請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94721完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈景山 | zh_TW |
| dc.contributor.advisor | Jean-San Chia | en |
| dc.contributor.author | 林軒兆 | zh_TW |
| dc.contributor.author | Hsuan-Chao Lin | en |
| dc.date.accessioned | 2024-08-16T17:44:15Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | 1. A. J. Ridley et al., Cell migration: integrating signals from front to back. Science (New York, N.Y.) 302, 1704-1709 (2003).
2. P. Devreotes, A. R. Horwitz, Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol 7, a005959 (2015). 3. O. Pertz, L. Hodgson, R. L. Klemke, K. M. Hahn, Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069-1072 (2006). 4. A. J. Ridley, Rho family proteins: coordinating cell responses. Trends in cell biology 11, 471-477 (2001). 5. M. M. Zegers, P. Friedl, Rho GTPases in collective cell migration. Small GTPases 5, e28997 (2014). 6. C. D. Lawson, A. J. Ridley, Rho GTPase signaling complexes in cell migration and invasion. The Journal of cell biology 217, 447-457 (2018). 7. P. Nalbant, Y. C. Chang, J. Birkenfeld, Z. F. Chang, G. M. Bokoch, Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Molecular biology of the cell 20, 4070-4082 (2009). 8. M. Raftopoulou, A. Hall, Cell migration: Rho GTPases lead the way. Dev Biol 265, 23-32 (2004). 9. A. J. Ridley, Rho GTPase signalling in cell migration. Current opinion in cell biology 36, 103-112 (2015). 10. A. V. Schofield, R. Steel, O. Bernard, Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. The Journal of biological chemistry 287, 43620-43629 (2012). 11. B. Xu et al., RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 227, 2722-2729 (2012). 12. K. P. Goetsch, C. Snyman, K. H. Myburgh, C. U. Niesler, ROCK-2 is associated with focal adhesion maturation during myoblast migration. Journal of cellular biochemistry 115, 1299-1307 (2014). 13. H. Gong et al., Rho-Associated Protein Kinase (ROCK) Promotes Proliferation and Migration of PC-3 and DU145 Prostate Cancer Cells by Targeting LIM Kinase 1 (LIMK1) and Matrix Metalloproteinase-2 (MMP-2). Med Sci Monit 25, 3090-3099 (2019). 14. M. Morgan-Fisher, U. M. Wewer, A. Yoneda, Regulation of ROCK activity in cancer. J Histochem Cytochem 61, 185-198 (2013). 15. R. M. Touyz et al., Vascular smooth muscle contraction in hypertension. Cardiovasc Res 114, 529-539 (2018). 16. E. K. Kim et al., Linker region of Akt1/protein kinase Balpha mediates platelet-derived growth factor-induced translocation and cell migration. Cell Signal 20, 2030-2037 (2008). 17. Galaria, II, S. M. Nicholl, E. Roztocil, M. G. Davies, Urokinase-induced smooth muscle cell migration requires PI3-K and Akt activation. J Surg Res 127, 46-52 (2005). 18. Y. Qian et al., PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol 286, C153-163 (2004). 19. J. Segarra, L. Balenci, T. Drenth, F. Maina, F. Lamballe, Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. The Journal of biological chemistry 281, 4771-4778 (2006). 20. M. Yoeli-Lerner, Y. R. Chin, C. K. Hansen, A. Toker, Akt/protein kinase b and glycogen synthase kinase-3beta signaling pathway regulates cell migration through the NFAT1 transcription factor. Mol Cancer Res 7, 425-432 (2009). 21. G. Xue, B. A. Hemmings, PKB/Akt-dependent regulation of cell motility. J Natl Cancer Inst 105, 393-404 (2013). 22. C. Wei et al., Calcium flickers steer cell migration. Nature 457, 901-905 (2009). 23. F. C. Tsai, G. H. Kuo, S. W. Chang, P. J. Tsai, Ca2+ signaling in cytoskeletal reorganization, cell migration, and cancer metastasis. BioMed research international 2015, 409245 (2015). 