Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李亞芸zh_TW
dc.contributor.advisorYa-Yun Leeen
dc.contributor.author林德浚zh_TW
dc.contributor.authorDe-Jun Limen
dc.date.accessioned2024-08-16T17:37:28Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation1. Wolters E. Variability in the clinical expression of Parkinson's disease. J Neurol Sci. 2008;266:197-203.
2. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548-60.
3. Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18:435-50.
4. Nieuwboer A, Rochester L, Müncks L, Swinnen SP. Motor learning in Parkinson's disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15 Suppl 3:S53-8.
5. Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF. The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol. 2017;128:1127-41.
6. Lee YY, Winstein CJ, Gordon J, Petzinger GM, Zelinski EM, Fisher BE. Context-dependent learning in people with Parkinson's disease. J Mot Behav. 2016;48:240-8.
7. Lee YY, Tai CH, Fisher BE. Context-dependent behavior in Parkinson's disease with freezing of gait. Neurorehabil. Neural Repair. 2019;33:1040-9.
8. Schootemeijer S, van der Kolk NM, Ellis T, Mirelman A, Nieuwboer A, Nieuwhof F, et al. Barriers and motivators to engage in exercise for persons with Parkinson's disease. J Parkinsons Dis. 2020;10:1293-9.
9. Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychon B Rev. 2016;23:1382-1414.
10. Barros JAC, Yantha ZD, Carter MJ, Hussien J, Ste-Marie DM. Examining the impact of error estimation on the effects of self-controlled feedback. Hum. Mov. Sci. 2019;63:182-98.
11. Carter MJ, Ste-Marie DM. Not all choices are created equal: Task-relevant choices enhance motor learning compared to task-irrelevant choices. Psychon B Rev. 2017;24:1879-88.
12. Sanli EA, Patterson JT, Bray SR, Lee TD. Understanding self-controlled motor learning protocols through the self-determination theory. Front. Psychol. 2013;3:17.
13. Leotti LA, Iyengar SS, Ochsner KN. Born to choose: the origins and value of the need for control. Trends Cogn Sci. 2010;14:457-63.
14. Leotti LA, Delgado MR. The inherent reward of choice. Psychol Sci. 2011;22:1310-8.
15. Murayama K, Matsumoto M, Izuma K, Sugiura A, Ryan RM, Deci EL, et al. How self-determined choice facilitates performance: a key role of the ventromedial prefrontal cortex. Cereb Cortex. 2015;25:1241-51.
16. Legault L, Inzlicht M. Self-determination, self-regulation, and the brain: autonomy improves performance by enhancing neuroaffective responsiveness to self-regulation failure. J Pers Soc Psychol. 2013;105:123-38.
17. Grand KF, Bruzi AT, Dyke FB, Godwin MM, Leiker AM, Thompson AG, et al. Why self-controlled feedback enhances motor learning: answers from electroencephalography and indices of motivation. Hum. Mov. Sci. 2015;43:23-32.
18. Pathania A, Leiker AM, Euler M, Miller MW, Lohse KR. Challenge, motivation, and effort: neural and behavioral correlates of self-control of difficulty during practice. Biol. Psychol. 2019;141:52-63.
19. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998;79:1117-23.
20. Rosenkranz K, Kacar A, Rothwell JC. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci. 2007;27:12058.
21. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187-99.
22. Chiviacowsky S, Wulf G, Lewthwaite R, Campos T. Motor learning benefits of self-controlled practice in persons with Parkinson's disease. Gait Posture. 2012;35:601-5.
23. Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397:2284-303.
24. Deuschl G, Beghi E, Fazekas F, Varga T, Christoforidi KA, Sipido E, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Health. 2020;5:E551-67.
25. Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8:S3-8.
26. Dorsey ER, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A, Adsuar JC, et al. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939-53.
27. Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7:47.
28. Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13:217-31.
29. Chung YC, Fisher BE, Finley JM, Kim A, Petkus AJ, Schiehser DM, et al. Cognition and motor learning in a Parkinson's disease cohort: importance of recall in episodic memory. Neuroreport. 2021;32:1153-60.
30. Foerde K, Braun EK, Higgins ET, Shohamy D. Motivational modes and learning in Parkinson's disease. Soc Cogn Affect Neurosci. 2015;10:1066-73.
31. Mazzoni P, Hristova A, Krakauer JW. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J Neurosci. 2007;27:7105-16.
32. Kojovic M, Mir P, Trender-Gerhard I, Schneider SA, Pareés I, Edwards MJ, et al. Motivational modulation of bradykinesia in Parkinson's disease off and on dopaminergic medication. J Neurol. 2014;261:1080-9.
33. Chong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K, Tofaris GK, et al. Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex. 2015;69:40-46.
