請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94665
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張日新 | zh_TW |
dc.contributor.advisor | Jih-Hsin Chang | en |
dc.contributor.author | 李品蓁 | zh_TW |
dc.contributor.author | Pin-Jen Li | en |
dc.date.accessioned | 2024-08-16T17:24:31Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | 英文部分
Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Tech. Mem. NESDIS NGDC-24. Angelier, J., Bergerat, F., Hao-Tsu, C., & Teh-Quei, L. (1990). Tectonic analysis and the evolution of a curved collision belt: The Hsüehshan Range, Northern Taiwan. Tectonophysics, 183(1), 77-96. Austin Jr, J. A., & Uchupi, E. (1982). Continental- oceanic crustal transition off southwest Africa. American Associatin of Petroleum Geologists Bulletin, 66(9), 1328-1347. Bai, Y., Dong, D., Brune, S., Wu, S., & Wang, Z. (2019). Crustal stretching style variations in the northern margin of the South China Sea. Tectonophysics, 751, 1-12. Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599-611. Barckhausen, U., & Roeser, H. A. (2004). Seafloor spreading anomalies in the South China Sea revisited Continent-Ocean Interactions Within East Asian Marginal Seas (pp. 121-125). Barton, A. J., & White, R. S. (1997). Crustal structure of Edoras Bank continental margin and mantle thermal anomalies beneath the North Atlantic. Journal of Geophysical Research: Solid Earth, 102(B2), 3109-3129. Basile, C., & Allemand, P. (2002). Erosion and flexural uplift along transform faults. Geophysical Journal International, 151(2), 646-653. Basile, C., Girault, I., Paquette, J.-L., Agranier, A., Loncke, L., Heuret, A., et al. (2020). The Jurassic magmatism of the Demerara Plateau (offshore French Guiana) as a remnant of the Sierra Leone hotspot during the Atlantic rifting. Scientific Reports, 10(1), 7486. Basile, C., Maillard, A., Patriat, M., Gaullier, V., Loncke, L., Roest, W., et al. (2013). Structure and evolution of the Demerara Plateau, offshore French Guiana: Rifting, tectonic inversion and post-rift tilting at transform-divergent margins intersection. Tectonophysics, 591, 16-29. Ben-Avraham, Z., & Uyeda, S. (1973). The evolution of the China Basin and the mesozoic paleogeography of Borneo. Earth and Planetary Science Letters, 18(2), 365-376. Bowin, C., Lu, R. S., Lee, C.-S., & Schouten, H. (1978). Plate Convergence and Accretion in Taiwan-Luzon Region1. AAPG bulletin, 62(9), 1645-1672. Briais, A., Patriat, P., & Tapponnier, P. (1993). Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299-6328. Chang, J.-H., Hsieh, H.-H., Mirza, A., Chang, S.-P., Hsu, H.-H., Liu, C.-S., et al. (2017). Crustal structure north of the Taiping Island (Itu Aba Island), southern margin of the South China Sea. Journal of Asian Earth Sciences, 142, 119-133. Chen, C.-H., Lee, C.-Y., & Shinjo, R. (2016). The epilog of the western paleo-Pacific subduction: Inferred from spatial and temporal variations and geochemistry of the Late Cretaceous to Early Cenozoic silicic magmatism in coastal South China. Journal of Asian Earth Sciences, 115, 520-546. Chen, S., & Hu, P. (1989). Tertiary reef complexes in the Zhujiangkou (Pearl River Mouth) basin and their significance for hydrocarbon exploration. China Earth Sciences, 1(1), 21-29. Curie, D. (1984). Ouverture de l'Atlantique sud et discontinuités intra-plaque: Une nouvelle analyse. Ouverture de l'Atlantique sud et discontinuités intra-plaque: une nouvelle analyse. Ding, W., Li, M., Zhao, L., Ruan, A., & Wu, Z. (2011). Cenozoic tectono-sedimentary characteristics and extension model of the Northwest Sub-basin, South China Sea. Geoscience Frontiers, 2(4), 509-517. Ding, W., Michael, S., Dieter, F., Ruan, A., & W. U., Z. (2012). Crustal Structure across the Northwestern Margin of South China Sea: Evidence for Magma‐poor Rifting from a Wide‐angle Seismic Profile. Acta Geologica Sinica - English Edition, 86(4), 854-866. Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G., et al. (2020). Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results. Earth and Planetary Science Letters, 531, 115932. Ding, W. W., Li, J. B., Li, J., Fang, Y. X., & Tang, Y. (2013). Morphotectonics and evolutionary controls on the Pearl River Canyon system, South China Sea. Marine geophysical research, 34(3-4), 221-238. Dondurur, D. (2018). Acquisition and processing of marine seismic data: Elsevier. Erbacher, J., Mosher, D., Malone, M., & Party, O. L. S. (2004). Drilling probes past carbon cycle perturbations on the Demerara Rise. Eos, Transactions American Geophysical Union, 85(6), 57-63. Evain, M., Afilhado, A., Rigoti, C., Loureiro, A., Alves, D., Klingelhoefer, F., et al. (2015). Deep structure of the Santos Basin‐São Paulo Plateau System, SE Brazil. Journal of Geophysical Research: Solid Earth, 120(8), 5401-5431. Ewing, J., & Ewing, M. (1959). Seismic-refraction measurements in the Atlantic Ocean basins, in the Mediterranean sea, on the mid-Atlantic ridge, and in the Norwegian sea. Bulletin of the Geological Society of America, 70(3), 291-318. Fan, C., Xia, S., Cao, J., Zhao, F., & Wan, K. (2022). Seismic constraints on a remnant Mesozoic forearc basin in the northeastern South China Sea. Gondwana Research, 102, 77-94. Fan, C., Xia, S., Zhao, F., Sun, J., Cao, J., Xu, H., et al. (2017). New insights into the magmatism in the northern margin of the South China Sea: Spatial features and volume of intraplate seamounts. Geochemistry, Geophysics, Geosystems, 18(6), 2216-2239. Frey, Ø., Planke, S., Symonds, P. A., & Heeremans, M. (1998). Deep crustal structure and rheology of the Gascoyne volcanic margin, western Australia. Marine geophysical researches, 20(4), 293-311. Fromm, T., Jokat, W., Ryberg, T., Behrmann, J. H., Haberland, C., & Weber, M. (2017). The onset of Walvis Ridge: Plume influence at the continental margin. Tectonophysics, 716, 90-107. Gao, J., Peng, X., Wu, S., Lüdmann, T., McIntosh, K., Ma, B., et al. (2019). Different expressions of the crustal structure across the Dongsha Rise along the northeastern margin of the South China Sea. Journal of Asian Earth Sciences, 171, 187-200. Gong, Y., Lin, C., Zhang, Z., Zhang, B., Shu, L., Feng, X., et al. (2019). Breakup unconformities at the end of the early Oligocene in the Pearl River Mouth Basin, South China Sea: significance for the evolution of basin dynamics and tectonic geography during rift–drift transition. Marine geophysical research, 40(3), 371-384. Gong, Z., Jin, Q., Qiu, Z., Wang, S., & Meng, J. (1989). Geology, tectonics and evolution of the Pearl River Mouth Basin. Chinese Sedimentary Basins. Elsevier, Amsterdam, 181-196. Greenroyd, C., Peirce, C., Rodger, M., Watts, A., & Hobbs, R. (2007). Crustal structure of the French Guiana margin, west equatorial Atlantic. Geophysical journal international, 169(3), 964-987. Guan, H. X., Geoffroy, L., & Xu, M. (2021). Magma-assisted fragmentation of Pangea: Continental breakup initiation and propagation. Gondwana Research, 96, 56-75. Hao, S., Mei, L., Shi, H., Paton, D., Mortimer, E., Du, J., et al. (2021). Rift migration and transition during multiphase rifting: Insights from the proximal domain, northern South China Sea rifted margin. Marine and petroleum geology, 123. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215-253. Ho, C. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16. Hsu, S.-K., Yeh, Y.-c., Doo, W.-B., & Tsai, C.-H. (2004). New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and their Tectonic Implications. Marine Geophysical Researches, 25(1), 29-44. Huang, C.-D., Lee, T.