24. A. Huttenlocher et al., Regulation of cell migration by the calcium-dependent protease calpain. The Journal of biological chemistry 272, 32719-32722 (1997). 25. J. Prudent et al., Mitochondrial Ca(2+) uptake controls actin cytoskeleton dynamics during cell migration. Sci Rep 6, 36570 (2016). 26. A. Tosatto et al., The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha. EMBO Mol Med 8, 569-585 (2016). 27. G. Barbet et al., The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nature immunology 9, 1148-1156 (2008). 28. G. Thomas, M. N. Hall, TOR signalling and control of cell growth. Current opinion in cell biology 9, 782-787 (1997). 29. L. Liu, C. A. Parent, Review series: TOR kinase complexes and cell migration. The Journal of cell biology 194, 815-824 (2011). 30. A. T. Sasaki, R. A. Firtel, Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol 85, 873-895 (2006). 31. L. W. Kim, Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration. BMB Rep 50, 437-444 (2017). 32. C. Huang, K. Jacobson, M. D. Schaller, MAP kinases and cell migration. Journal of cell science 117, 4619-4628 (2004). 33. R. L. Klemke et al., Regulation of cell motility by mitogen-activated protein kinase. The Journal of cell biology 137, 481-492 (1997). 34. Y. Sun et al., Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 35, 600-604 (2015). 35. K. B. Reddy, S. M. Nabha, N. Atanaskova, Role of MAP kinase in tumor progression and invasion. Cancer metastasis reviews 22, 395-403 (2003). 36. Z. Mostafavi-Pour et al., Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. The Journal of cell biology 161, 155-167 (2003). 37. L. A. Cary, J. L. Guan, Focal adhesion kinase in integrin-mediated signaling. Front Biosci 4, D102-113 (1999). 38. N. O. Carragher, M. C. Frame, Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends in cell biology 14, 241-249 (2004). 39. X. Zhao, J. L. Guan, Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63, 610-615 (2011). 40. K. Vuori, Integrin signaling: tyrosine phosphorylation events in focal adhesions. J Membr Biol 165, 191-199 (1998). 41. M. L. Gardel, I. C. Schneider, Y. Aratyn-Schaus, C. M. Waterman, Mechanical integration of actin and adhesion dynamics in cell migration. Annual review of cell and developmental biology 26, 315-333 (2010). 42. R. J. Pelham, Jr., Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America 94, 13661-13665 (1997). 43. J. T. Parsons, K. H. Martin, J. K. Slack, J. M. Taylor, S. A. Weed, Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606-5613 (2000). 44. S. V. Plotnikov, A. M. Pasapera, B. Sabass, C. M. Waterman, Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513-1527 (2012). 45. M. C. Jones, P. T. Caswell, J. C. Norman, Endocytic recycling pathways: emerging regulators of cell migration. Current opinion in cell biology 18, 549-557 (2006). 46. H. Li, H. F. Li, R. A. Felder, A. Periasamy, P. A. Jose, Rab4 and Rab11 coordinately regulate the recycling of angiotensin II type I receptor as demonstrated by fluorescence resonance energy transfer microscopy. J Biomed Opt 13, 031206 (2008). 47. T. Maritzen, H. Schachtner, D. F. Legler, On the move: endocytic trafficking in cell migration. Cellular and molecular life sciences : CMLS 72, 2119-2134 (2015). 48. B. D. Grant, J. G. Donaldson, Pathways and mechanisms of endocytic recycling. Nature reviews. Molecular cell biology 10, 597-608 (2009). 49. P. T. Caswell, J. C. Norman, Integrin trafficking and the control of cell migration. Traffic 7, 14-21 (2006). 50. K. L. Rossman, C. J. Der, J. Sondek, GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nature reviews. Molecular cell biology 6, 167-180 (2005). 51. J. M. Bristow et al., The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. Journal of cell science 122, 4535-4546 (2009). 52. A. Zaritsky et al., Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. The Journal of cell biology 216, 1543-1556 (2017). 53. H. Wang, Y. Li, Y. Wang, Z. G. Han, B. Cai, C9orf100, a new member of the Dbl-family guanine nucleotide exchange factors, promotes cell proliferation and migration in hepatocellular carcinoma. Mol Med Rep 5, 1169-1174 (2012). 54. I. Dasgupta, D. McCollum, Control of cellular responses to mechanical cues through YAP/TAZ regulation. The Journal of biological chemistry 294, 17693-17706 (2019). 55. Y. Qiao et al., YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis. Cell Rep 19, 1495-1502 (2017). 56. D. E. Mason et al., YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. The Journal of cell biology 218, 1369-1389 (2019). 57. S. R. Shah et al., Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of Brain Cancer. Mol Pharm 16, 1433-1443 (2019). 58. J. W. Haskins, D. X. Nguyen, D. F. Stern, Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Science signaling 7, ra116 (2014). 59. E. Scarpa, R. Mayor, Collective cell migration in development. The Journal of cell biology 212, 143-155 (2016). 60. R. Mayor, S. Etienne-Manneville, The front and rear of collective cell migration. Nature reviews. Molecular cell biology 17, 97-109 (2016). 61. P. Friedl, D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology 10, 445-457 (2009). 62. A. Haeger, K. Wolf, M. M. Zegers, P. Friedl, Collective cell migration: guidance principles and hierarchies. Trends in cell biology 25, 556-566 (2015). 63. S. Z. Lin, S. Ye, G. K. Xu, B. Li, X. Q. Feng, Dynamic Migration Modes of Collective Cells. Biophys J 115, 1826-1835 (2018). 64. P. Friedl, R. Mayor, Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 9, (2017). 65. M. George, F. Bullo, O. Campas, Connecting individual to collective cell migration. Sci Rep 7, 9720 (2017). 66. H. J. Janse van Rensburg, X. Yang, The roles of the Hippo pathway in cancer metastasis. Cell Signal 28, 1761-1772 (2016). 67. P. M. Campbell, C. J. Der, Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol 14, 105-114 (2004). 68. A. W. Lambert, D. R. Pattabiraman, R. A. Weinberg, Emerging Biological Principles of Metastasis. Cell 168, 670-691 (2017). 69. D. R. Welch, D. R. Hurst, Defining the Hallmarks of Metastasis. Cancer research 79, 3011-3027 (2019). 70. J. M. Bailey, P. K. Singh, M. A. Hollingsworth, Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. Journal of cellular biochemistry 102, 829-839 (2007). 71. M. Deyell, C. S. Garris, A. M. Laughney, Cancer metastasis as a non-healing wound. Br J Cancer 124, 1491-1502 (2021). 72. L. W. Ellisen, A wound-healing program is hijacked to promote cancer metastasis. The Journal of experimental medicine 214, 2813-2815 (2017). 73. D. G. DeNardo, M. Johansson, L. M. Coussens, Immune cells as mediators of solid tumor metastasis. Cancer metastasis reviews 27, 11-18 (2008). 74. S. I. Grivennikov, F. R. Greten, M. Karin, Immunity, inflammation, and cancer. Cell 140, 883-899 (2010). 75. Q. Tang, J. Tang, X. Ren, C. Li, Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. Environ Pollut 261, 114129 (2020). 76. C. J. Lord, A. N. Tutt, A. Ashworth, Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med 66, 455-470 (2015). 77. A. Mullard, Synthetic lethality screens point the way to new cancer drug targets. Nat Rev Drug Discov 16, 589-591 (2017). 78. W. Topatana et al., Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. J Hematol Oncol 13, 118 (2020). 79. W. Zhang et al., BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner. Oncotarget 6, 7608-7618 (2015). 80. A. Huang, L. A. Garraway, A. Ashworth, B. Weber, Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 19, 23-38 (2020). 81. J. Zhang et al., Analysis of transcription factor Stk40 expression and function during mouse pre-implantation embryonic development. Mol Med Rep 9, 535-540 (2014). 82. L. Y. Yu et al., Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. Sci Adv 7, (2021). 83. K. He et al., Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. The Journal of biological chemistry 292, 351-360 (2017). 84. H. Yu et al., Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins. Journal of cell science 128, 2881-2890 (2015). 85. L. Wang et al., Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell death & disease 8, e2722 (2017). 86. H. Yu et al., Deletion of STK40 protein in mice causes respiratory failure and death at birth. The Journal of biological chemistry 288, 5342-5352 (2013). 87. P. G. O'Reilly et al., The Ste20-like kinase SLK is required for cell cycle progression through G2. The Journal of biological chemistry 280, 42383-42390 (2005). 88. A. Y. Luhovy, A. Jaberi, J. Papillon, J. Guillemette, A. V. Cybulsky, Regulation of the Ste20-like kinase, SLK: involvement of activation segment phosphorylation. The Journal of biological chemistry 287, 5446-5458 (2012). 89. S. Wagner, T. A. Flood, P. O'Reilly, K. Hume, L. A. Sabourin, Association of the Ste20-like kinase (SLK) with the microtubule. Role in Rac1-mediated regulation of actin dynamics during cell adhesion and spreading. The Journal of biological chemistry 277, 37685-37692 (2002). 90. A. I. Fokin, T. S. Klementeva, E. S. Nadezhdina, A. V. Burakov, SLK/LOSK kinase regulates cell motility independently of microtubule organization and Golgi polarization. Cytoskeleton (Hoboken, N.J.) 73, 83-92 (2016). 91. Y. H. Zhang et al., Expression of the Ste20-like kinase SLK during embryonic development and in the murine adult central nervous system. Brain Res Dev Brain Res 139, 205-215 (2002). 92. A. Bretscher, D. Reczek, M. Berryman, Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. Journal of cell science 110 ( Pt 24), 3011-3018 (1997). 93. S. Hiscox, W. G. Jiang, Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/beta-catenin. Journal of cell science 112 Pt 18, 3081-3090 (1999). 94. N. Gupta et al., Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nature immunology 7, 625-633 (2006). 95. H. Zhao et al., Ezrin regulates NHE3 translocation and activation after Na+-glucose cotransport. Proceedings of the National Academy of Sciences of the United States of America 101, 9485-9490 (2004). 96. N. Parameswaran, K. Matsui, N. Gupta, Conformational switching in ezrin regulates morphological and cytoskeletal changes required for B cell chemotaxis. Journal of immunology (Baltimore, Md. : 1950) 186, 4088-4097 (2011). 97. K. W. Hunter, Ezrin, a key component in tumor metastasis. Trends Mol Med 10, 201-204 (2004). 98. P. Vitorino, T. Meyer, Modular control of endothelial sheet migration. Genes & development 22, 3268-3281 (2008). 99. K. J. Simpson et al., Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature cell biology 10, 1027-1038 (2008). 100. F. C. Tsai et al., A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nature cell biology 16, 133-144 (2014). 101. P. Timpson, G. E. Jones, M. C. Frame, V. G. Brunton, Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Curr Biol 11, 1836-1846 (2001). 102. R. A. Worthylake, K. Burridge, RhoA and ROCK promote migration by limiting membrane protrusions. The Journal of biological chemistry 278, 13578-13584 (2003). 103. H. Zhan et al., An Excitable Ras/PI3K/ERK Signaling Network Controls Migration and Oncogenic Transformation in Epithelial Cells. Dev Cell 54, 608-623 e605 (2020). 