34. Timmer MHM, Aarts E, Esselink RAJ, Cools R. Enhanced motivation of cognitive control in Parkinson's disease. Eur J Neurosci. 2018;48:2374-84.
35. Deci EL, Ryan RM. The "what" and "why" of goal pursuits: human needs and the self-determination of behavior. Psychol. Inq. 2000;11:227-68.
36. Katz I, Assor A. When choice motivates and when it does not. Educ. Psychol. Rev. 2006;19:429-42.
37. Leotti LA, Delgado MR. The value of exercising control over monetary gains and losses. Psychol Sci. 2014;25:596-604.
38. Fujiwara J, Usui N, Park SQ, Williams T, Iijima T, Taira M, et al. Value of freedom to choose encoded by the human brain. J Neurophysiol. 2013;110:1915-29.
39. Delgado MR. Reward-related responses in the human striatum. Ann N Y Acad Sci. 2007;1104:70-88.
40. Wulf G. Self-controlled practice enhances motor learning: implications for physiotherapy. Physiotherapy. 2007;93:96-101.
41. Janelle CM, Kim JG, Singer RN. Subject-controlled performance feedback and learning of a closed motor skill. Percept Motor Skill. 1995;81:627-34.
42. Jimenez-Diaz J, Chaves-Castro K, Morera-Castro M. Effect of self-controlled and regulated feedback on motor skill performance and learning: a meta-analytic Study. J Mot Behav. 2021;53:385-98.
43. Lewthwaite R, Chiviacowsky S, Drews R, Wulf G. Choose to move: the motivational impact of autonomy support on motor learning. Psychon B Rev. 2015;22:1383-8.
44. Post PG, Aiken CA, Laughlin DD, Fairbrother JT. Self-control over combined video feedback and modeling facilitates motor learning. Hum. Mov. Sci. 2016;47:49-59.
45. Wulf G, Lewthwaite R, Cardozo P, Chiviacowsky S. Triple play: additive contributions of enhanced expectancies, autonomy support, and external attentional focus to motor learning. Q J Exp Psychol. 2018;71:824-831.
46. Chiviacowsky S, Wulf G. Self-controlled feedback: does it enhance learning because performers get feedback when they need it? Res. Q. Exerc. Sport. 2002;73:408-415.
47. Chiviacowsky S, Wulf G, Lewthwaite R. Self-controlled learning: the importance of protecting perceptions of competence. Front. Psychol. 2012;3:8.
48. Bund A, Wiemeyer J, Bund D. Self-controlled learning of a complex motor skill: effects of the learners' preferences on performance and self-efficacy. J. Hum. Mov. Stud. 2004;47.
49. Carter MJ, Patterson JT. Self-controlled knowledge of results: age-related differences in motor learning, strategies, and error detection. Hum. Mov. Sci. 2012;31:1459-72.
50. Chen DD, Hendrick JL, Lidor R. Enhancing self-controlled learning environments: The use of self regulated feedback information. J. Hum. Movement Stud. 2002;43:69-86.
51. Chiviacowsky S, Wulf G. Self-controlled feedback is effective if it is based on the learner's performance. Res. Q. Exerc. Sport. 2005;76:42-8.
52. Jaquess KJ, Lu Y, Iso-Ahola SE, Zhang J, Gentili RJ, Hatfield BD. Self-controlled practice to achieve neuro-cognitive engagement: underlying brain processes to enhance cognitive-motor learning and performance. J Mot Behav. 2020;52:544-57.
53. McAuley E, Duncan T, Tammen VV. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a confirmatory factor analysis. Res Q Exerc Sport. 1989;60:48-58.
54. Bandura A. Self-efficacy – toward a unifying theory of behavioural change. Psychol. Rev. 1977;84:191-215.
55. Guadagnoli MA, Kohl RM. Knowledge of results for motor learning: relationship between error estimation and knowledge of results frequency. J Mot Behav. 2001;33:217-24.
56. Swinnen SP, Schmidt RA, Nicholson DE, Shapiro DC. Information feedback for skill acquisition: instantaneous knowledge of results degrades learning. J Exp Psychol Learn Mem Cogn. 1990;16:706-16.
57. Carter MJ, Ste-Marie DM. An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules. Psychol Res. 2017;81:399-406.
58. Couvillion KF, Bass AD, Fairbrother JT. Increased cognitive load during acquisition of a continuous task eliminates the learning effects of self-controlled knowledge of results. J Sports Sci. 2020;38:94-9.
59. Delgado MR, Stenger VA, Fiez JA. Motivation-dependent responses in the human caudate nucleus. Cereb Cortex. 2004;14:1022-30.
60. Gehring WJ, Liu Y, Orr JM, Carp J. The error-related negativity (ERN/Ne). The Oxford handbook of event-related potential components. New York, NY, US: Oxford University Press; 2012:231-291.
61. Smyth C, Summers JJ, Garry MI. Differences in motor learning success are associated with differences in M1 excitability. Hum. Mov. Sci. 2010;29:618-30.
62. Nevler N, Ash EL. TMS as a tool for examining cognitive processing. Curr Neurol Neurosci Rep. 2015;15:52.
63. Lin CH, Fisher BE, Winstein CJ, Wu AD, Gordon J. Contextual interference effect: elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. J Mot Behav. 2008;40:578-86.
64. Lin C-H, Fisher BE, Wu AD, Ko Y-A, Lee L-Y, Winstein CJ. Neural correlate of the contextual interference effect in motor learning: a kinematic analysis. J. Mot. Behav. 2009;41:232-42.
65. Lin CH, Winstein CJ, Fisher BE, Wu AD. Neural correlates of the contextual interference effect in motor learning: a transcranial magnetic stimulation investigation. J Mot Behav. 2010;42:223-32.
66. Lin CH, Knowlton BJ, Chiang MC, Iacoboni M, Udompholkul P, Wu AD. Brainbehavior correlates of optimizing learning through interleaved practice. Neuroimage. 2011;56:1758-72.
67. Bruechert L, Lai Q, Shea CH. Reduced knowledge of results frequency enhances error detection. Res. Q. Exerc. Sport. 2003;74:467-72.
68. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695-9.
69. Marras C, Armstrong MJ, Meaney CA, Fox S, Rothberg B, Reginold W, et al. Measuring mild cognitive impairment in patients with Parkinson's disease. Mov Disord. 2013;28:62633.
70. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129-70.
71. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361-70.
72. Leentjens AF, Dujardin K, Marsh L, Richard IH, Starkstein SE, Martinez-Martin P. Anxiety rating scales in Parkinson's disease: a validation study of the Hamilton anxiety rating scale, the Beck anxiety inventory, and the hospital anxiety and depression scale. Mov Disord. 2011;26:407-15.
73. Schmidt RA, Lee TD. Motor control and learning: A behavioral emphasis, 5th ed. Champaign, IL, US: Human Kinetics; 2011.
74. Ryan RM, Mims V, Koestner R. Relation of reward contingency and interpersonal context to intrinsic motivation: a review and test using cognitive evaluation theory. J Pers Soc Psychol. 1983;45:736-50.
75. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Noninvasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126:1071-107.
76. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Noninvasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91:79-92.
77. Rossini PM, Rossi S. Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology. 2007;68:484-8.
78. Williamson DF, Parker RA, Kendrick JS. The box plot: a simple visual method to interpret data. Ann Intern Med. 1989;110:916-21.
79. Gupta SK. Intention-to-treat concept: a review. Perspect Clin Res. 2011;2:109-12.
80. Onla-or S, Winstein CJ. Determining the optimal challenge point for motor skill learning in adults with moderately severe Parkinson's disease. Neurorehabil Neural Repair. 2008;22:385-95.
81. Patterson JT, Carter M. Learner regulated knowledge of results during the acquisition of multiple timing goals. Hum Mov Sci. 2010;29:214-27.
82. Touron DR, Hertzog C. Distinguishing age differences in knowledge, strategy use, and confidence during strategic skill acquisition. Psychol Aging. 2004;19:452-66.
83. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson's disease: a complex and evolving picture. Mov Disord. 2017;32:1524-36.
84. Bacelar MFB, Parma JO, Cabral D, Daou M, Lohse KR, Miller MW. Dissociating the contributions of motivational and information processing factors to the self-controlled feedback learning benefit. Psychol. Sport Exerc. 2022;59:10.
85. Kamata N, Matsuo Y, Yoneda T, Shinohara H, Inoue S, Abe K. Overestimation of stability limits leads to a high frequency of falls in patients with Parkinson's disease. Clinical Rehabilitation. 2007;21:357-61.
86. Kawasaki T, Mikami K, Kamo T, Aoki R, Ishiguro R, Nakamura H, et al. Motor planning error in Parkinson's disease and its clinical correlates. PLoS One. 2018;13:e0202228.
87. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. The error-related negativity. Perspect Psychol Sci. 2018;13:200-4.
88. Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev. 2004;111:931-59.
89. Zgaljardic DJ, Borod JC, Foldi NS, Mattis P. A review of the cognitive and behavioral sequelae of Parkinson's disease: relationship to frontostriatal circuitry. Cogn Behav Neurol. 2003;16:193-210.
90. Gallagher DA, Schrag A. Psychosis, apathy, depression and anxiety in Parkinson's disease. Neurobiol Dis. 2012;46:581-9.
91. Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science. 1994;263:1287-9.
92. Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, et al. Early consolidation in human primary motor cortex. Nature. 2002;415:640-644.
93. Carter CS, van Veen V. Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci. 2007;7:367-79.
94. Badre D, Wagner AD. Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron. 2004;41:473-87.
95. Klein-Flugge MC, Bestmann S. Time-dependent changes in human corticospinal excitability reveal value-based competition for action during decision processing. J Neurosci. 2012;32:8373-82.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94704-
dc.description.abstract背景:巴金森氏症患者因動機、認知功能以及動作學習的障礙,導致其動作表現或學習新動作的成效不佳。因此,找尋促進巴金森氏症患者動作學習的方法,將可增進臨床復健的成效。自主權是指個人擁有自我決定的權利和能力,在環境中能夠自主做出選擇和決定。在動作學習中給與學習者選擇練習的參數能夠增加他們的自主權,進而增加學習的内在動機與認知資源的投入。自主權已被廣泛的證實可以促進健康年輕人的動作學習能力,且背後的神經生理機制已被初步討論。然而目前只有一篇研究探討自主權對巴金森氏症患者動作學習的影響,因此本研究欲探討給與自主控制回饋時機對於巴金森氏症患者動作學習的效益,以及其相關神經生理機制。

研究目的:探討提供巴金森氏症患者自主權對於動作學習之成效,及其相關神經生理機制。

研究方法:本研究招募原發性巴金森氏症患者,並依照受試者性別、年紀與疾病嚴重度輪流分配至自主組和共軛組以進行手指按壓任務的學習。其中自主組在練習時能夠選擇得到回饋的時機,共軛組則依照自主組的選擇接收相同時機的回饋。每位受試者在實驗第一天接受基本評估,包括情緒、認知功能與動作能力評估。在基本評估之後,將以經顱磁刺激術記錄受試者大腦皮質的興奮性,之後進行手指按壓任務的練習。此外,受試者在練習後需要填寫動機量表以及學習策略問卷。受試者在第二天將進一步練習手指按壓任務,並馬上以手指按壓任務測試觀察其立即留存效果,同時以受試者自評誤差分數觀察他們對任務表現的知覺。之後再進行經顱磁刺激術記錄受試者在學習之後大腦皮質的興奮性變化。受試者在練習之後的第七天將進行追蹤測試及經顱磁刺激術評估。

結果:共有三十二位受試者完成試驗,其中十六位被分配至自主組,十六分配至共軛組。經過兩天的訓練之後,自主組與共軛組的手指按壓任務準確率皆顯著增加(p <0.001)。兩組受試者在第二天的留存評估中表現相近,但自主組在第七天的評估中較共軛組有更好的動作任務留存(group-by-time interaction p = 0.040)。
學習策略問卷的結果顯示多數受試者在感知到良好和不好的表現後皆想要獲得回饋,而兩組的動機量表分數沒有顯著的差異。自評誤差分數則顯示,兩組在第二天與第七天的評估中都有相近的表現。
經顱磁刺激術的數據顯示,自主組的皮質脊髓興奮性在第七天的追蹤測試中有顯著的增加,而共軛組則沒有明顯的變化(group-by-time interaction p = 0.041)。

總結:提供巴金森氏症患者自主權有助於促進其動作學習的成效,且伴隨皮質興奮性的增加。然而實驗沒有發現顯著的訊息處理和動機效應,顯示巴金森患者能夠自主控制回饋時機,可能是透過其他機制促進其學習效應。

關鍵字:巴金森氏症、自主權、動作學習、皮質興奮性、經顱磁刺激術
zh_TW
dc.description.abstractBackground: People with Parkinson's disease (PD) are known to have impaired motor learning and low motivation, which pronouncedly limit the effectiveness of training or acquiring new motor skills. Exploring methods to promote motor learning and motivation can thus enhance the effectiveness of clinical rehabilitation for people with PD. Autonomy refers to the sense of learner to actively participate in determining their own behavior. Providing learners with choices in the learning process (i.e., self-controlled practice) can increase their autonomy, thereby enhancing intrinsic motivation and cognitive resources for learning. Selfcontrolled practice has been shown to promote motor learning abilities, and the associated neurophysiological mechanisms have been discussed in healthy young adults. However, there is only one study to date intended to explore the effect of autonomy on motor learning in PD, and the neurophysiological mechanisms have not yet been studied.

Study purpose: The present study aimed to investigate whether an self-controlled practice would benefit motor learning for individuals with PD.

Method: This study recruited people with idiopathic PD. Participants were matched in pairs and consecutively allocated into the self-control group (SELF) and the yoked group (YOKED) to practice a finger-pressing trajectory-matching task. Participants in the SELF group had the choice to either receive performance feedback or not during practice, while those in the YOKED group received feedback according to the choices made by their counterparts. Each participant underwent baseline assessments on the first day (D1), including emotional status, cognitive function, and motor ability assessments. Following the assessments, neurophysiological outcomes were assessed with transcranial magnetic stimulation (TMS) before practicing the finger-pressing task. Additionally, participants needed to complete the motivation questionnaire and report their strategy for requesting feedback after the practice sessions. On the second day (D2), participants underwent additional practice of the finger-pressing tasks. Later, a retention and a transfer test were conducted to observe their immediate learning effects. At the same time, participants’ selfreported error estimation scores were used to assess their perception of task performance. TMS was also used to record changes in cortical excitability after the learning session. On the seventh day (D7) of the experiment, participants returned to the lab and completed a followup
retention test, along with the TMS assessments.

Result: 32 participants were recruited into the study, with 16 assigned to the SELF group and 16 to the YOKED group. After two days of training, the accuracy of finger-pressing tasks increased significantly in both the SELF and the YOKED groups (p < 0.001). While both groups showed similar performance at the D2 retention test, the SELF group had greater retention of the motor task than the YOKED group on D7 (group-by-time interaction p = 0.040).

When interviewing the participants’ strategy for requesting feedback, it seemed that most participants preferred receiving feedback after good or bad trials equally. The results from the motivation questionnaire showed no significant difference between the two groups. Regarding the error estimation scores, both the SELF and YOKED groups showed similar ability in estimating their motor performance.

As for the TMS data, participants in the SELF group showed an increase in resting motor evoked potential (MEP) from D2 to D7, while the YOKED group showed similar resting MEP on D2 and D7 (group-by-time interaction p = 0.041).

Conclusion: Providing self-controlled feedback to patients with PD might benefit motor learning, accompanied by an increase in corticomotor excitability. However, this study did not find significant changes in the cognitive-processing ability or motivation in performing the task, suggesting that there might be other mechanisms that facilitated motor learning in people with PD.

Keywords: Parkinson’s disease, autonomy, motor learning, corticomotor excitability,
transcranial magnetic stimulation
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:37:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:37:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 (I)
中文摘要 (II)
Abstract (IV)
Chapter 1: Introduction (1)
1.1 Background (1)
1.2 Study purpose (3)
1.3 Specific aims and hypothesis (3)
Chapter 2: Literature Review (4)
2.1 Introduction of Parkinson’s disease (4)
2.2 Introduction of autonomy (6)
2.3 Providing autonomy/self-controlled practice enhances motor learning (6)
2.4 Possible neurophysiological changes associated with autonomy/self-controlled practice on motor learning (12)
2.5 Summary of review (16)
Chapter 3: Methods (17)
3.1 Participants (17)
3.2 Study procedure (17)
3.3 Finger-pressing trajectory-matching task (18)
3.4 Outcome measures (21)
3.5 Data analysis (26)
3.6 Sample size estimation (27)
Chapter 4: Results (29)
4.1 Demographic characteristics (29)
4.2 Finger-pressing trajectory-matching task performance (29)
4.3 Strategy for requesting feedback (30)
4.4 Motivation questionnaire (31)
4.5 Error estimation score (32)
4.6 Neurophysiological changes (33)
Chapter 5: Discussion (35)
Chapter 6: Conclusion (45)
Figures (46)
Tables (49)
References (57)
Appendix (67)
-
dc.language.isoen-
dc.title自主權對於促進巴金森氏症患者動作學習之效果zh_TW
dc.titleEffects of Autonomy on Motor Learning in People with Parkinson's Diseaseen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳淑雅;黃正雅;戴春暉zh_TW
dc.contributor.oralexamcommitteeShu-Ya Chen;Cheng-Ya Huang;Chun-Hwei Taien
dc.subject.keyword巴金森氏症,自主權,動作學習,經顱磁刺激術,皮質興奮性,zh_TW
dc.subject.keywordParkinson’s disease,autonomy,motor learning,transcranial magnetic stimulation,corticomotor excitability,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202401486-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2025-08-01
1.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved