請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 徐梓軒 | zh_TW |
| dc.contributor.author | Zi-Xuan Xu | en |
| dc.date.accessioned | 2024-08-16T17:27:42Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1]Hammons, T.J., Power cables in the twenty-first century. Electric Power Components and Systems, 31(10): p. 967-994, 2003.
[2]Endersby, T., B. Gregory, and S. Swingler. The application of polypropylene paper laminate insulated oil filled cable to EHV and UHV transmission. in INTERNATIONAL CONFERENCE ON LARGE HIGH VOLTAGE ELECTRIC SYSTEMS. 1992. [3]Gregory, B. and A. Nicholls. 66 kV and 132 kV XLPE Supertension Cable Systems. in 6th Conference. on Electric Power Supply Industry: Transmission and Distribution Systems and Equipment. 1986. [4]Ogawa, K., et al., The world's first use of 500 kV XLPE insulated aluminium sheathed power cables at the Shimogo and Imaichi power stations. IEEE transactions on power delivery, 5(1): p. 26-32, 1990. [5]Sarajcev, I., M. Majstrovic, and I. Medic, Calculation of losses in electric power cables as the base for cable temperature analysis. WIT Transactions on Engineering Sciences, 272000. [6]Bamigbola, O.M., M.M. Ali, and M. Oke, Mathematical modeling of electric power flow and the minimization of power losses on transmission lines. Applied Mathematics and Computation, 241: p. 214-221, 2014. [7]Rasoulpoor, M., M. Mirzaie, and S. Mirimani, Electrical and thermal analysis of single conductor power cable considering the lead sheath effect based on finite element method. Iranian Journal of Electrical & Electronic Engineering, 12(1): p. 73, 2016. [8]Weedy, B., Thermal transients in a high-voltage cable system with natural and artificial cooling. Proceedings of the IEE-Part A: Power Engineering, 109(47): p. 461-470, 1962. [9]Kunisch, H., M. Bohge, and E. Rumpf. Underground High-Power Transmission Part III-Experience From Practice And Experimental Work In Berlin (West). in 1979 7th IEEE/PES Transmission and Distribution Conference and Exposition. IEEE, 1979. [10]Neher, J. and M. McGrath, The calculation or the temperature rise and load capability of cable systems. RATIO, 50(2): p. 5, 1994. [11]Krarti, M. and J.F. Kreider, Analytical model for heat transfer in an underground air tunnel. Energy conversion and management, 37(10): p. 1561-1574, 1996. [12]Hwang, C.-C. and Y.-H. Jiang, Extensions to the finite element method for thermal analysis of underground cable systems. Electric Power Systems Research, 64(2): p. 159-164, 2003. [13]江明德,地下輸電電纜洞道冷卻系統暨氣流模擬研究,碩士論文,國立台北科技大學冷凍空調工程系,2004。 [14]陳慶豐,超高壓電纜地下洞道冷卻氣流模擬分析,碩士論文,國立臺北科技大學冷凍空調工程系所,2005。 [15]Matsumura, M., et al. Transmission capacity design of underground power cables installed in deep tunnel. in 2006 IEEE Power Engineering Society General Meeting. IEEE, 2006. [16]Hayashi, M., et al., Development of water pipe cooling system for power cables in tunnels. IEEE transactions on power delivery, 4(2): p. 863-872, 1989. [17]杜文翔,地下電纜洞道內冰水管間接冷卻系統之性能研究,碩士論文,國立臺灣大學機械工程學研究所,2006。 [18]鄭易林,全圓洞道內線性熱源位置對剖面溫度的效應,碩士論文,國立臺灣大學機械工程學研究所,2009。 [19]譚介堯,全圓洞道內具雙線性熱源之冷卻水溫度及流量對熱傳之影響,碩士論文,國立臺灣大學機械工程學研究所,2011。 [20]Wu, D.K., Y. Lin, and H. Xu. Numerical Investigation of Thermal Behavior of HV Transmission Cables in Tunnel With Water Cooling System. in ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. [21]Peltier, M., et al., Numerical investigation of the convection heat transfer driven by airflows in underground tunnels. Applied Thermal Engineering, 159: p. 113844, 2019. [22]Braun, J., et al., Models for variable-speed centrifugal chillers. ASHRAE transactions, 93: p. 1794-1813, 1987. [23]陳進龍,動態規劃法運用於儲冰式空調系統與低溫送風之最佳化設計,博士論文,國立臺灣大學機械工程學研究所,2000。 [24]ASHRAE, Heating, Ventilating, and Air-Conditioning Applications. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)2007. [25]Stoecker, W.F.,Procedures for simulating the performance of components and systems for energy calculations,1975。 [26]張峻銓,冰水主機與冷卻水塔群組最佳化運轉策略研究,碩士論文,國立臺灣大學機械工程學研究所,2007。 [27]Merkel, F., Verdunstungskühlung. (No Title), 1925. [28]吳達偉,中央空調系統節能效益驗證模式與最佳化運轉策略之研究,碩士論文,國立臺灣大學機械工程學研究所,2008。 [29]郭祐甫,中央空調系統運轉耗能模擬與控制策略最佳化之研究,博士論文,國立臺灣大學機械工程學研究所,2010。 [30]鄭景韓,地下電纜洞道預冷空調箱冷卻系統最佳化與耗能分析,碩士論文,國立臺灣大學機械工程學研究所,2012。 [31]Wu, A.Y., Single-conductor cables in parallel. IEEE transactions on industry applications, (2): p. 377-395, 1984. [32]Li, J. and Y. Cheng. Simulation calculation and influence factor analysis of induced voltage of metal sheath. in 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). IEEE, 2022. [33]Fan, D., et al. High-voltage Cable Arrangement Optimization Design Method. in 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE). IEEE, 2023. [34]台灣電力公司輸變電工程處南區施工處,高港~五甲~高雄345kV地下電纜輸電電路機電工程技術彙編,2014。 [35]台灣電力公司南區施工處,潛盾洞道通風冷卻與間接水冷卻系統設計與應用,2016。 [36]台灣電力公司,地下電纜洞道通風冷卻系統之技術及應用,2012。 [37]Dorgan, C. and J. Elleson, ASHRAE Design Guide for Cool Thermal Storage (RP-592). TRANSACTIONS-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINEERS, 100: p. 33-33, 1994. [38]Tsal, R.J., H.F. Behls, and L.P. Varvak, T-Method duct design: Part IV-duct leakage theory. 1998. [39]Tsal, R.J., H.F. Behls, and L.P. Varvak, T-Method duct design, Part V: duct leakage calculation technique and economics. 1998. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94675 | - |
| dc.description.abstract | 為了確保地下電纜洞道輸電系統的有效運行及其長期穩定性,本文專注於地下電纜洞道的散熱問題。考慮到台灣位於亞熱帶地區,夏季氣候相對炎熱,地下電纜極易因高溫過熱而影響其輸電效率與壽命。因此,本研究建立一套數學理論模型,用於分析並優化地下電纜洞道的冷卻系統,目的在於提升散熱效率和降低能源消耗,同時兼顧生命週期成本,以確保冷卻系統的經濟性。
本研究首先回顧地下電纜洞道的基本結構與運作原理,分析電纜在電流流經時產生熱量的過程。進一步,通過文獻綜述,檢視先前在地下電纜散熱方面的研究。在數學模型的建立階段,本研究以能量守恆定律和熱傳導理論為基礎,構建了一套描述洞道內空氣溫度變化及冷卻系統性能的數學模型,並與實際案例進行理論驗證以確認模型的準確性。分析結果顯示,冰水管的尺寸對洞道內空氣溫度有明顯影響。在相同的環境條件下,將冰水管徑從110mm增至180mm,可以使洞道內空氣溫度降低約5°C至6°C。進一步的耗能分析顯示,透過調整冰水主機的進水溫度和管徑尺寸,能有效控制整體能耗,在相同外部氣溫下展現最高40%的能耗差異。 最終,本研究提出了一種最佳化的冰水管尺寸設計方法,旨在冷卻效能和運行成本之間達到平衡。這方法以冰水管的生命週期成本作為目標函數。案例分析結果顯示,管徑為180mm的設計雖然初期設置成本較高,但其長期運行成本的節省,可以有效彌補初期投資的費用,從而展現出最優的生命週期成本效益。 | zh_TW |
| dc.description.abstract | To ensure the effective operation and long-term stability of underground cable tunnel transmission systems, this study focuses on the thermal management of underground cable tunnels. Considering Taiwan’s subtropical climate, where summers are relatively hot, underground cables are prone to overheating, which can affect their transmission efficiency and lifespan. Therefore, this research establishes a mathematical theoretical model to analyze and optimize the cooling system of underground cable tunnels. The aim is to enhance cooling efficiency and reduce energy consumption while considering life cycle costs to ensure the cooling system’s economic viability.
