated blood pressure, and hypokalemia. The incidence of PA is higher among patients with severe or resistant HTN and those with comorbid conditions such as atrial fibrillation or diabetes mellitus (DM).
Elevated aldosterone levels in PA are associated with adverse effects on various organs, including the heart, blood vessels, brain, and kidneys. PA is also linked to reduced insulin sensitivity and a higher risk of metabolic syndrome and type 2 diabetes. Effective treatment of PA, through either adrenalectomy for unilateral cases or MRAs for bilateral cases, can reduce the risk of cardiovascular, cerebrovascular, and renal complications. Although adrenalectomy is currently the standard treatment for patients with unilateral PA (uPA), some patients remain hypertensive or require antihypertensive medications after adrenalectomy. Further investigation is essential to elucidate the predisposing factors and underlying pathophysiology that contribute to the variable rates of complete remission observed among patients with uPA following adrenalectomy.
This investigation assessed the extended-term consequences linked with predictive factors in PA. Our hypothesis posited that the interplay among genetic variants may influence the clinical presentations, treatment outcomes (blood pressure control), and long-term consequences (cardiovascular/metabolic outcomes) in pre- and post-unilateral adrenalectomy patients with uPA. Additionally, we proposed that genetic variants could modulate the formation of gut microbiome-related metabolites, specifically trimethylamine-N-oxide (TMAO), via the gut microbiome and may be associated with cardiovascular and metabolic comorbidities in patients with uPA.
This study analyzed the baseline characteristics and outcomes of 358 uPA patients who underwent adrenalectomy. The cohort's mean age was 51.3±11.3 years, with 46.7% male and 52.5% carrying KCNJ5 mutations. Individuals carrying the KCNJ5 mutation were observed to be younger, with a lower prevalence of DM, metabolic syndrome, and hyperlipidemia. Additionally, they exhibited lower plasma renin activity and serum potassium but higher plasma aldosterone concentration, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio compared to non-KCNJ5 carriers.
The uPA patients with KCNJ5 mutations exhibited a higher rate of complete clinical success (odds ratio [OR]=1.98; 95% confidence interval [CI], 1.14-3.46; P=0.016) six months to one-year post-adrenalectomy and a lower incidence of mortality and major adverse cardiac and cerebrovascular events (MACCEs) (hazard ratio [HR]=0.46; 95% CI, 0.22-0.98; P=0.044) during a mean follow-up of 5.4±3.5 years. They also had a lower incidence of new-onset DM (HR=0.36; 95% CI, 0.14-0.97; P=0.04). Multivariable logistic regression identified age, body mass index (BMI), potassium, and tumor size as predictors of KCNJ5 mutations. Factors associated with complete clinical success included KCNJ5 mutations, high eGFR, lower BMI, systolic blood pressure, serum potassium level, and shorter HTN duration. Patients with KCNJ5 mutations exhibited a reduced risk of MACCEs and mortality during long-term follow-up. Additionally, carriers of the KCNJ5 mutation showed a lower incidence of new-onset DM.
In gut microbiome analysis, our results revealed significant differences between uPA and essential HTN patients, with specific bacteria associated with each condition. The study found that circulating TMAO levels were linked to cardiovascular risks in uPA cohorts. Adrenalectomy reduced TMAO levels in uPA patients with KCNJ5 mutations but not in non-KCNJ5 mutation carriers.
In conclusion, uPA patients with KCNJ5 mutations are more likely to achieve complete clinical success and have better long-term outcomes post-adrenalectomy. Our findings suggest that uPA patients with non-KCNJ5 mutations and those with specific clinical characteristics may require more frequent monitoring for cardiovascular events and new-onset DM post-adrenalectomy. Further research is required to elucidate the relationship between TMAO levels and cardiovascular risk in uPA patients.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:45:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:45:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsDoctoral Dissertation Acceptance Certificate i
Acknowledgments ii
Chinese Abstract iii
English Abstract vi
Chapter 1: Introduction 1
Chapter 2: Literature Review 7
Chapter 3: Methodology 17
Chapter 4: Results 25
Chapter 5: Discussion 31
References 38
Appendices 47
Publications Related to This Dissertation 82
-
dc.language.isoen-
dc.subject高血壓zh_TW
dc.subject原發性高醛固酮症zh_TW
dc.subjectKCNJ5體細胞突變zh_TW
dc.subject消化道微生物相zh_TW
dc.subject三甲胺氧化物zh_TW
dc.subject腎上腺切除術zh_TW
dc.subject長期預後zh_TW
dc.subjectgut microbiomeen
dc.subjectprimary aldosteronismen
dc.subjectKCNJ5 somatic mutationsen
dc.subjectlong-term outcomesen
dc.subjectadrenalectomyen
dc.subjecttrimethylamine-N-oxideen
dc.subjecthypertensionen
dc.title原發性高醛固酮症接受腎上腺切除的臨床預後:探討KCNJ5基因組突變和三甲胺氧化物在單側分泌原發性高醛固酮症所扮演的角色zh_TW
dc.titleThe Clinical Outcomes of Primary Aldosteronism after Adrenalectomy: The Role of KCNJ5 Somatic Mutations and Trimethylamine N-Oxide (TMAO) in Unilateral Primary Aldosteronismen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.coadvisor楊偉勛zh_TW
dc.contributor.coadvisorWei-Shiung Yangen
dc.contributor.oralexamcommittee林彥宏;黃尚志;施翔蓉;吳彥雯zh_TW
dc.contributor.oralexamcommitteeYen-Hung Lin;Shang-Jyh Hwang;Shyang-Rong Shih;Yen-Wen Wuen
dc.subject.keyword高血壓,原發性高醛固酮症,KCNJ5體細胞突變,消化道微生物相,三甲胺氧化物,腎上腺切除術,長期預後,zh_TW
dc.subject.keywordhypertension,primary aldosteronism,KCNJ5 somatic mutations,gut microbiome,trimethylamine-N-oxide,adrenalectomy,long-term outcomes,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202403436-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved