請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94714完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貞佑 | zh_TW |
| dc.contributor.advisor | Chen-Yu Liu | en |
| dc.contributor.author | 邱冠智 | zh_TW |
| dc.contributor.author | Kuan-Chih Chiu | en |
| dc.date.accessioned | 2024-08-16T17:40:47Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Abdel-Rahman, A. A., Blumenthal, G. M., Abou-Donia, S. A., Ali, F. A., Abdel-Monem, A. E., & Abou-Donia, M. B. (2002). Pharmacokinetic profile and placental transfer of a single intravenous injection of [(14)C]chlorpyrifos in pregnant rats. Arch Toxicol, 76(8), 452-459. doi:10.1007/s00204-002-0366-2
Achebak, H., Devolder, D., & Ballester, J. (2019). Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis. Lancet Planet Health, 3(7), e297-e306. doi:10.1016/S2542-5196(19)30090-7 Allis, C. D., Jenuwein, T., & Reinberg, D. (2007). Epigenetics (1 ed.): Cold Spring Harbor Laboratory Press. Anderson, G. B., Bell, M. L., & Peng, R. D. (2013). Methods to calculate the heat index as an exposure metric in environmental health research. Environ Health Perspect, 121(10), 1111-1119. doi:10.1289/ehp.1206273 Baccarelli, A., & Bollati, V. (2009). Epigenetics and environmental chemicals. Curr Opin Pediatr, 21(2), 243-251. doi:10.1097/mop.0b013e32832925cc Barak, Y., Nelson, M. C., Ong, E. S., Jones, Y. Z., Ruiz-Lozano, P., Chien, K. R., . . . Evans, R. M. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 4(4), 585-595. doi:10.1016/s1097-2765(00)80209-9 Barski, A., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D. E., Wang, Z., . . . Zhao, K. (2007). High-Resolution Profiling of Histone Methylations in the Human Genome. Cell, 129(4), 823-837. doi:10.1016/j.cell.2007.05.009 Belsky, D. W., Moffitt, T. E., Cohen, A. A., Corcoran, D. L., Levine, M. E., Prinz, J. A., . . . Caspi, A. (2018). Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am J Epidemiol, 187(6), 1220-1230. doi:10.1093/aje/kwx346 Bind, M. A., Zanobetti, A., Gasparrini, A., Peters, A., Coull, B., Baccarelli, A., . . . Schwartz, J. (2014). Effects of temperature and relative humidity on DNA methylation. Epidemiology, 25(4), 561-569. doi:10.1097/ede.0000000000000120 Bind, M. C., Coull, B. A., Baccarelli, A., Tarantini, L., Cantone, L., Vokonas, P., & Schwartz, J. (2016). Distributional changes in gene-specific methylation associated with temperature. Environ Res, 150, 38-46. doi:10.1016/j.envres.2016.05.034 Bittel, J., & Henane, R. (1975). Comparison of thermal exchanges in men and women under neutral and hot conditions. J Physiol, 250(3), 475-489. doi:10.1113/jphysiol.1975.sp011066 Bongioanni, P., Del Carratore, R., Corbianco, S., Diana, A., Cavallini, G., Masciandaro, S. M., . . . Buizza, R. (2021). Climate change and neurodegenerative diseases. Environ Res, 201, 111511. doi:10.1016/j.envres.2021.111511 Brown, H. A., Topham, T. H., Clark, B., Smallcombe, J. W., Flouris, A. D., Ioannou, L. G., . . . Periard, J. D. (2022). Seasonal Heat Acclimatisation in Healthy Adults: A Systematic Review. Sports Med, 52(9), 2111-2128. doi:10.1007/s40279-022-01677-0 Burkart, K. G., Brauer, M., Aravkin, A. Y., Godwin, W. W., Hay, S. I., He, J., . . . Stanaway, J. D. (2021). Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet, 398(10301), 685-697. doi:10.1016/S0140-6736(21)01700-1 Burke, R. D., Todd, S. W., Lumsden, E., Mullins, R. J., Mamczarz, J., Fawcett, W. P., . . . Albuquerque, E. X. (2017). Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J Neurochem, 142 Suppl 2, 162-177. doi:10.1111/jnc.14077 Che Muhamed, A. M., Atkins, K., Stannard, S. R., Mundel, T., & Thompson, M. W. (2016). The effects of a systematic increase in relative humidity on thermoregulatory and circulatory responses during prolonged running exercise in the heat. Temperature (Austin), 3(3), 455-464. doi:10.1080/23328940.2016.1182669 Chen, B. H., Marioni, R. E., Colicino, E., Peters, M. J., Ward-Caviness, C. K., Tsai, P. C., . . . Horvath, S. (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY), 8(9), 1844-1865. doi:10.18632/aging.101020 Chen, M. H., Ha, E. H., Liao, H. F., Jeng, S. F., Su, Y. N., Wen, T. W., . . . Chen, P. C. (2013). Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology, 24(6), 800-808. doi:10.1097/EDE.0b013e3182a6dd46 Chen, Z., He, P., Ding, X., Huang, Y., Gu, H., & Ni, X. (2015). PPARgamma stimulates expression of L-type amino acid and taurine transporters in human placentas: the evidence of PPARgamma regulating fetal growth. Sci Rep, 5, 12650. doi:10.1038/srep12650 Chiu, K.-C., Sisca, F., Ying, J.-H., Tsai, W.-J., Hsieh, W.-S., Chen, P.-C., & Liu, C.-Y. (2021). Prenatal chlorpyrifos exposure in association with PPARγ H3K4me3 and DNA methylation levels and child development. Environ Pollut, 274, 116511. doi:10.1016/j.envpol.2021.116511 Chiu, K.-C., Hsieh, M.-S., Huang, Y.-T., & Liu, C.-Y. (2024). Exposure to ambient temperature and heat index in relation to DNA methylation age: A population-based study in Taiwan. Environment International, 186. doi:10.1016/j.envint.2024.108581 Conti, B. (2008). Considerations on temperature, longevity and aging. Cell Mol Life Sci, 65(11), 1626-1630. doi:10.1007/s00018-008-7536-1 d'Angelo, M., Castelli, V., Catanesi, M., Antonosante, A., Dominguez-Benot, R., Ippoliti, R., . . . Cimini, A. (2019). PPARgamma and Cognitive Performance. Int J Mol Sci, 20(20). doi:10.3390/ijms20205068 Dalsager, L., Fage-Larsen, B., Bilenberg, N., Jensen, T. K., Nielsen, F., Kyhl, H. B., . . . Andersen, H. R. (2019). Maternal urinary concentrations of pyrethroid and chlorpyrifos metabolites and attention deficit hyperactivity disorder (ADHD) symptoms in 2-4-year-old children from the Odense Child Cohort. Environ Res, 176, 108533. doi:10.1016/j.envres.2019.108533 Dave, V., Yousefi, P., Huen, K., Volberg, V., & Holland, N. (2015). Relationship between expression and methylation of obesity-related genes in children. Mutagenesis, 30(3), 411-420. doi:10.1093/mutage/geu089 Declerck, K., Remy, S., Wohlfahrt-Veje, C., Main, K. M., Van Camp, G., Schoeters, G., . . . Andersen, H. R. (2017). Interaction between prenatal pesticide exposure and a common polymorphism in the PON1 gene on DNA methylation in genes associated with cardio-metabolic disease risk-an exploratory study. Clin Epigenetics, 9, 35. doi:10.1186/s13148-017-0336-4 Dedeurwaerder, S., Defrance, M., Calonne, E., Denis, H., Sotiriou, C., & Fuks, F. (2011). Evaluation of the Infinium Methylation 450K technology. Epigenomics, 3(6), 771-784. doi:10.2217/epi.11.105 Deziel, N. C., Colt, J. S., Kent, E. E., Gunier, R. B., Reynolds, P., Booth, B., . . . Ward, M. H. (2015). Associations between self-reported pest treatments and pesticide concentrations in carpet dust. Environ Health, 14, 27. doi:10.1186/s12940-015-0015-x Dhingra, R., Nwanaji-Enwerem, J. C., Samet, M., & Ward-Caviness, C. K. (2018). DNA Methylation Age-Environmental Influences, Health Impacts, and Its Role in Environmental Epidemiology. Curr Environ Health Rep, 5(3), 317-327. doi:10.1007/s40572-018-0203-2 Diaz, M., Bassols, J., Lopez-Bermejo, A., Gomez-Roig, M. D., de Zegher, F., & Ibanez, L. (2012). Placental expression of peroxisome proliferator-activated receptor gamma (PPARgamma): relation to placental and fetal growth. J Clin Endocrinol Metab, 97(8), E1468-1472. doi:10.1210/jc.2012-1064 Dor, Y., & Cedar, H. (2018). Principles of DNA methylation and their implications for biology and medicine. Lancet, 392(10149), 777-786. doi:10.1016/S0140-6736(18)31268-6 Durso, D. F., Bacalini, M. G., Sala, C., Pirazzini, C., Marasco, E., Bonafé, M., . . . Nardini, C. (2017). Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget, 8(14), 23237-23245. doi:10.18632/oncotarget.15573 Eaton, D. L., Daroff, R. B., Autrup, H., Bridges, J., Buffler, P., Costa, L. G., . . . Spencer, P. S. (2008). Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol, 38 Suppl 2, 1-125. doi:10.1080/10408440802272158 Ebi, K. L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., . . . Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet, 398(10301), 698-708. doi:10.1016/s0140-6736(21)01208-3 Eskenazi, B., Marks, A. R., Bradman, A., Harley, K., Barr, D. B., Johnson, C., . . . Jewell, N. P. (2007). Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect, 115(5), 792-798. doi:10.1289/ehp.9828 European-Commission. (2020). COMMISSION IMPLEMENTING REGULATION (EU) 2020/18. Fan, C. T., Lin, J. C., & Lee, C. H. (2008). Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics, 9(2), 235-246. doi:10.2217/14622416.9.2.235 Faul, J. D., Kim, J. K., Levine, M. E., Thyagarajan, B., Weir, D. R., & Crimmins, E. M. (2023). Epigenetic-based age acceleration in a representative sample of older Americans: Associations with aging-related morbidity and mortality. Proc Natl Acad Sci U S A, 120(9), e2215840120. doi:10.1073/pnas.2215840120 Feng, Y. A., Chen, C. Y., Chen, T. T., Kuo, P. H., Hsu, Y. H., Yang, H. I., . . . Lin, Y. F. (2022). Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genom, 2(11), 100197. doi:10.1016/j.xgen.2022.100197 Fluegge, K. R., Nishioka, M., & Wilkins, J. R., 3rd. (2016). Effects of simultaneous prenatal exposures to organophosphate and synthetic pyrethroid insecticides on infant neurodevelopment at three months of age. J Environ Toxicol Public Health, 1, 60-73. doi:10.5281/zenodo.218417 Fortenberry, G. Z., Meeker, J. D., Sanchez, B. N., Barr, D. B., Panuwet, P., Bellinger, D., . . . Tellez-Rojo, M. M. (2014). Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. Int J Hyg Environ Health, 217(2-3), 405-412. doi:10.1016/j.ijheh.2013.07.018 Fournier, T., Guibourdenche, J., Handschuh, K., Tsatsaris, V., Rauwel, B., Davrinche, C., & Evain-Brion, D. (2011). PPARgamma and human trophoblast differentiation. J Reprod Immunol, 90(1), 41-49. doi:10.1016/j.jri.2011.05.003 Franceschi, C., Garagnani, P., Parini, P., Giuliani, C., & Santoro, A. (2018). Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol, 14(10), 576-590. doi:10.1038/s41574-018-0059-4 Galow, A. M., & Peleg, S. (2022). How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells, 11(3). doi:10.3390/cells11030468 Gao, X., Colicino, E., Shen, J., Kioumourtzoglou, M. A., Just, A. C., Nwanaji-Enwerem, J. C., . . . Baccarelli, A. A. (2019). Impacts of air pollution, temperature, and relative humidity on leukocyte distribution: An epigenetic perspective. Environ Int, 126, 395-405. doi:10.1016/j.envint.2019.02.053 Garagnani, P., Bacalini, M. G., Pirazzini, C., Gori, D., Giuliani, C., Mari, D., . . . Franceschi, C. (2012). Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell, 11(6), 1132-1134. doi:10.1111/acel.12005 Gasparrini, A. (2011). Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J Stat Softw, 43(8), 1-20. Gasparrini, A., Guo, Y., Hashizume, M., Kinney, P. L., Petkova, E. P., Lavigne, E., . . . Armstrong, B. G. (2015a). Temporal Variation in Heat-Mortality Associations: A Multicountry Study. Environ Health Perspect, 123(11), 1200-1207. doi:10.1289/ehp.1409070 Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., . . . Armstrong, B. (2015b). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 386(9991), 369-375. doi:10.1016/S0140-6736(14)62114-0 Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. N Engl J Med, 359(1), 61-73. doi:10.1056/NEJMra0708473 Graham, T. E. (1988). Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med Sci Sports Exerc, 20(5 Suppl), S185-192. doi:10.1249/00005768-198810001-00017 Guo, F., Do, V., Cooper, R., Huang, Y., Zhang, P., Ran, J., . . . Fu, Z. (2021). Trends of temperature variability: Which variability and what health implications? Sci Total Environ, 768, 144487. doi:10.1016/j.scitotenv.2020.144487 Guo, J., Zhang, J., Wu, C., Lv, S., Lu, D., Qi, X., . . . Zhou, Z. (2019). Associations of prenatal and childhood chlorpyrifos exposure with Neurodevelopment of 3-year-old children. Environ Pollut, 251, 538-546. doi:10.1016/j.envpol.2019.05.040 Guo, Y., Gasparrini, A., Armstrong, B. G., Tawatsupa, B., Tobias, A., Lavigne, E., . . . Tong, S. (2016). Temperature Variability and Mortality: A Multi-Country Study. Environ Health Perspect, 124(10), 1554-1559. doi:10.1289/EHP149 Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., . . . Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell, 49(2), 359-367. doi:10.1016/j.molcel.2012.10.016 Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C., & Stam, M. (2007). Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods, 3(1), 11. doi:10.1186/1746-4811-3-11 Harnly, M. E., Bradman, A., Nishioka, M., McKone, T. E., Smith, D., McLaughlin, R., . . . Eskenazi, B. (2009). Pesticides in dust from homes in an agricultural area. Environ Sci Technol, 43(23), 8767-8774. doi:10.1021/es9020958 He, W., Yang, J. Y., Drury, C. F., Smith, W. N., Grant, B. B., He, P., . . . Hoogenboom, G. (2018). Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agricultural Systems, 159, 187-198. doi:10.1016/j.agsy.2017.01.025 Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., . . . Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A, 105(44), 17046-17049. doi:10.1073/pnas.0806560105 Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. (2009). Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35(8), 1711-1721. doi:10.1016/j.cageo.2008.10.011 Horton, M. K., Kahn, L. G., Perera, F., Barr, D. B., & Rauh, V. (2012). Does the home environment and the sex of the child modify the adverse effects of prenatal exposure to chlorpyrifos on child working memory? Neurotoxicol Teratol, 34(5), 534-541. doi:10.1016/j.ntt.2012.07.004 Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biol, 14(10), R115. doi:10.1186/gb-2013-14-10-r115 Horvath, S., Oshima, J., Martin, G. M., Lu, A. T., Quach, A., Cohen, H., . . . Raj, K. (2018). Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY), 10(7), 1758-1775. doi:10.18632/aging.101508 Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet, 19(6), 371-384. doi:10.1038/s41576-018-0004-3 Hou, L., Zhang, X., Wang, D., & Baccarelli, A. (2012). Environmental chemical exposures and human epigenetics. Int J Epidemiol, 41(1), 79-105. doi:10.1093/ije/dyr154 Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., . . . Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86. doi:10.1186/1471-2105-13-86 Hsieh, C. J., Hsieh, W. S., Su, Y. N., Liao, H. F., Jeng, S. F., Taso, F. M., . . . Chen, P. C. (2011). The Taiwan Birth Panel Study: a prospective cohort study for environmentally- related child health. BMC Res Notes, 4, 291. doi:10.1186/1756-0500-4-291 Hsieh, W. S., Wu, H. C., Jeng, S. F., Liao, H. F., Su, Y. N., Lin, S. J., . . . Chen, P. C. (2006). Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatr Taiwan, 47(1), 25-33. Huang, H. M., Pai, M. H., Liu, J. J., Yeh, S. L., & Hou, Y. C. (2019). Effects of dietary exposure to chlorpyrifos on immune cell populations and inflammatory responses in mice with dextran sulfate sodium-induced colitis. Food Chem Toxicol, 131, 110596. doi:10.1016/j.fct.2019.110596 Huang, Y. F., Pan, W. C., Tsai, Y. A., Chang, C. H., Chen, P. J., Shao, Y. S., . . . Chen, M. L. (2017). Concurrent exposures to nonylphenol, bisphenol A, phthalates, and organophosphate pesticides on birth outcomes: A cohort study in Taipei, Taiwan. Sci Total Environ, 607-608, 1126-1135. doi:10.1016/j.scitotenv.2017.07.092 Huen, K., Bradman, A., Harley, K., Yousefi, P., Boyd Barr, D., Eskenazi, B., & Holland, N. (2012). Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community. Environ Res, 117, 8-16. doi:10.1016/j.envres.2012.05.005 Hung, C. C., Huang, F. J., Yang, Y. Q., Hsieh, C. J., Tseng, C. C., & Yiin, L. M. (2018). Pesticides in indoor and outdoor residential dust: a pilot study in a rural county of Taiwan. Environ Sci Pollut Res Int, 25(23), 23349-23356. doi:10.1007/s11356-018-2413-4 Hung, S. C., Yang, C. C., Liu, C. F., Kung, C. T., Lee, W. H., Ho, C. K., . . . Yu, H. S. (2021). The Association Pattern between Ambient Temperature Change and Leukocyte Counts. Int J Environ Res Public Health, 18(13). doi:10.3390/ijerph18136971 Icenogle, L. M., Christopher, N. C., Blackwelder, W. P., Caldwell, D. P., Qiao, D., Seidler, F. J., . . . Levin, E. D. (2004). Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol, 26(1), 95-101. doi:10.1016/j.ntt.2003.09.001 Janani, C., & Ranjitha Kumari, B. D. (2015). PPAR gamma gene--a review. Diabetes Metab Syndr, 9(1), 46-50. doi:10.1016/j.dsx.2014.09.015 Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118-127. doi:10.1093/biostatistics/kxj037 Jylhava, J., Pedersen, N. L., & Hagg, S. (2017). Biological Age Predictors. EBioMedicine, 21, 29-36. doi:10.1016/j.ebiom.2017.03.046 Kadam, L., Kohan-Ghadr, H. R., & Drewlo, S. (2015). The balancing act - PPAR-gamma's roles at the maternal-fetal interface. Syst Biol Reprod Med, 61(2), 65-71. doi:10.3109/19396368.2014.991881 Keil, G., Cummings, E., & de Magalhaes, J. P. (2015). Being cool: how body temperature influences ageing and longevity. Biogerontology, 16(4), 383-397. doi:10.1007/s10522-015-9571-2 Keller, J. M., Collet, P., Bianchi, A., Huin, C., Bouillaud-Kremarik, P., Becuwe, P., . . . Dauça, M. (2000). Implications of peroxisome proliferator-activated receptors (PPARS) in development, cell life status and disease. Int J Dev Biol, 44(5), 429-442. Kim, H. Y., Wegner, S. H., Van Ness, K. P., Park, J. J., Pacheco, S. E., Workman, T., . . . Faustman, E. M. (2016). Differential epigenetic effects of chlorpyrifos and arsenic in proliferating and differentiating human neural progenitor cells. Reprod Toxicol, 65, 212-223. doi:10.1016/j.reprotox.2016.08.005 Lai, L.-W., & Cheng, W.-L. (2010). Air temperature change due to human activities in Taiwan for the past century. International Journal of Climatology, 30(3), 432-444. doi:10.1002/joc.1898 Lapehn, S., & Paquette, A. G. (2022). The Placental Epigenome as a Molecular Link Between Prenatal Exposures and Fetal Health Outcomes Through the DOHaD Hypothesis. Curr Environ Health Rep, 9(3), 490-501. doi:10.1007/s40572-022-00354-8 Lassiter, T. L., & Brimijoin, S. (2008). Rats gain excess weight after developmental exposure to the organophosphorothionate pesticide, chlorpyrifos. Neurotoxicol Teratol, 30(2), 125-130. doi:10.1016/j.ntt.2007.10.004 Lee, J. E., Park, J. H., Jang, S. J., & Koh, H. C. (2014). Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. Toxicol Appl Pharmacol, 278(2), 159-171. doi:10.1016/j.taap.2014.04.021 Lendvai, A., Deutsch, M. J., Plosch, T., & Ensenauer, R. (2016). The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development. Am J Physiol Endocrinol Metab, 310(10), E797-810. doi:10.1152/ajpendo.00372.2015 Levin, E. D., Addy, N., Baruah, A., Elias, A., Christopher, N. C., Seidler, F. J., & Slotkin, T. A. (2002). Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol, 24(6), 733-741. doi:10.1016/s0892-0362(02)00272-6 Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., . . . Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10(4), 573-591. doi:10.18632/aging.101414 Liao, H. F., & Pan, Y. L. (2005). Test-retest and inter-rater reliability for the Comprehensive Developmental Inventory for Infants and Toddlers diagnostic and screening tests. Early Hum Dev, 81(11), 927-937. doi:10.1016/j.earlhumdev.2005.07.008 Liao, H. F., Wang, T. M., Yao, G., & Lee, W. T. (2005). Concurrent validity of the Comprehensive Developmental Inventory for Infants and Toddlers with the Bayley Scales of Infant Development-II in preterm infants. J Formos Med Assoc, 104(10), 731-737. Liao, H. T., Hsieh, C. J., Chiang, S. Y., Lin, M. H., Chen, P. C., & Wu, K. Y. (2011). Simultaneous analysis of chlorpyrifos and cypermethrin in cord blood plasma by online solid-phase extraction coupled with liquid chromatography-heated electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 879(21), 1961-1966. doi:10.1016/j.jchromb.2011.05.028 Liberale, L., Badimon, L., Montecucco, F., Luscher, T. F., Libby, P., & Camici, G. G. (2022). Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol, 79(8), 837-847. doi:10.1016/j.jacc.2021.12.017 Lin, X., Tirichine, L., & Bowler, C. (2012). Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species. Plant Methods, 8(1), 48. doi:10.1186/1746-4811-8-48 Lind, L., Ingelsson, E., Sundstrom, J., Siegbahn, A., & Lampa, E. (2018). Methylation-based estimated biological age and cardiovascular disease. Eur J Clin Invest, 48(2). doi:10.1111/eci.12872 Liu, J., Varghese, B. M., Hansen, A., Zhang, Y., Driscoll, T., Morgan, G., . . . Bi, P. (2022). Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health, 6(6), e484-e495. doi:10.1016/S2542-5196(22)00117-6 Liu, T. C., Chen, C. S., Tsai, Y. W., & Lin, H. C. (2007). Taiwan's high rate of cesarean births: impacts of national health insurance and fetal gender preference. Birth, 34(2), 115-122. doi:10.1111/j.1523-536X.2007.00157.x Lu, A. T., Binder, A. M., Zhang, J., Yan, Q., Reiner, A. P., Cox, S. R., . . . Horvath, S. (2022). DNA methylation GrimAge version 2. Aging (Albany NY), 14(23), 9484-9549. doi:10.18632/aging.204434 Lu, C., Sun, Y., & Zhang, X. (2022). Anthropogenic Influence on the Diurnal Temperature Range since 1901. Journal of Climate, 35(22), 3583-3598. doi:10.1175/jcli-d-21-0928.1 Luo, Y., Zhang, Y., Liu, T., Rutherford, S., Xu, Y., Xu, X., . . . Ma, W. (2013). Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China. PLoS One, 8(2), e55280. doi:10.1371/journal.pone.0055280 Marioni, R. E., Shah, S., McRae, A. F., Chen, B. H., Colicino, E., Harris, S. E., . . . Deary, I. J. (2015a). DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol, 16, 25. doi:10.1186/s13059-015-0584-6 Marioni, R. E., Shah, S., McRae, A. F., Ritchie, S. J., Muniz-Terrera, G., Harris, S. E., . . . Deary, I. J. (2015b). The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol, 44(4), 1388-1396. doi:10.1093/ije/dyu277 Martens, D. S., Plusquin, M., Cox, B., & Nawrot, T. S. (2019). Early Biological Aging and Fetal Exposure to High and Low Ambient Temperature: A Birth Cohort Study. Environ Health Perspect, 127(11), 117001. doi:10.1289/EHP5153 Matsuda, S., Kobayashi, M., & Kitagishi, Y. (2013). Expression and Function of PPARs in Placenta. PPAR Res, 2013, 256508. doi:10.1155/2013/256508 Mattsson, J. L., Maurissen, J. P., Nolan, R. J., & Brzak, K. A. (2000). Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos. Toxicol Sci, 53(2), 438-446. doi:10.1093/toxsci/53.2.438 McEwen, L. M., Jones, M. J., Lin, D. T. S., Edgar, R. D., Husquin, L. T., MacIsaac, J. L., . . . Kobor, M. S. (2018). Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array. Clin Epigenetics, 10(1), 123. doi:10.1186/s13148-018-0556-2 Meher, A. P., Wadhwani, N., Randhir, K., Mehendale, S., Wagh, G., & Joshi, S. R. (2016). Placental DHA and mRNA levels of PPARgamma and LXRalpha and their relationship to birth weight. J Clin Lipidol, 10(4), 767-774. doi:10.1016/j.jacl.2016.02.004 Mendelson, M. M. (2018). Epigenetic Age Acceleration: A Biological Doomsday Clock for Cardiovascular Disease? Circ Genom Precis Med, 11(3), e002089. doi:10.1161/CIRCGEN.118.002089 Moreira, E. G., Yu, X., Robinson, J. F., Griffith, W., Hong, S. W., Beyer, R. P., . . . Faustman, E. M. (2010). Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicol Appl Pharmacol, 245(3), 310-325. doi:10.1016/j.taap.2010.03.015 Murray, K. O., Clanton, T. L., & Horowitz, M. (2022). Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol, 107(10), 1144-1158. doi:10.1113/EP090143 Nassan, F. L., Kelly, R. S., Kosheleva, A., Koutrakis, P., Vokonas, P. S., Lasky-Su, J. A., & Schwartz, J. D. (2021). Metabolomic signatures of the long-term exposure to air pollution and temperature. Environ Health, 20(1), 3. doi:10.1186/s12940-020-00683-x Nelissen, E. C., van Montfoort, A. P., Dumoulin, J. C., & Evers, J. L. (2011). Epigenetics and the placenta. Hum Reprod Update, 17(3), 397-417. doi:10.1093/humupd/dmq052 Ni, W., Nikolaou, N., Ward-Caviness, C. K., Breitner, S., Wolf, K., Zhang, S., . . . Schneider, A. (2023). Associations between medium- and long-term exposure to air temperature and epigenetic age acceleration. Environ Int, 178, 108109. doi:10.1016/j.envint.2023.108109 Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, M. P. (2021). A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res Rev, 69, 101348. doi:10.1016/j.arr.2021.101348 Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683-691. doi:10.1016/j.cageo.2004.03.012 Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5, 9-13. Pedersen, M., Gehring, U., Beelen, R., Wang, M., Giorgis-Allemand, L., Andersen, A. M., . . . Slama, R. (2016). Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts. Environ Health Perspect, 124(1), 141-150. doi:10.1289/ehp.1409546 Peraza, M. A., Burdick, A. D., Marin, H. E., Gonzalez, F. J., & Peters, J. M. (2006). The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci, 90(2), 269-295. doi:10.1093/toxsci/kfj062 Perera, F. P., Rauh, V., Tsai, W. Y., Kinney, P., Camann, D., Barr, D., . . . Whyatt, R. M. (2003). Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect, 111(2), 201-205. doi:10.1289/ehp.5742 Perez-Fernandez, C., Morales-Navas, M., Guardia-Escote, L., Garrido-Cardenas, J. A., Colomina, M. T., Gimenez, E., & Sanchez-Santed, F. (2020). Long-term effects of low doses of Chlorpyrifos exposure at the preweaning developmental stage: A locomotor, pharmacological, brain gene expression and gut microbiome analysis. Food Chem Toxicol, 135, 110865. doi:10.1016/j.fct.2019.110865 Perna, L., Zhang, Y., Mons, U., Holleczek, B., Saum, K. U., & Brenner, H. (2016). Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics, 8, 64. doi:10.1186/s13148-016-0228-z Quiros-Alcala, L., Bradman, A., Nishioka, M., Harnly, M. E., Hubbard, A., McKone, T. E., . . . Eskenazi, B. (2011). Pesticides in house dust from urban and farmworker households in California: an observational measurement study. Environ Health, 10, 19. doi:10.1186/1476-069X-10-19 Rahman, M. M., Garcia, E., Lim, C. C., Ghazipura, M., Alam, N., Palinkas, L. A., . . . Thurston, G. (2022). Temperature variability associations with cardiovascular and respiratory emergency department visits in Dhaka, Bangladesh. Environ Int, 164, 107267. doi:10.1016/j.envint.2022.107267 Rauh, V., Arunajadai, S., Horton, M., Perera, F., Hoepner, L., Barr, D. B., & Whyatt, R. (2011). Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect, 119(8), 1196-1201. doi:10.1289/ehp.1003160 Rauh, V. A., Garfinkel, R., Perera, F. P., Andrews, H. F., Hoepner, L., Barr, D. B., . . . Whyatt, R. W. (2006). Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118(6), e1845-1859. doi:10.1542/peds.2006-0338 Rauh, V. A., Perera, F. P., Horton, M. K., Whyatt, R. M., Bansal, R., Hao, X., . . . Peterson, B. S. (2012). Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A, 109(20), 7871-7876. doi:10.1073/pnas.1203396109 Ridano, M. E., Racca, A. C., Flores-Martin, J., Camolotto, S. A., de Potas, G. M., Genti-Raimondi, S., & Panzetta-Dutari, G. M. (2012). Chlorpyrifos modifies the expression of genes involved in human placental function. Reprod Toxicol, 33(3), 331-338. doi:10.1016/j.reprotox.2012.01.003 Ridano, M. E., Racca, A. C., Flores-Martin, J. B., Fretes, R., Bandeira, C. L., Reyna, L., . . . Panzetta-Dutari, G. M. (2017). Impact of chlorpyrifos on human villous trophoblasts and chorionic villi. Toxicol Appl Pharmacol, 329, 26-39. doi:10.1016/j.taap.2017.05.026 Robertson, K. D. (2005). DNA methylation and human disease. Nat Rev Genet, 6(8), 597-610. doi:10.1038/nrg1655 Roetker, N. S., Pankow, J. S., Bressler, J., Morrison, A. C., & Boerwinkle, E. (2018). Prospective Study of Epigenetic Age Acceleration and Incidence of Cardiovascular Disease Outcomes in the ARIC Study (Atherosclerosis Risk in Communities). Circ Genom Precis Med, 11(3), e001937. doi:10.1161/CIRCGEN.117.001937 Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., . . . Hamilton, I. (2021). The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The Lancet, 398(10311), 1619-1662. doi:10.1016/s0140-6736(21)01787-6 Romanello, M., Di Napoli, C., Drummond, P., Green, C., Kennard, H., Lampard, P., . . . Costello, A. (2022). The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet, 400(10363), 1619-1654. doi:10.1016/S0140-6736(22)01540-9 Rothfusz, L. P. (1990). The Heat Index "Equation". (SR 90-23). National Weather Service Saulsbury, M. D., Heyliger, S. O., Wang, K., & Round, D. (2008). Characterization of chlorpyrifos-induced apoptosis in placental cells. Toxicology, 244(2-3), 98-110. doi:10.1016/j.tox.2007.10.020 Shaffo, F. C., Grodzki, A. C., Fryer, A. D., & Lein, P. J. (2018). Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol, 315(4), L485-L501. doi:10.1152/ajplung.00211.2018 Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci U S A, 107(21), 9552-9555. doi:10.1073/pnas.0913352107 Silva, M. H. (2020). Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res, 112(6), 445-479. doi:10.1002/bdr2.1661 Silver, M. K., Shao, J., Zhu, B., Chen, M., Xia, Y., Kaciroti, N., . . . Meeker, J. D. (2017). Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants. Environ Int, 106, 248-256. doi:10.1016/j.envint.2017.05.015 Silver, M. K., Shao, J., Ji, C., Zhu, B., Xu, L., Li, M., . . . Meeker, J. D. (2018). Prenatal organophosphate insecticide exposure and infant sensory function. Int J Hyg Environ Health, 221(3), 469-478. doi:10.1016/j.ijheh.2018.01.010 Song, J., Pan, R., Yi, W., Wei, Q., Qin, W., Song, S., . . . Su, H. (2021). Ambient high temperature exposure and global disease burden during 1990-2019: An analysis of the Global Burden of Disease Study 2019. Sci Total Environ, 787, 147540. doi:10.1016/j.scitotenv.2021.147540 Song, X., Wang, S., Hu, Y., Yue, M., Zhang, T., Liu, Y., . . . Shang, K. (2017). Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci Total Environ, 586, 241-254. doi:10.1016/j.scitotenv.2017.01.212 Steadman, R. G. (1979). The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. Journal of Applied Meteorology, 18(7), 861-873. doi:10.1175/1520-0450(1979)018<0861:taospi>2.0.co;2 Sun, X., Ren, G., You, Q., Ren, Y., Xu, W., Xue, X., . . . Zhang, P. (2018). Global diurnal temperature range (DTR) changes since 1901. Climate Dynamics, 52(5-6), 3343-3356. doi:10.1007/s00382-018-4329-6 Tan, P.-H., & Tseng, Y.-C. (2012). 1997-2010 年台灣地區溫度的特徵. [The Characteristics of Temperature in Taiwan during 1997-2010]. 大氣科學, 40(4), 371-405. Tian, Y., Morris, T. J., Webster, A. P., Yang, Z., Beck, S., Feber, A., & Teschendorff, A. E. (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33(24), 3982-3984. doi:10.1093/bioinformatics/btx513 Till, C., Dudani, A., Cordoba, L., Cano, J. C., Green, R., Menezes-Filho, J. A., . . . van Wendel de Joode, B. (2019). Caregiving and infants' neurodevelopment in rural Costa Rica: Results from the Infants' Environmental Health Study (ISA). NeuroToxicology, 74, 100-107. doi:10.1016/j.neuro.2019.06.002 Tran, H. M., Lin, Y. C., Tsai, F. J., Lee, K. Y., Chang, J. H., Chung, C. L., . . . Chuang, H. C. (2023). Short-term mediating effects of PM(2.5) on climate-associated COPD severity. Sci Total Environ, 903, 166523. doi:10.1016/j.scitotenv.2023.166523 USEPA. (2000). Human Health Risk Assessment: Chlorpyrifos. USEPA. (2002). Interim Reregistration Eligibility Decision for Chlorpyrifos. USEPA. (2016). Chlorpyrifos: Revised Human Health Risk Assessment for Registration Review. Villapol, S. (2018). Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol Neurobiol, 38(1), 121-132. doi:10.1007/s10571-017-0554-5 Wang, T., Su, C., Liao, H., Lin, L., Chou, K., & Lin, A. (1998). The standardization of the comprehensive developmental inventory for the infants and toddlers. Physicol Test, 19–46. Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., . . . Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol, 15(2), R24. doi:10.1186/gb-2014-15-2-r24 Weinert, D. (2010). Circadian temperature variation and ageing. Ageing Res Rev, 9(1), 51-60. doi:10.1016/j.arr.2009.07.003 Whyatt, R. M., Barr, D. B., Camann, D. E., Kinney, P. L., Barr, J. R., Andrews, H. F., . . . Perera, F. P. (2003). Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns. Environ Health Perspect, 111(5), 749-756. doi:10.1289/ehp.5768 Whyatt, R. M., Camann, D., Perera, F. P., Rauh, V. A., Tang, D., Kinney, P. L., . . . Barr, D. B. (2005). Biomarkers in assessing residential insecticide exposures during pregnancy and effects on fetal growth. Toxicol Appl Pharmacol, 206(2), 246-254. doi:10.1016/j.taap.2004.11.027 Wilker, E. H., Yeh, G., Wellenius, G. A., Davis, R. B., Phillips, R. S., & Mittleman, M. A. (2012). Ambient temperature and biomarkers of heart failure: a repeated measures analysis. Environ Health Perspect, 120(8), 1083-1087. doi:10.1289/ehp.1104380 Wu, H., Eckhardt, C. M., & Baccarelli, A. A. (2023). Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet, 24(5), 332-344. doi:10.1038/s41576-022-00569-3 Xu, R., Li, S., Guo, S., Zhao, Q., Abramson, M. J., Li, S., & Guo, Y. (2020). Environmental temperature and human epigenetic modifications: A systematic review. Environ Pollut, 259, 113840. doi:10.1016/j.envpol.2019.113840 Xu, R., Li, S., Li, S., Wong, E. M., Southey, M. C., Hopper, J. L., . . . Guo, Y. (2021). Ambient temperature and genome-wide DNA methylation: A twin and family study in Australia. Environ Pollut, 285, 117700. doi:10.1016/j.envpol.2021.117700 Yousefi, P. D., Suderman, M., Langdon, R., Whitehurst, O., Davey Smith, G., & Relton, C. L. (2022). DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet, 23(6), 369-383. doi:10.1038/s41576-022-00465-w Zanobetti, A., & O'Neill, M. S. (2018). Longer-Term Outdoor Temperatures and Health Effects: A Review. Curr Epidemiol Rep, 5(2), 125-139. doi:10.1007/s40471-018-0150-3 行政院農業委員會. (2022). 修正「陶斯松為禁用農藥」. (農防字第1111489871號). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94714 | - |
| dc.description.abstract | 環境暴露與表觀基因改變的相關性
環境暴露會經由改變表觀基因調控造成不良健康效應,表觀基因標記可以在不影響 DNA 序列的狀況下調控基因表現,並進一步影響表現型或疾病感受性。我們以產前陶斯松暴露及環境溫度對成人的效應為例,探討在世代研究中環境暴露與表觀基因改變的相關性。 產前陶斯松暴露與胎盤 PPARγ 基因之 H3K4me3 調控及健康效應的相關性 背景:陶斯松是常見的殺蟲劑之一,他可以穿過胎盤影響胎兒生長及神經發展。peroxisome proliferator-activated receptor gamma (PPARγ) 基因的表觀基因調控是陶斯松暴露影響胎兒生長及發展的可能機轉,例如透過trimethylation of lysine 4 of H3 (H3K4me3) 之組蛋白修飾。本研究欲探討產前陶斯松暴露與胎盤PPARγ 基因之 H3K4me3 調控、新生兒健康及神經發展的相關性。 方法:本研究納入 2004 年 4 月至 2005 年 1 月間進入臺灣出生世代研究 (Taiwan Birth Panel Study) 的 425 對母嬰對,使用 online SPE-LC/HESI/MS/MS 測量臍帶血中陶斯松濃度,胎盤PPARγ 基因之 H3K4me3 調控程度以 ChIP-qPCR 測量,新生兒健康資料從病歷取得,使用嬰幼兒綜合發展測驗 (CDIIT) 計算兩歲孩童之神經發展。我們使用多變項迴歸模型校正潛在干擾因子。 結果:校正潛在干擾因子後,產前陶斯松暴露濃度每增加一個單位 (log-ng/mL) 和降低兩歲孩童的認知及語言表現有關,尤其是男童 (adjusted β (aβ) = -1.66, p = 0.016 及 aβ = -1.79, p = 0.023)。PPARγ 基因之 H3K4me3 調控程度和妊娠週數 (aβ = 0.16, p = 0.011) 、出生體重 (aβ = 30.52 (g), p = 0.013) 、出生身長 (aβ = 0.18 (cm), p = 0.003 及 aβ = 0.15 (cm), p = 0.042) 、兩歲粗大動作表現 (aβ = 1.67, p = 0.036) 存在正相關。 結論:本研究發現產前陶斯松暴露會影響認知及語言表現。 環境溫度暴露與成人 DNA 甲基化老化 背景:氣候變遷導致過去數十年環境溫度上升,暴露環境高溫會造成生物老化現象,但在溫暖氣候區的相關研究依然缺乏。本研究目標為分析環境溫度與熱指數暴露的年齡加速效應,並以副熱帶氣候的臺灣人為研究族群。 方法:本研究納入 2008 年至 2016 年參與臺灣人體生物資料庫共 2,084 名研究參與者。我們從氣象站蒐集每日氣溫及相對溼度資料,並以 ordinary kriging 推估每位參與者在居住地的暴露量,再計算參與者進入研究前 1 至 180 天不同時間區間的環境溫度及熱指數移動平均值,而後用以估計暴露之效應。DNA 甲基化年齡使用 Horvath’s 、 Hannum’s 、 Weidner’s 、 ELOVL2 、 FHL2 、 phenotypic (Pheno) 、 Skin & blood 、 GrimAge2 (Grim2) 等方法進行估計,年齡加速定義為 DNA 甲基化年齡減去實際年齡。本研究使用多變項線性迴歸模型、廣義加成模型 (GAMs)、遞延非線性模型 (DLNMs) 分析環境溫度與熱指數暴露對年齡加速的影響。 結果:暴露環境高溫及高熱指數存在年齡加速效應,此效應會隨著暴露時間增加而增強。每日最高溫熱指數以警告 (80-90°F) 、高度警告 (90-103°F) 、危險 (103-124°F) 、高度危險 (> 124°F) 計算熱壓力天數,我們發現熱壓力天數也具有年齡加速效應,尤其是高度危險天數。高度危險天數每增加一天平均會增加 Horvath’s 571.38 (95% CI: 42.63-1100.13) 天、Hannum’s 528.02 (95% CI: 36.16-1019.87) 天、 Weidner’s 43.9 (95% CI: 0.28-87.52) 天、Pheno 16.82 (95% CI: 2.36-31.28) 天、Skin & blood 15.52 (95% CI: 2.17-28.88) 天的年齡加速效應。此外我們發現環境高溫的年齡加速效應存在季節及地理變異。 結論:環境高溫及高熱指數和加速生物老化有關。 結論 我們發現在世代研究中環境暴露會改變表觀基因標記,而表觀基因標記又和健康效應有關,因此表觀基因標記在研究環境暴露對於人體的衝擊中扮演著重要的角色。 | zh_TW |
| dc.description.abstract | Environmental exposures in association with epigenetic alterations
Environmental exposures can cause adverse health outcomes through the alteration of epigenetic regulation. Epigenetic marks can regulate gene expression without affecting DNA sequence, which may further influence phenotypes or susceptibility to diseases. We used prenatal chlorpyrifos exposure and ambient temperature effects in adults as examples to demonstrate environmental exposures in association with epigenetic alterations in cohort studies. Prenatal chlorpyrifos exposure in relation to placental PPARγ H3K4me3 modifications and health outcomes Background: Chlorpyrifos, one of the most widely used pesticides, can penetrate the placenta and affect fetal growth and neurodevelopment. Epigenetic regulation of peroxisome proliferator-activated receptor gamma (PPARγ), such as trimethylation of lysine 4 of H3 (H3K4me3), may provide a potential mechanism for how fetal growth and development are impacted by chlorpyrifos exposure. The aims of the study were to investigate whether prenatal chlorpyrifos exposure was associated with H3K4me3 levels of the PPARγ gene in the placenta and the related effects on birth outcomes and neurodevelopment. Methods: Among 425 mother-infant pairs enrolled from April 2004 to January 2005 in the Taiwan Birth Panel Study, chlorpyrifos levels were measured in cord blood by using online SPE-LC/HESI/MS/MS; placental PPARγ H3K4me3 levels were measured by ChIP-qPCR; the neonates’ health outcomes were extracted from the medical records; and childhood neurodevelopment was evaluated by using the Comprehensive Developmental Inventory for Infants and Toddlers in 2-year-old children. Multivariable regression models were used to adjust for potential confounders. Results: After controlling for potential confounders, each unit increase in the natural log-transformed prenatal chlorpyrifos exposure level was associated with poorer performance in the cognitive and language domains at 2 years old, especially in boys (adjusted β (aβ) = -1.66, p = 0.016, and aβ = -1.79, p = 0.023, respectively). PPARγ H3K4me3 levels were positively associated with gestational age (aβ = 0.16 (week), p = 0.011), birth weight (aβ = 30.52 (g), p = 0.013), birth length (aβ = 0.18 (cm), p = 0.003 and aβ = 0.15, p = 0.042), and gross-motor performance (aβ = 1.67, p = 0.036). Conclusions: Our findings suggested that prenatal chlorpyrifos exposure affected performance in the cognitive and language domains. Ambient temperature exposures and DNA methylation aging in adults Background: Climate change caused an increase in ambient temperature in the past decades. Exposure to high ambient temperature could result in biological aging, but relevant studies in a warm environment were lacking. We aimed to study the exposure effects of ambient temperature and heat index (HI) in relation to age acceleration in Taiwan, a subtropical island in Asia. Methods: The study included 2,084 participants recruited from 2008 to 2016 in Taiwan Biobank. Daily temperature and relative humidity data were collected from weather monitoring stations. Individual residential exposure was estimated by ordinary kriging. Moving averages of ambient temperature and HI from 1 to 180 days prior to enrollment were calculated to estimate the exposure effects in multiple time periods. Age acceleration was defined as the difference between DNA methylation age and chronological age. DNA methylation age was calculated by the Horvath’s, Hannum’s, Weidner’s, ELOVL2, FHL2, phenotypic (Pheno), Skin & blood, and GrimAge2 (Grim2) DNA methylation age algorithms. Multivariable linear regression models, generalized additive models (GAMs), and distributed lag non-linear models (DLNMs) were conducted to estimate the effects of ambient temperature and HI exposures in relation to age acceleration. Results: Exposure to high ambient temperature and HI were associated with increased age acceleration, and the associations were stronger in prolonged exposure. The heat stress days with maximum HI in caution (80-90°F), extreme caution (90-103°F), danger (103-124°F), and extreme danger (> 124°F) were also associated with increased age acceleration, especially in the extreme danger days. Each extreme danger day was associated with 571.38 (95% CI: 42.63-1100.13), 528.02 (95% CI: 36.16-1019.87), 43.9 (95% CI: 0.28-87.52), 16.82 (95% CI: 2.36-31.28) and 15.52 (95% CI: 2.17-28.88) days increase in the Horvath’s, Hannum’s, Weidner’s, Pheno, and Skin & blood age acceleration, respectively. In addition, seasonal and geographical variations were performed in the relationships between high ambient temperature exposure and increasing age acceleration. Conclusion: High ambient temperature and HI may accelerate biological aging. Conclusion Environmental exposures can alter epigenetic marks, and epigenetic marks are associated with health outcomes in cohort studies. For this reason, epigenetic marks play important roles in studying the impact of environmental exposures on humans. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:40:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:40:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract vi List of Figures xii List of Tables xvii Chapter 1. Environmental exposures in association with epigenetic alterations 1 Chapter 2. Prenatal chlorpyrifos exposure in relation to placental PPARγ H3K4me3 modifications and health outcomes 3 2.1. Introduction 3 2.1.1. Chlorpyrifos 3 2.1.2. Prenatal chlorpyrifos exposure and placenta 4 2.1.3. Peroxisome proliferator-activated receptor gamma (PPARγ) and placenta 5 2.1.4. Chlorpyrifos exposure and epigenetic modifications 6 2.1.5. Study aims 7 2.2. Materials and methods 8 2.2.1. Study participants and questionnaire data 8 2.2.2. Outcome assessments 8 2.2.3. Sample collection 10 2.2.4. Chlorpyrifos exposure measurements 10 2.2.5. Histone modification measurements of H3K4me3-Chromatin immunoprecipitation coupled with quantitative polymerase chain reaction (ChIP-qPCR) 11 2.2.6. Statistical analysis 13 2.3. Results 16 2.3.1. Characteristics of the study participants 16 2.3.2. Prenatal chlorpyrifos exposure and placental H3K4me3 levels in the PPARγ gene 17 2.3.3. Prenatal chlorpyrifos exposure and health outcomes 18 2.3.4. H3K4me3 levels in the PPARγ gene and health outcomes 19 2.3.5. Mediation analysis 21 2.3.6. Sensitivity analysis 21 2.4. Discussions 23 2.5. Conclusions 29 Chapter 3. Ambient temperature exposures and DNA methylation aging in adults 30 3.1. Introduction 30 3.1.1. Ambient temperature 30 3.1.2. DNA methylation age and biological aging 30 3.1.3. Ambient temperature and DNA methylation aging 32 3.1.4. Study aims 33 3.2. Materials and methods 34 3.2.1. Study participants 34 3.2.2. Exposure assessment of ambient temperature and apparent temperature 34 3.2.3. Estimation of DNA methylation age 36 3.2.4. Statistical analysis 37 3.3. Results 42 3.3.1. Baseline characteristics of participants 42 3.3.2. Moving averages of ambient temperature, RH, and HI exposure assessments 42 3.3.3. Distributions of the number of heat stress days 43 3.3.4. Ambient temperature and HI exposures in relation to age acceleration 45 3.3.5. Heat stress days in association with age acceleration 49 3.3.6. Seasonal variation of ambient temperature, HI, and heat stress days exposures 50 3.3.7. Geographical variation of ambient temperature, HI, and heat stress days exposures 52 3.3.8. Sexual differences of ambient temperature exposures 55 3.4. Discussions 56 3.5. Conclusions 64 Chapter 4. Conclusions 65 References 66 Appendix 114 | - |
| dc.language.iso | en | - |
| dc.subject | 環境溫度 | zh_TW |
| dc.subject | DNA 甲基化年齡 | zh_TW |
| dc.subject | 組蛋白修飾 | zh_TW |
| dc.subject | 世代研究 | zh_TW |
| dc.subject | 環境暴露 | zh_TW |
| dc.subject | 表觀基因 | zh_TW |
| dc.subject | 陶斯松 | zh_TW |
| dc.subject | DNA methylation age | en |
| dc.subject | histone modification | en |
| dc.subject | ambient temperature | en |
| dc.subject | chlorpyrifos | en |
| dc.subject | environmental exposures | en |
| dc.subject | cohort study | en |
| dc.subject | Epigenetics | en |
| dc.title | 世代研究中環境暴露與表觀基因改變的相關性:以產前陶斯松暴露及環境溫度對成人的效應為例 | zh_TW |
| dc.title | Environmental Exposures in Association with Epigenetic Alterations in Cohort Studies: Using Prenatal Chlorpyrifos Exposure and Ambient Temperature Effects in Adults as Examples | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳美蓮;潘文驥;陳主智;陳保中 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Lien Chen;Wen-Chi Pan;Chu-Chih Chen;Pau-Chung Chen | en |
| dc.subject.keyword | 表觀基因,世代研究,環境暴露,陶斯松,環境溫度,組蛋白修飾,DNA 甲基化年齡, | zh_TW |
| dc.subject.keyword | Epigenetics,cohort study,environmental exposures,chlorpyrifos,ambient temperature,histone modification,DNA methylation age, | en |
| dc.relation.page | 172 | - |
| dc.identifier.doi | 10.6342/NTU202403280 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 12.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