This study initially examines the structural and operational fundamentals of underground cable tunnels with an analysis of heat generation when current flows through the cables. A subsequent literature review explores existing research on cable heat dissipation. During model development, a mathematical framework describing air temperature variations and cooling system performance, based on energy conservation and heat conduction theories, is constructed. The model’s accuracy is validated against actual case studies. The analysis results indicate that the size of chilled water pipes significantly affects the air temperature within the tunnel. Under identical environmental conditions, increasing the pipe diameter from 110mm to 180mm can reduce the tunnel air temperature by approximately 5°C to 6°C. Further energy consumption analysis shows that adjusting the chilled water main machine’s inlet water temperature and pipe diameter can effectively control overall energy consumption, demonstrating up to a 40% difference in energy consumption under the same external temperature. Finally, the study proposes an optimized design method for the chilled water pipe size to balance cooling efficiency and operating costs. This method uses the life cycle cost of the chilled water pipes as the objective function. Case analysis results indicate that although the design with a pipe diameter of 180mm has a higher initial setup cost, the long-term operational cost savings can effectively offset the initial investment, thus demonstrating the optimal life cycle cost efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:27:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:27:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目次 IV 圖次 VII 表次 X 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 高壓電纜 2 1.2.2 地下高壓電纜冷卻系統 3 1.2.3 空調冷卻系統 6 1.3 研究動機與目的 8 1.4 本文架構 9 第二章 地下電纜洞道數學理論模型建立 10 2.1 前言 10 2.2 洞道發熱源 10 2.3 洞道冷卻系統 11 2.3.1 洞道內風冷系統 12 2.3.2 槽線內間接水冷系統 12 2.3.3 洞道內直接水冷系統 12 2.3.4 洞道內風機間接水冷系統 13 2.4 統御方程式 13 2.5 熱阻分析 16 2.6 理論驗證 20 2.6.1 理論驗證案例(一) 20 2.6.2 理論驗證案例(二) 20 第三章 冷卻系統耗能分析 33 3.1 前言 33 3.2 冰水主機耗能分析 34 3.3 冷卻水塔耗能分析 35 3.3.1 Merkel方法 35 3.3.2 Effectiveness-NTU方法 37 3.3.3 ASHRAE經驗公式 38 3.3.4 冷卻水塔簡化熱傳方程式 39 3.4 風機耗能分析 40 3.5 泵浦耗能分析 41 第四章 結果與討論 45 4.1 地下電纜洞道熱傳理論模型案例 45 4.1.1 冰水管外徑110mm下洞道內空氣溫度結果 45 4.1.2 冰水管外徑140mm下洞道內空氣溫度結果 46 4.1.3 冰水管外徑180mm下洞道內空氣溫度結果 48 4.1.4 案例結果討論 49 4.2 冷卻系統耗能分析案例 50 4.2.1 冰水管外徑110mm耗能結果 50 4.2.2 冰水管外徑140mm耗能結果 52 4.2.3 冰水管外徑180mm耗能結果 52 4.2.4 案例耗能結果討論 53 4.3 最佳化冷卻系統之冰水管設計方法 53 4.3.1 T方法 54 4.3.2 最佳化生命週期成本計算結果 56 第五章 結論與建議 100 5.1 結論 100 5.2 建議 101 參考文獻 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 高壓電纜 | zh_TW |
| dc.subject | 生命週期成本 | zh_TW |
| dc.subject | 冷卻系統 | zh_TW |
| dc.subject | 地下洞道 | zh_TW |
| dc.subject | Underground tunnel | en |
| dc.subject | Optimization | en |
| dc.subject | Cooling system | en |
| dc.subject | High-voltage cable | en |
| dc.subject | Life cycle cost | en |
| dc.title | 地下電纜洞道溫度模擬與最佳化冰水管徑設計分析 | zh_TW |
| dc.title | Temperature Simulation and Optimization of Chilled Water Pipe Diameter Design for Underground Cable Tunnels | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江沅晉;丁俊智 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chin Chiang;Jyun-Jhih Ding | en |
| dc.subject.keyword | 地下洞道,高壓電纜,冷卻系統,最佳化,生命週期成本, | zh_TW |
| dc.subject.keyword | Underground tunnel,High-voltage cable,Cooling system,Optimization,Life cycle cost, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202402507 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