-Y., Lo, C.-H., Chung, S.-L., Wu, J.-C., Tien, C.-L., et al. (2017). Structural inversion in the northern South China Sea continental margin and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 28(6), 891-922. Huang, C. (2005). Deep crustal structure of Baiyun Sag, northern South China Sea revealed from deep seismic reflection profile. Chinese Science Bulletin, 50(11). Huang, L. (1998). About the Question of Paper “Application of Micropaleontology in the Late Cenozoic Sequence Stratigraphy Study of the Pearl River Mouth Basin”. Marine Geology and Quaternary Geology, 18(1), 119-121. Hui, G., Zhang, P., Li, Z., Wang, W., Hu, L., Li, G., et al. (2022). Opening of the South China Sea marginal basin: Insights from the tectonic evolution of the ENE-striking Littoral Fault Zone. Marine and petroleum geology, 145. Kamber, B. S., & Webb, G. E. (2001). The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta, 65(15), 2509-2525. Koopmann, H., Brune, S., Franke, D., & Breuer, S. (2014). Linking rift propagation barriers to excess magmatism at volcanic rifted margins. GEOLOGY, 42(12), 1071-1074. Kumar, N., LAP, G., BC, S., & Mascle, J. (1977). Geologic history and origin of Sao Paulo Plateau (southeastern Brazilian margin), comparison with the Angolan margin, and the early evolution of the northern South Atlantic. Lüdmann, T., & Wong, H. K. (1999). Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311(1), 113-138. Lafond, E. C. (1966). South China Sea (Reprinted from the Encyclopedia of Oceanography): Reinhold Pub. Corp. Larsen, H. C., Mohn, G., Nirrengarten, M., Sun, Z., Stock, J., Jian, Z., et al. (2018a). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10), 782-789. Larsen, H. C., Sun, Z., Stock, J. M., Jian, Z., Alvarez Zarikian, C. A., Klaus, A., et al. (2018b). Expedition 367/368 summary Volume 367/368: South China Sea Rifted Margin. Lee, T. Y., & Lawver, L. A. (1994). Cenozoic plate reconstruction of the South China Sea Region. Tectonophysics, 235(1-2), 149-180. Lei, C., Ren, J., & Pang, X. (2019). Rift structures and its related unconformities on and adjacent the Dongsha Rise: insights into the nature of the high-velocity layer in the northern South China Sea. Marine Geophysical Research, 40(2), 99-110. Li, C.-F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., et al. (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12), 4958-4983. Li, C.-F., Zhou, Z., Hao, H., Chen, H., Wang, J., Chen, B., et al. (2008a). Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. Journal of Asian Earth Sciences, 31(4-6), 546-561. Li, C.-F., Zhou, Z., Li, J., Chen, B., & Geng, J. (2008b). Magnetic zoning and seismic structure of the South China Sea ocean basin. Marine Geophysical Researches, 29(4), 223-238. Li, C.-F., Zhou, Z., Li, J., Hao, H., & Geng, J. (2007). Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Marine Geophysical Researches, 28(1), 59-79. Li, F., Sun, Z., & Yang, H. (2018). Possible Spatial Distribution of the Mesozoic Volcanic Arc in the Present‐Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 123(8), 6215-6235. Li, G., Mei, L., Pang, X., Zheng, J., Ye, Q., & Hao, S. (2022). Magmatism within the northern margin of the South China Sea during the post-rift stage: An overview, and new insights into the geodynamics. Earth-Science Reviews, 225. Li, J. B., Ding, W. W., Gao, J. Y., Wu, Z. Y., & Zhang, J. (2011). Cenozoic evolution model of the sea‐floor spreading in South China Sea: New constraints from high resolution geophysical data. Chinese Journal of Geophysics, 54(6), 894-906. Li, P., & Rao, C. (1994). Tectonic characteristics and evolution history of the Pearl river mouth basin. Tectonophysics, 235(1), 13-25. Li, S., Zhao, G., Dai, L., Liu, X., Zhou, L., Santosh, M., et al. (2012). Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton. Journal of Asian Earth Sciences, 47, 64-79. Li, Z.-X., & Li, X.-H. (2007). Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. GEOLOGY, 35(2). Li, Z.-X., Li, X.-H., Chung, S.-L., Lo, C.-H., Xu, X., & Li, W.-X. (2012). Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 532, 271-290. Lin, C., Jiang, J., Shi, H., Zhang, Z., Liu, J., Qin, C., et al. (2017). Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: responses to tectonic processes and changes in sea level. BASIN RESEARCH, 30(S1), 568-595. Loncke, L., de Lepinay, M. M., Basile, C., Maillard, A., Roest, W. R., De Clarens, P., et al. (2022). Compared structure and evolution of the conjugate Demerara and Guinea transform marginal plateaus. Tectonophysics, 822. Loncke, L., Roest, W. R., Klingelhoefer, F., Basile, C., Graindorge, D., Heuret, A., et al. (2020). Transform Marginal Plateaus. Earth-Science Reviews, 203, 102940. Lorenzo, J. M., Mutter, J. C., & Larson, R. L. (1991). Development of the continent-ocean transform boundary of the southern Exmouth Plateau. Geology, 19(8), 843-846. Luan, X., Ran, W., Wang, K., Wei, X., Shi, Y., & Zhang, H. (2019). New interpretation for the main sediment source of the rapidly deposited sediment drifts on the northern slope of the South China Sea. Journal of Asian Earth Sciences, 171, 118-133. Luan, X. W., Liu, H., & Peng, X. C. (2011). The geophysical interpretation of a Dongsha ancient uplift on the northern margin of South China Sea. Chinese Journal of Geophysics-Chinese Edition, 54(12), 3217-3232. Mercier de Lépinay, M., Loncke, L., Basile, C., Roest, W. R., Patriat, M., Maillard, A., et al. (2016). Transform continental margins – Part 2: A worldwide review. Tectonophysics, 693, 96-115. Morley, C. K. (2016). Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62-86. Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98(1-2), 1-37. Museur, T., Graindorge, D., Klingelhoefer, F., Roest, W. R., Basile, C., Loncke, L., et al. (2021). Deep structure of the Demerara Plateau: From a volcanic margin to a Transform Marginal Plateau. Tectonophysics, 803. Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Bochu, Y., Zeng, W., et al. (1995). Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 100(B11), 22407-22433. Pang, X., Chen, C.-M., Shi, H.-S., Shu, Y., Shao, L., He, M., et al. (2005). Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea. Dixue Qianyuan(Earth Science Frontiers), 12(3), 167-177. Pang, X., Chen, C., Zhu, M., He, M., Shen, J., Lian, S., et al. (2009). Baiyun movement: A significant tectonic event on Oligocene/Miocene boundary in the northern South China Sea and its regional implications. Journal of Earth Science, 20(1), 49-56. Peron-Pinvidic, G., Fourel, L., & Buiter, S. J. H. (2022). The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the Mid-Norwegian margin. Tectonophysics, 828. Ponte, F., & HE, A. (1976). The Brazilian marginal basins: current state of knowledge. Rabinowitz, P. D., & Labrecque, J. (1979). The Mesozoic South Atlantic ocean and evolution of its continental margins. Journal of Geophysical Research, 84(B11), 5973-6002. Reuber, K. R., Pindell, J., & Horn, B. W. (2016). Demerara Rise, offshore Suriname: Magma-rich segment of the Central Atlantic Ocean, and conjugate to the Bahamas hot spot. Interpretation-a Journal of Subsurface Characterization, 4(2), T141-T155. Ru, K., & Pigott, J. D. (1986). Episodic Rifting and Subsidence in the South China Sea1. AAPG BULLETIN, 70(9), 1136-1155. Sattler, U., Immenhauser, A., Schlager, W., & Zampetti, V. (2009). Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea). Sedimentary Geology, 219(1), 318-331. Sattler, U., Zampetti, V., Schlager, W., & Immenhauser, A. (2004). Late leaching under deep burial conditions: a case study from the Miocene Zhujiang Carbonate Reservoir, South China Sea. Marine and Petroleum Geology, 21(8), 977-992. Schellart, W. P., Chen, Z., Strak, V., Duarte, J. C., & Rosas, F. M. (2019). Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics. Nature Communications, 10(1), 4480. Schimschal, C. M., & Jokat, W. (2019). The Falkland Plateau in the context of Gondwana breakup. Gondwana Research, 68, 108-115. Shi, X., Burov, E., Leroy, S., Qiu, X., & Xia, B. (2005). Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea. Tectonophysics, 407(1), 117-134. Sibuet, J.-C., Zhao, M., Wu, J., & Lee, C.-S. (2021). Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny. Tectonophysics, 817. Silvany Sales, P. H., Cavalcanti de Araujo, M. N., Horta de Almeida, J. C., & Bunevich, R. B. (2023). Control of basin-scale accommodation zones on syn-rift Aptian lacustrine carbonate reservoirs. Implications for reservoir quality estimates of Brazilian pre-salt. Marine and Petroleum Geology, 156, 106432. Sims, D., Ferrill, D. A., & Stamatakos, J. A. (1999). Role of a ductile décollement in the development of pull-apart basins: Experimental results and natural examples. Journal of Structural Geology, 21(5), 533-554. Sun, Q., Alves, T. M., Wu, S., Zhao, M., & Xie, X. (2022). Early Miocene magmatism in the Baiyun Sag (South China Sea): A view to the origin of intense post-rift magmatism. Gondwana Research. Sun, Q., Alves, T. M., Zhao, M., Sibuet, J.-C., Calvès, G., & Xie, X. (2020). Post-rift magmatism on the northern South China Sea margin. GSA Bulletin, 132(11-12), 2382-2396. Symonds, P. A., Planke, S., Frey, O., & Skogseid, J. (1998). Volcanic evolution of the Western Australian continental margin and its implications for basin development. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611-616. Taylor, B., & Hayes, D. E. (1983). Origin and History of the South China Sea Basin The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2 (pp. 23-56). Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177(3), 1315-1333. Tyrrell, W. W., Jr., & Christian, H. E., Jr. (1992). Exploration History of Liuhua 11-1 Field, Pearl River Mouth Basin, China1. AAPG bulletin, 76(8), 1209-1223. Von Rad, U., Haq, B., & others, A. (1992). Proceedings of the Ocean Drilling Program, Vol. 122, Scientific Results, Exmouth Plateau. Wang, D., & Shu, L. (2012). Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geoscience Frontiers, 3(2), 109-124. Wang, P., Li, S., Suo, Y., Guo, L., Wang, G., Hui, G., et al. (2020). Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea. Geoscience Frontiers, 11(4), 1231-1251. Wu, S., Gao, J., Zhao, S., Lüdmann, T., Chen, D., & Spence, G. (2014). Post-rift uplift and focused fluid flow in the passive margin of northern South China Sea. Tectonophysics, 615-616, 27-39. Xia, S., Li, X., Deng, J., Luo, D., Shu, L., Wang, S., et al. (2020). Sequence architecture and depositional evolution of the late Palaeogene in southwestern slope of Lufeng Depression, Pearl River Mouth Basin: Responses to tectonic processes and base‐level changes. Geological Journal, 55(2), 1468-1492. Xie, X., Ren, J., Pang, X., Lei, C., & Chen, H. (2019). Stratigraphic architectures and associated unconformities of Pearl River Mouth basin during rifting and lithospheric breakup of the South China Sea. Marine Geophysical Research, 40(2), 129-144. Xie, Z. Y., Sun, L. T., Pang, X., Zheng, J. Y., & Sun, Z. (2017). Origin of the Dongsha Event in the South China Sea. Marine Geophysical Research, 38(4), 357-371. Yan, P., Deng, H., Liu, H., Zhang, Z., & Jiang, Y. (2006). The temporal and spatial distribution of volcanism in the South China Sea region. Journal of Asian Earth Sciences, 27(5), 647-659. Yan, P., Wang, L., & Wang, Y. (2014). Late Mesozoic compressional folds in Dongsha Waters, the northern margin of the South China Sea. Tectonophysics, 615, 213-223. Yan, P., Zhou, D., & Liu, Z. (2001). A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338(1), 1-21. Yang, L., Ren, J., McIntosh, K., Pang, X., Lei, C., & Zhao, Y. (2018). The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin. Marine And Petroleum Geology, 92, 234-254. Ye, Q., Mei, L., Shi, H., Du, J., Deng, P., Shu, Y., et al. (2020). The Influence of Pre‐existing Basement Faults on the Cenozoic Structure and Evolution of the Proximal Domain, Northern South China Sea Rifted Margin. Tectonics, 39(3). Zalan, P. (2014, May 01, 2014). What are volcanic passive margins? A discussion based on seismic and field examples. Paper presented at the EGU General Assembly Conference Abstracts. Zalán, P. V., Severino, M. D. C. G., Rigoti, C. A., Magnavita, L. P., Oliveira, J. A. B., & Vianna, A. R. (2011). An entirely new 3D-view of the crustal and mantle structure of a South Atlantic passive margin-Santos, Campos and Espírito Santo Basins, Brazil. Americal Association of Petroleum Geology, Annual Convention and Exhibition. Zampetti, V., Sattler, U., & Braaksma, H. (2005). Well log and seismic character of Liuhua 11-1 Field, South China Sea; relationship between diagenesis and seismic reflections. Sedimentary Geology, 175(1), 217-236. Zhang, C., Sun, Z., Manatschal, G., Pang, X., Li, S., Sauter, D., et al. (2021a). Ocean-continent transition architecture and breakup mechanism at the mid-northern South China Sea. Earth-Science Reviews, 217. Zhang, C., Sun, Z., Manatschal, G., Pang, X., Qiu, N., Su, M., et al. (2021b). Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondwana Research, 91, 81-96. Zhang, J., Sun, Z., Zhang, Y., & Li, F. (2016). RETRACTED ARTICLE: Mesozoic deformation in the Chaoshan Depression of the Pearl River Mouth Basin, northern South China Sea. Marine Geophysical Research, 37(3), 243-243. Zhang, J., Zhao, M., Ding, W., Ranero, C. R., Sallares, V., Gao, J., et al. (2023). New Insights Into the Rift‐To‐Drift Process of the Northern South China Sea Margin Constrained by a Three‐Dimensional Wide‐Angle Seismic Velocity Model. Journal of Geophysical Research: Solid Earth, 128(4). Zhao, F., Alves, T. M., Xia, S., Li, W., Wang, L., Mi, L., et al. (2020). Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures. Earth And Planetary Science Letters, 530. Zhao, F., Berndt, C., Alves, T. M., Xia, S., Li, L., Mi, L., et al. (2021). Widespread hydrothermal vents and associated volcanism record prolonged Cenozoic magmatism in the South China Sea. GSA Bulletin, 133(11-12), 2645-2660. Zhao, H., Wu, S., Ma, Y., Chen, D., Sun, Q., Zhang, G., et al. (2012). An Evolutionary Model of Bio-Reefs at the Dongsha Uplift, Zhujiangkou Basin, South China Sea. Marine Geology & Quaternary Geology, 32(1), 43-50. Zhou, D., Sun, Z., Liao, J., Zhao, Z., He, M., Wu, X., et al. (2009). Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea. Journal of Earth Science, 20(1), 160-171. Zhou, J., Li, S., Suo, Y., Zhang, L., Du, X., Cao, X., et al. (2023). NE-trending transtensional faulting in the Pearl River Mouth basin of the Northern South China Sea margin. Gondwana Research. Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., et al. (2012). Shallow anatomy of a continent–ocean transition zone in the northern South China Sea from multichannel seismic data. Tectonophysics, 554-557, 18-29. 中文部分 丁巍偉、方銀霞、何敏、黎明碧、唐勇(2009)。南海中北部陸架-陸坡區新生代構造-沉積演化,高校地質學報(第 15冊,第339-350頁)。 朱偉林、張功成、高樂(2008)。南海北部大陸邊緣盆地油氣地質特徵與勘探方向,石油學報(第 29冊,第 1-9頁)。 吳明賢、王乾盈、胡錦城、周學良(2010)。 珠江口盆地地質特徵與斷層模式的建立,鑛冶:中國鑛冶工程學會會刊(第54冊,第 95-105頁)。 吳景富、張功成、王璞珺、謝曉軍、胡聖標、漆家福(2012)。 珠江口盆地深水區 23.8 ma 構造事件地質回應及其形成機制,地球科學―中國地質大學學報(第654-666頁)。 李平魯(1992)。 