104. C. Guilluy et al., Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II Type 2 receptor activation. Circulation research 102, 1265-1274 (2008). 105. R. Zaman et al., Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. The Journal of cell biology 220, (2021). 106. Y. Zhang et al., Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res 13, R52 (2011). 107. T. Criswell et al., Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. The Journal of biological chemistry 280, 14212-14221 (2005). 108. L. Gao et al., IGF-1R, a target of let-7b, mediates crosstalk between IRS-2/Akt and MAPK pathways to promote proliferation of oral squamous cell carcinoma. Oncotarget 5, 2562-2574 (2014). 109. D. C. Tomlinson, E. W. Baxter, P. M. Loadman, M. A. Hull, M. A. Knowles, FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCgamma/COX-2-mediated mechanisms. PloS one 7, e38972 (2012). 110. D. K. Ma, K. Ponnusamy, M. R. Song, G. L. Ming, H. Song, Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain 2, 16 (2009). 111. Q. Xu et al., MicroRNA-1291 promotes endometrial fibrosis by regulating the ArhGAP29-RhoA/ROCK1 signaling pathway in a murine model. Mol Med Rep 16, 4501-4510 (2017). 112. A. Post, W. J. Pannekoek, B. Ponsioen, M. J. Vliem, J. L. Bos, Rap1 Spatially Controls ArhGAP29 To Inhibit Rho Signaling during Endothelial Barrier Regulation. Molecular and cellular biology 35, 2495-2502 (2015). 113. L. Li et al., Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proceedings of the National Academy of Sciences of the United States of America 107, 1402-1407 (2010). 114. A. J. Ridley, Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in cell biology 16, 522-529 (2006). 115. A. Kobielak, E. Fuchs, Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nature reviews. Molecular cell biology 5, 614-625 (2004). 116. M. D. Schaller, Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-6472 (2001). 117. P. Kanchanawong et al., Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580-584 (2010). 118. A. Y. Khapchaev, V. P. Shirinsky, Myosin Light Chain Kinase MYLK1: Anatomy, Interactions, Functions, and Regulation. Biochemistry (Mosc) 81, 1676-1697 (2016). 119. K. Burridge, C. Guilluy, Focal adhesions, stress fibers and mechanical tension. Experimental cell research 343, 14-20 (2016). 120. F. C. Tsai, T. Meyer, Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Curr Biol 22, 837-842 (2012). 121. G. Giannone et al., Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561-575 (2007). 122. S. J. Franco et al., Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature cell biology 6, 977-983 (2004). 123. C. L. Cortesio, L. R. Boateng, T. M. Piazza, D. A. Bennin, A. Huttenlocher, Calpain-mediated proteolysis of paxillin negatively regulates focal adhesion dynamics and cell migration. The Journal of biological chemistry 286, 9998-10006 (2011). 124. I. Durzynska et al., STK40 Is a Pseudokinase that Binds the E3 Ubiquitin Ligase COP1. Structure 25, 287-294 (2017). 125. J. Hu et al., Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation. The Journal of biological chemistry 294, 9959-9972 (2019). 126. S. K. Mitra, D. A. Hanson, D. D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nature reviews. Molecular cell biology 6, 56-68 (2005). 127. A. M. Pasapera, I. C. Schneider, E. Rericha, D. D. Schlaepfer, C. M. Waterman, Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. The Journal of cell biology 188, 877-890 (2010). 128. E. G. Kleinschmidt, D. D. Schlaepfer, Focal adhesion kinase signaling in unexpected places. Current opinion in cell biology 45, 24-30 (2017). 129. G. Nardone et al., YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun 8, 15321 (2017). 130. B. Zhao et al., TEAD mediates YAP-dependent gene induction and growth control. Genes & development 22, 1962-1971 (2008). 131. D. Lai, K. C. Ho, Y. Hao, X. Yang, Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer research 71, 2728-2738 (2011). 132. J. Esteves de Lima, M. A. Bonnin, C. Birchmeier, D. Duprez, Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis. Elife 5, (2016). 133. S. Dupont et al., Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183 (2011). 134. B. V. Reddy, K. D. Irvine, Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 24, 459-471 (2013). 135. S. Kuge, N. Jones, A. Nomoto, Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16, 1710-1720 (1997). 136. Y. Kim, E. H. Jho, Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep 51, 143-150 (2018). 137. H. Han et al., Hippo signaling dysfunction induces cancer cell addiction to YAP. Oncogene 37, 6414-6424 (2018). 138. L. Chen et al., cAMP response element-binding protein and Yes-associated protein form a feedback loop that promotes neurite outgrowth. J Cell Mol Med 22, 374-381 (2018). 139. J. Wang et al., Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology 58, 1011-1020 (2013). 140. R. A. M. Serafim et al., Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. J Med Chem 64, 13259-13278 (2021). 141. H. Celik et al., Ezrin Inhibition Up-regulates Stress Response Gene Expression. The Journal of biological chemistry 291, 13257-13270 (2016). 142. A. Mogilner, G. Oster, Cell motility driven by actin polymerization. Biophys J 71, 3030-3045 (1996). 143. R. Ait-Haddou, W. Herzog, Brownian ratchet models of molecular motors. Cell Biochem Biophys 38, 191-214 (2003). 144. R. E. Roberts, M. B. Hallett, Neutrophil Cell Shape Change: Mechanism and Signalling during Cell Spreading and Phagocytosis. International journal of molecular sciences 20, (2019). 145. A. Mogilner, G. Oster, Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys J 84, 1591-1605 (2003). 146. R. Viswanatha, P. Y. Ohouo, M. B. Smolka, A. Bretscher, Local phosphocycling mediated by LOK/SLK restricts ezrin function to the apical aspect of epithelial cells. The Journal of cell biology 199, 969-984 (2012). 147. K. Leguay et al., Interphase microtubule disassembly is a signaling cue that drives cell rounding at mitotic entry. The Journal of cell biology 221, (2022). 148. A. T. Lombardo, C. A. R. Mitchell, R. Zaman, D. J. McDermitt, A. Bretscher, ARHGAP18-ezrin functions as an autoregulatory module for RhoA in the assembly of distinct actin-based structures. Elife 13, (2024). 149. P. Pujuguet, L. Del Maestro, A. Gautreau, D. Louvard, M. Arpin, Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Molecular biology of the cell 14, 2181-2191 (2003). 150. A. L. Neisch, R. G. Fehon, Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Current opinion in cell biology 23, 377-382 (2011). 151. Y. Song et al., Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Frontiers in cell and developmental biology 8, 588801 (2020). 152. C. Tran Quang, A. Gautreau, M. Arpin, R. Treisman, Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO J 19, 4565-4576 (2000). 153. B. Zhao, L. Li, K. Tumaneng, C. Y. Wang, K. L. Guan, A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes & development 24, 72-85 (2010). 154. J. S. Mo et al., Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature cell biology 17, 500-510 (2015). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94721 | - |
| dc.description.abstract | 在我們的綜合研究中,我們調查了影響細胞骨架重塑和細胞遷移的兩種不同機制。我們最初的工作集中在serine-threonine kinase 40 (STK40)和mitogen-activated protein kinase (MAPK)之間的協同作用,突顯出合成阻動的概念。通過shRNA-藥物的雙重篩選,我們觀察到STK40和MAPK的同時抑制顯著減少了細胞遷移。這種效應主要來自於STK40基因敲除強化了點狀粘附 (focal adhesion, FA)複合體,這種基因敲除降低了yes-associated protein (YAP) 蛋白的穩定性並減少了其核質比。MAPK的抑制進一步損害了YAP的活性,且破壞FA的動態平衡。這些對於STK40-YAP-MAPK路徑的協調調控, 為我們所稱的“合成阻動”提供了基礎,這是一種調節細胞運動性的新策略。接著我們進一步探討從合成阻動篩選中指出的另一對蛋白的交互作用——Ste20-like kinase (SLK)-Rho-associated protein kinase (ROCK),我們將焦點放在SLK如何以非磷酸化的方式與Ezrin互動並重塑肌動蛋白結構。具體來說,我們證明了在SLK或Ezrin基因敲除下,HaCaT細胞中的收縮性肌動蛋白束會顯著增加,而抑制Ezrin的磷酸化並未增加這些收縮性肌動蛋白束。此外,Ezrin基因敲除引起的收縮性肌動蛋白束的增加可以通過過表達未磷酸化的Ezrin突變體所逆轉,支持SLK-Ezrin的串聯在細胞遷移期間獨立於磷酸化調控去調節收縮性肌動蛋白束。綜上所述,這些研究揭示了兩條獨立的路徑,通過這些路徑可以調節細胞骨架的重塑,每條路徑都具有其自身的重要性,並提供了管理細胞遷移和細胞骨架組織的創新方法。這些發現不僅加深了我們對細胞運動的理解,也為以異常細胞遷移為特徵的疾病引入了潛在的治療目標。 | zh_TW |
| dc.description.abstract | In our comprehensive study, we investigated two distinct mechanisms that influence cytoskeletal remodeling and cell migration. Our initial work focused on the synergistic interaction between serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK), highlighting the concept of synthetic dysmobility. Through an shRNA-drug two-hit screen, we observed a significant reduction in cell migration by concurrent inhibition of STK40 and MAPK. This effect primarily stemmed from strengthening of focal adhesion (FA) complexes by STK40 knockdown, which destabilized yes-associated protein (YAP) and reduced its nuclear translocation. MAPK inhibition further impaired YAP activities, leading to disruptions in FA dynamics. These insights into the coordinated STK40-YAP-MAPK pathway provide a basis for what we term “synthetic dysmobility”, a novel strategy to modulate cell motility. We further explored another interaction pair identified from our screen, the Ste20-like kinase (SLK)-Rho-associated protein kinase (ROCK) interaction, focusing on how SLK interacts with Ezrin to remodel actin structures in a particularly phosphorylation-independent manner. Specifically, we demonstrated a significant increase in contractile actin bundles in migrating HaCaT cells under knockdown of SLK or Ezrin, while suppression of Ezrin phosphorylation did not increase those bundles. Moreover, the increase in contractile actin bundles caused by Ezrin knockdown could be reversed by overexpression an unphosphorylated Ezrin mutant, supporting the phosphorylation-independent facet of SLK-Ezrin cascade in regulating of contractile actin bundles during cell migration. Collectively, these studies unveil two separate pathways by which cytoskeletal remodeling can be modulated, each significant in its own right, and provide innovative approaches for managing cell migration and cytoskeletal organization. These findings not only deepen our understanding of cell motility but also introduce potential therapeutic targets for diseases characterized by abnormal cell migration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:44:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:44:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgement ii 中文摘要 iii Abstract iv 圖 次 ix Chapter 1 Introduction 1 1.1 Cell migration 1 1.1.1 Rho GTPases and Actin Dynamics 1 1.1.2 Regulation by ROCK 2 1.1.3 PI3K/Akt Pathway 4 1.1.4 Calcium Regulation 5 1.1.5 TOR Signaling 7 1.1.6 MAPK/ERK Pathway 8 1.1.7 Integrin Signaling and Focal Adhesions 9 1.1.7.1 Focal adhesion dynamics in cell locomotion 11 1.1.8 Endocytic Recycling Pathways 13 1.1.9 Guanine Nucleotide Exchange Factors (GEFs) 14 1.1.10 YAP Regulation 15 1.2 Collective cell migration 17 1.2.1 Research Methodologies 19 1.2.2 Key Findings 23 1.2.3 Experimental Data Insights 27 1.3 Cancer Metastasis 31 1.4 Rationale for a two-hit migration screen 35 1.4.1 Concept of synthetic lethality 35 1.4.2 two-hit migration screen 37 1.5 STK40: A multifaceted regulator of cellular processes 39 1.6 SLK and Ezrin: partners in cellular architecture and signaling 40 1.6.1 SLK: a versatile regulator of cellular processes 41 1.6.2 