珠江口盆地構造應力場與油氣聚集,廣東地質(第7冊,第71-83頁)。 周蒂、王萬銀、龐雄、王家林、蔡東升、孫珍(2006)。 地球物理資料所揭示的南海東北部中生代俯衝增生帶,中國科學: D 輯(第36冊,第209-218頁)。 尚繼宏、李家彪(2009)。 南海東北部陸緣區新近紀早期反轉構造特徵及其動力學意義,海洋學報(第31冊,第73-83頁)。 海洋學報編輯部。 鄒和平、李平魯、饒春濤(1995)。 珠江口盆地新生代火山岩地球化學特徵及其動力學意義,地球化學(第24冊,第33-45頁)。 姚伯初(1998)。 南海新生代的構造演化與沉積盆地,南海地質研究。(第1-17頁)。 胡登科、周蒂、吳湘傑、何敏(2008)。 南海東北部高磁異常帶成因的地球物理反演研究,熱帶海洋學報(第27冊,第32-37頁)。 孫珍、龐雄、鐘志洪、周蒂、陳長民、郝滬軍、何敏、黃春菊、許鶴華(2005)。 珠江口盆地白雲凹陷新生代構造演化動力學,地學前緣(第12冊,第489-498頁)。 秦國權(2002)。 珠江口盆地新生代晚期層序地層劃分和海平面變化,中國海上油氣 (地質)(第16冊,第1-10頁)。 郝滬軍、林鶴鳴、楊夢雄、薛懷豔、陳雋(2001)。潮汕坳陷中生界——油氣勘探的新領域。中國海上油氣(地質)(第15 冊,第157-163頁)。 張志傑、於興河、侯國偉、陳瑞(2004)。 張性邊緣海的成因演化特徵及沉積充填模式——以珠江口盆地為例,現代地質(第18冊,第284頁)。 莊松棱(2010)。 東沙島以南大陸邊緣火成岩體時空分佈之探討,臺灣大學海洋研究所學位論文(第 1-72頁)。 國立臺灣大學。 許樹坤、葉一慶、劉家瑄、杜文斌、邱協棟、蔡慶輝(2012)。東沙環礁地層震測調查與資料分析。 許樹坤、龔國慶、楊燦堯、葉一慶、周文臣、洪慶章、蘇志傑、詹森、楊益(2013)。海研五號首航 - 南海科學巡禮研究。 郭令智、施央申、馬瑞士(1983)。 西太平洋中, 新生代活動大陸邊緣和島弧構造的形成及演化,地質學報(第57冊,第11-21頁)。 陳政儀(2009)。 東沙島以南大陸邊緣構造及沉積物分佈之探討,臺灣大學海洋研究所學位論文(第1-66頁)。 國立臺灣大學。 熊衎昕、俞何興(2012)。 以從源到匯之觀點探討臺灣西南外海沈積物散佈系統及傳輸之意義,鑛冶: 中國鑛冶工程學會會刊(第56冊,第75頁)。 趙淑娟、吳時國、施和生、董冬冬、陳端新、王瑩(2012)。 南海北部東沙運動的構造特徵及動力學機制探討,地球物理學進展(第27冊,第 1008-1019頁)。 鄢全樹、石學法(2007)。 海南地函柱與南海形成演化,高校地質學報(第13冊,第311-322頁)。 劉安、吳世敏、程衛華(2011)。 珠江口盆地東沙隆起的沉降史及其動力機制,海洋學報(第1-87頁)。 劉昭蜀、楊樹康、何善謀、黃慈流、陳森強(1983)。 南海陸緣地塹系及邊緣海的演化旋回,熱帶海洋(第2冊,第251-259頁)。 劉叢舒、丁巍偉、殷紹如、方鵬高、丁航航(2019)。 南海北部陸坡區海底峽谷地貌、沉積特徵及控制因素,海洋學研究(第37冊,第28-43頁)。 蔡慶輝(2007)。 南海北部地殼構造與深海沈積物波之研究,中央大學地球物理研究所學位論文(第1-188頁)。 國立中央大學。 黎明碧、金翔龍、初鳳友、李家彪、陳漢林(2002)。 神狐—一統暗沙隆起中部新生代地層層序劃分及沉積演化,- 沉積學報(第20冊,第545頁)。 謝宗霖(2013)。 利用反射震測探討南海東北部被動大陸邊緣地形與構造特徵,臺灣大學海洋研究所學位論文(第1-87頁)。 國立臺灣大學。 饒春濤(1992)。 南海北部陸緣盆地新生代構造運動的統一命名,中國海上油氣 (地質)(第6冊,第9-10頁)。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94665 | - |
dc.description.abstract | 陸緣高原係指於大陸棚與下部陸坡間、突出而平坦之地形特徵。他們的成因或與大陸分離之減薄的地殼碎片,以及富岩漿陸緣分裂過程中因熱點等之岩漿作用而形成的火成體有關。陸緣高原在大西洋、印度洋等區域的大陸邊緣皆有發現,但在邊緣海則較少相關討論。在南中國海(South China Sea, SCS)的北部陸緣,我們在東沙環礁周邊辨識出了一個陸緣高原(後續以東沙陸緣高原稱呼,Dongsha marginal plateau)。為了了解東沙陸緣高原的構造與地層之發展,本研究使用多頻道反射震測(multi-channel reflection seismic, MCS)資料並且整合過去發表之文獻,來進行高原地下地層與構造之辨識。
透過與過去發表文獻之剖面進行關聯,我們在震測剖面中辨識了數個層序邊界,包含Tg (聲學基盤頂部反射面,~66 Ma)、T7 (分裂不整合面,~33.9 Ma)、T6 (~23 Ma)、T4 (~16 Ma)、T32 (~11.6 Ma)以及T2 (~5.3 Ma)。依照不整合面的分布,本研究以東沙斷崖為界,將東沙陸緣高原分為東、西兩段,並且認為東、西兩段具有不同的構造特徵以及陸緣架構。高原東段為隆起基盤為主,其西北以及東南兩側基盤之深度較深並且呈旋轉斷塊狀,表示經歷強烈的拉張變形。整體而言高原東段呈分離陸緣(divergent margin)特徵,而根據隆起基盤缺乏同張裂沉積物、基盤內古背斜以及較厚的地殼特徵,本研究認為隆起基盤在新生代張裂時期應為張裂減薄程度較低的地殼碎片,並且係受到中生代隱沒作用造成岩石圈異質性而不易張裂減薄所致。高原西段為轉換斷層區,該區基盤受西北-東南走向的斷層強烈變形,係具調適(accommodate)陸緣張裂程度側向變化之作用,因此高原西段的張裂模式應是以走滑伸張為主,與轉形陸緣(transform margin)更為相似。 除了張裂作用,根據高原上方地層的變形、T2的侵蝕不整合以及海床的廣泛侵蝕,我們辨識出了一期後張裂時期抬升事件—即東沙運動。東沙運動造成高原全區強烈的斷塊升降以及下部陸坡的岩漿活動。此外,從高原西側地層被東沙斷崖向上拖曳之情形可知,高原東段受東沙運動抬升較高原西段明顯。整體而言,東沙運動具有加強東沙陸緣高原突出形貌之作用,但其貢獻程度與張裂時期的影響相比或為相對次要。 最後,東沙陸緣高原的東西兩側在張裂時期的岩漿活動上有強烈差異,此或因高原西段的轉換斷層區在陸緣張裂時期具有作為屏障、阻止了岩漿向西傳播延伸(propagate)之效用。本研究進一步引用大西洋以及印度洋的陸緣高原來與東沙陸緣高原進行比較,比較結果顯示聖保羅高原同樣具有以轉形陸緣分隔貧、富岩漿陸緣之情形,然而德梅拉拉高原以及埃克斯茅斯高原則無,因此陸緣高原、轉換斷層以及貧、富岩漿陸緣交界三者是否具有相依性,仍需透過更多觀測以及討論。 | zh_TW |
dc.description.abstract | The marginal plateaus indicate those relatively flat and elevated reliefs between continental shelf and lower slope. Their formations are interpreted including thinned continental crust and magmatic activities from hotspots during the rifting process of magma-rich margins. Marginal plateaus are found along the continental margins of regions such as the Atlantic and Indian Oceans, but very little observation in marginal seas has been made. In the northern South China Sea (SCS), a marginal plateau is recognized in the northern margin around the Dongsha Atoll (hereafter Dongsha marginal plateau, DMP). To identify the distribution of the subsurface strata and structures, and tectonic development of the DMP, archived multi-channel seismic (MCS) reflection data are reprocessed, and the published profiles in the vicinity of the Dongsha Island are integrated.
Several sequence boundaries in the seismic profiles are identified, including Tg (~65 Ma, the top of the basement reflector), T7 (~32 Ma, breakup unconformity), T6 (~23 Ma), T5 (~20 Ma), T4 (~16 Ma), T3 (~10 Ma), and T2 (~5 Ma). Based on distributions of these unconformities, we divided the DMP into eastern and western segments with different structural characteristics by the Dongsha Escarpment. The eastern segment of the DMP is dominated by uplifted basement bounded by rifting basins with rotated fault blocks at both the northwest and southeast sides, showing structural features of a divergent margin. Absence of the syn-rift sequences upon the uplifted basement, the presence of the paleo-anticlines within the basement, and the relatively thicker crust collectively suggests that the uplifted basement was a crustal fragment with lower degree of crustal stretching during the rifting phase due to the underlying lithospheric heterogeneity most likely caused by Mesozoic subduction. In the western segment of the DMP, the basement is highly deformed by northwest-southeast trending strike-slip faults, showing the lateral variations in the extent of continental necking. Accordingly, this strike-slip fault is likely to indicate that this segment is a structural accommodation to differential degree of crustal rifting, showing a structural feature of a transform margin. The distribution of the unconformities T32 and T2 across the DMP, along with magmatic activities in the lower slope, allow us to identify the uplift event known as the Dongsha Movement. This event may also contribute to the uplifting of both eastern and western segments of the DMP, although the uplift of these segments seems to be differential across the Dongsha Escarpment. Due to the existence of this differential uplifting, we consider that the seaward protrusion of the DMP may be morphologically enhanced by Dongsha Movement, while the contribution of the Dongsha Movement shall be subordinate rather than the that of structural inheritance in earlier rifting phase. Last, there is a significant east-west differences of the DMP in the magmatism during the rifting phase in the northern margin of the South China Sea. In this study, we suggest that the transfer fault zone in the western segment of the DMP may act as a barrier to westward propagation of syn-rift magmatism. A similar case is found in Sao Paulo Plateau offshore Brazil, whereas this is not observed in the Demerara Plateaus in Austral Atlantic and Exmouth Plateaus offshore northwest Australia. The interconnection among marginal plateaus, transfer faults, and the boundaries of magma-poor and magma-rich margins requires further observations and discussions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:24:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:24:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文審定書 I
致謝 II 摘要 III ABSTRACT V 目次 VII 圖次 X 表次 XIV 第一章 前言 1 1-1 大陸邊緣高原 1 1-2 東沙陸緣高原 2 第二章 地質架構 6 2-1 南海地質架構 6 2-2 東沙陸緣高原地質背景 11 2-2-1 東沙陸緣高原水深形貌 11 2-2-2 地層層序年代與岩性 15 2-2-3 東沙陸緣高原下方之構造單元 17 2-2-4 不整合面與對應構造活動歷史 18 2-2-5 東沙陸緣高原斷層構造 24 2-2-6 岩漿活動歷史 28 2-2-7 地殼性質 31 第三章 材料與方法 34 3-1 研究方法 34 3-2 震測資料處理步驟 37 3-3 不整合面之定義與參照 41 3-4 構造等時圖與沉積物厚度圖繪製 44 第四章 結果 46 4-1 東沙陸緣高原水深特徵 46 4-2 多頻道反射震測剖面結果 48 4-2-1 E1 48 4-2-2 E2 49 4-2-3 E3 50 4-2-4 W1 51 4-2-5 W2 52 4-2-6 Pl 52 4-3 構造等時圖結果 75 4-3-1 Tg 75 4-3-2 T7、T6 75 4-3-3 T4 76 4-3-4 T32、T2 76 4-4 沉積物厚度分布圖結果 78 第五章 討論 80 5-1 構造區之劃分 80 5-1-1 隆起基盤區 80 5-1-2 東南斷塊區 81 5-1-3 西北凹陷區(珠一坳陷) 82 5-1-4 西南轉換斷層區、白雲凹陷以及荔灣凹陷 83 5-2 東沙陸緣高原之構造特徵發展 87 5-2-1 高原東段:分離陸緣與隆起基盤之成因 87 5-2-2 高原西段:轉形陸緣 92 5-2-3 東沙陸緣高原之演化模型 94 5-3 陸緣高原案例探討 96 第六章 結論 108 參考文獻 110 | - |
dc.language.iso | zh_TW | - |
dc.title | 東沙陸緣高原之構造地層特徵與大地構造演化 | zh_TW |
dc.title | Tectonostratigraphic features and tectonic evolution of the Dongsha marginal plateau, northern South China Sea | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄧屬予;李通藝;許樹坤;張頌平 | zh_TW |
dc.contributor.oralexamcommittee | Suh-Yui Teng;Tung-Yi Lee;Shu-Kun Hsu;Sung-Ping Chang | en |
dc.subject.keyword | 東沙陸緣高原,南海北部,分離大陸邊緣,轉換斷層,東沙運動,多頻道反射震測, | zh_TW |
dc.subject.keyword | Dongsha marginal plateau,the northern South China Sea,divergent margin,transfer fault,Dongsha movement,multi-channel seismic data, | en |
dc.relation.page | 121 | - |
dc.identifier.doi | 10.6342/NTU202401919 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-08-06 | 20.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。