Ezrin: a key regulator of cellular dynamics 42 Chapter 2 Materials and methods 44 2.1 Cell culture 44 2.2 Constructs 44 2.3 Lentivirus 45 2.4 “Two-hit” migration screen 46 2.5 Single-cell tracing migration assays 47 2.6 Double-inhibition experiment 49 2.7 Immunofluorescent staining 50 2.8 In vitro permeability assay 52 2.9 YAP activity assay 52 2.10 Real-time reverse transcription PCR 53 2.11 FA analysis 53 2.12 FA dynamic assay 54 2.13 Western blotting 56 2.14 Antibodies 58 2.15 Myofibroblastic differentiation assay 59 2.16 Flow cytometry 61 2.17 YAP analysis 61 2.18 Cycloheximide assay 61 2.19 Statistical analysis 62 Chapter 3 Results 63 3.1 Synthetic Impairment Screen Reveals a Coordinated STK40-YAP-MAPK Network Promoting Cellular Movement 63 3.1.1 Dual-Target Screen to Decipher Signaling Interactions in Cellular Mobility 63 3.1.2 STK40 Modifies Cellular Movement Through Regulation of Adhesion Cytoskeletons 65 3.1.3 STK40 Partners with MAPK in YAP-Driven Focal Adhesion Remodeling 69 3.2 Cooperative influence of SLK and ROCK on sheet migration dynamics in cellular assays 72 3.2.1 SLK did not directly regulate ROCK activities 73 3.2.2 Distinct roles of SLK and ROCK in cell adhesion modules 73 3.3 Synthetic immobility screening exposes a phosphorylation-independent aspect of the SLK-Ezrin-F-actin signaling pathway 74 3.3.1 Differential effects of SLK and Ezrin knockdown on actin configurations relative to Ezrin dephosphorylation 75 3.3.2 Double inhibition studies uncover a new phosphorylation-independent SLK-EZR pathway in actin remodeling 76 3.3.3 Ezrin facilitates remodeling of contractile actin fibers via phosphorylation-independent routes 77 3.3.4 The knockdown of SLK or Ezrin led to an increase in contractile actin fibers by modifying actin dynamics, as opposed to altering actin presentation. 77 Chapter 4 Discussion 78 4.1 Cooperative regulation of YAP signaling by STK40 and MAPK 78 4.2 How does STK40 regulate YAP? 79 4.2.1 Hypothesis 1: STK40 Prevents YAP Degradation by Direct Binding 79 4.2.2 Hypothesis 2: STK40 Modulates Importin and Exportin Activity 80 4.2.3 Hypothesis 3: STK40 Inhibits E3 Ubiquitin Ligase Activity 80 4.2.4 Hypothesis 4: STK40 Modulates MST1/2 or LAST1/2 Activity 81 4.2.5 Integrative Insights from Recent Research 81 4.3 Working hypothesis: SLK-Ezrin regulation of contractile actin bundles via unphosphorylation mechanism 82 Chapter 5 Figures 86 Chapter 6 References 111 Chapter 7 Appendix 126 | - |
| dc.language.iso | en | - |
| dc.subject | 細胞骨架重塑 | zh_TW |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | 合成阻動 | zh_TW |
| dc.subject | MAPK | en |
| dc.subject | EZR | en |
| dc.subject | SLK | en |
| dc.subject | synthetic dysmobility | en |
| dc.subject | YAP | en |
| dc.subject | STK40 | en |
| dc.subject | contractile actin bundles | en |
| dc.title | 訊息互擾與模組協作:使用合成阻動篩選揭示了兩種不同的細胞骨架重塑模式 | zh_TW |
| dc.title | Signaling crosstalk versus modular collaboration: two distinct modes of cytoskeletal remodeling unveiled by the synthetic dysmobility screen | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 蔡丰喬 | zh_TW |
| dc.contributor.coadvisor | Feng-Chiao Tsai | en |
| dc.contributor.oralexamcommittee | 徐立中;李建國;郭津岑;曾炳輝 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Chung Hsu;Chien-Kuo Lee;Jean-Cheng Kuo;Ping-Hui Tseng | en |
| dc.subject.keyword | 合成阻動,細胞骨架重塑,細胞遷移, | zh_TW |
| dc.subject.keyword | STK40,MAPK,YAP,synthetic dysmobility,SLK,EZR,contractile actin bundles, | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202403384 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2029-08-05 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 34.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
