Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94664
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor石曜合zh_TW
dc.contributor.advisorYau-Huo Shren
dc.contributor.author陳禹嫺zh_TW
dc.contributor.authorYu-Hsien Chenen
dc.date.accessioned2024-08-16T17:24:11Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] Abadie, A. (2005). Semiparametric difference-in-differences estimators. Review of Economic Studies, 72(1), 1-19. https://doi.org/10.1111/0034-6527.00321
[2] Abadie, A., & Gardeazabal, J. (2003). The economic costs of conflict: A case study of the Basque Country. American Economic Review, 93(1), 113-132. https://doi.org/ 10.1257/000282803321455188
[3] Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco Control Pro- gram. Journal of the American Statistical Association, 105(490), 493-505. https:// doi.org/10.1198/jasa.2009.ap08746
[4] Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic control method. American Journal of Political Science, 59(2), 495-510. https://doi.org/10.1111/ajps.12116
[5] Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic difference-in-differences. American Economic Review, 111(12), 4088– 4118. https://doi.org/10.1257/aer.20190159
[6] Ashenfelter, O. (1978). Estimating the effect of training programs on earnings. Re- view of Economics and Statistics, 60(1), 47–57. https://doi.org/10.2307/1924332
[7] Ashenfelter, O., & Card, D. (1985). Using the longitudinal structure of earnings to estimate the effect of training programs. Review of Economics and Statistics, 67(4), 648–660. https://doi.org/10.2307/1924810
[8] Asmus, P. (2008). Exploring new models of solar energy development. The Elec- tricity Journal, 21(3), 61-70. https://doi.org/10.1016/j.tej.2008.03.005
[9] Athey, S., & Imbens, G. W. (2022). Design-based analysis in difference-in- differences settings with staggered adoption. Journal of Econometrics, 226(1), 62- 79. https://doi.org/10.3386/w24963
[10] Athey, S., Bayati, M., Doudchenko, N., Imbens, G., & Khosravi, K. (2021). Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 116(536), 1716-1730. https://doi.org/10.1080/01621459.2021.1891924
[11] Bednar‐Friedl, B. (2016). Is there a first-mover advantage in international climate policy?. The Implementation of the Paris Agreement on Climate Change (pp. 155- 170). Springer. https://doi.org/10.1007/978-3-319-23324-6
[12] Ben-Michael,E.,Feller,A.,&Rothstein,J.(2022).Syntheticcontrolswithstaggered adoption.Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84(2), 351-381. https://doi.org/10.1111/rssb.12448
[13] Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates? Quarterly Journal of Economics, 119(1), 249– 275. https://doi.org/10.1162/003355304772839588
[14] Bollinger, B., & Gillingham, K. (2012). Peer effects in the diffusion of solar photovoltaic panels. Marketing Science, 31(6), 900-912. https://doi.org/10.1287/ mksc.1120.0727
[15] Card, D., & Krueger, A. B. (2000). Minimum wages and employment: A case study of the fast-food industry in New Jersey and Pennsylvania: Reply. American Eco- nomic Review, 90(5), 1397-1420. https://doi.org/10.1257/aer.90.5.1397
[16] Clarke, D., Pailañir, D., Athey, S., & Imbens, G. (2023). Synthetic difference in differences estimation. arXiv preprint arXiv:2301.11859. https://doi.org/10.2139/ ssrn.4015931
[17] Cook, J., & Shah, M. (2018). Focusing the Sun: State Considerations for Designing Community Solar Policy. https://doi.org/10.2172/1419711
[18] Coughlin, J., Grove, J., Irvine, L., Jacobs, J. F., Phillips, S. J., Moynihan, L., & Wiedman, J. (2011). Guide to community solar: Utility, private, and non- profit project development.National Renewable Energy Laboratory. https://doi.org/ 10.1080/15575330.2011.553566
[19] Crago, C. L., & Chernyakhovskiy, I. (2017). Are policy incentives for solar power effective? Evidence from residential installations in the Northeast. Journal of En- vironmental Economics and Management, 81, 132-151. https://doi.org/10.1016/ j.jeem.2016.09.008
[20] Efron,B.(1979).Bootstrapmethods:Anotherlookatthejackknife.AnnalsofStatis- tics, 7(1), 1–26. https://doi.org/10.1214/aos/1176344552
[21] Funkhouser, E., Blackburn, G., Magee, C., & Rai, V. (2015). Business model inno- vations for deploying distributed generation: The emerging landscape of commu- nity solar in the US. Energy Research & Social Science, 10, 90-101. https://doi.org/ 10.1016/j.erss.2015.07.004
[22] Gai, D. H. B., Shittu, E., Attanasio, D., Weigelt, C., LeBlanc, S., Dehghanian, P., & Sklar, S. (2021). Examining community solar programs to understand accessibility and investment: Evidence from the US. Energy Policy, 159, 112600. https://doi.org/ 10.1016/j.enpol.2021.112600
[23] Graziano, M., & Gillingham, K. (2015). Spatial patterns of solar photovoltaic sys- tem adoption: The influence of neighbors and the built environment. Journal of Eco- nomic Geography, 15(4), 815-839. https://doi.org/10.1093/jeg/lbu036
[24] Heeter, J. S., Xu, K., & Fekete, E. (2020). Community solar 101 [Slides]. United States. https://doi.org/10.2172/1602184
[25] International Energy Agency. (2024). Renewables 2023. IEA. https://www.iea.org/ reports/renewables-2023
[26] Karkatsoulis, P., Capros, P., Fragkos, P., Paroussos, L., & Tsani, S. (2016). First‐ mover advantages of the European Union’s climate change mitigation strategy. Inter- national Journal of Energy Research, 40, 814-830. https://doi.org/10.1002/er.3487
[27] Klein, S. J., Hargreaves, A., & Coffey, S. (2021). A financial benefit-cost analysis of different community solar approaches in the Northeastern US. Solar Energy, 213, 225-245. https://doi.org/10.1016/j.solener.2020.11.031
[28] Kwan,C.L.(2012).Influenceoflocalenvironmental,social,economicandpolitical variables on the spatial distribution of residential solar PV arrays across the United States. Energy Policy, 47, 332-344. https://doi.org/10.1016/j.enpol.2012.04.074
[29] Lawrence Berkeley National Laboratory. (2023). Tracking the Sun Data Viewer. https://trackingthesun.lbl.gov
[30] Marcucci, A., & Turton, H. (2015). Induced technological change in moderate and fragmented climate change mitigation regimes. Technological Forecasting and So- cial Change, 90, 230-242. https://doi.org/10.1016/J.TECHFORE.2013.10.027.
[31] Michaud, G. (2020). Perspectives on community solar policy adoption across the United States. Renewable Energy Focus, 33, 1-15. https://doi.org/10.1016/ j.ref.2020.01.001
[32] Miller, R. G. (1974). The jackknife - A review. Biometrika, 61(1), 1–15.
[33] Mooney, M. (2023). How much can you save with community solar? EnergySage. https://www.energysage.com/community-solar/community-solar-savings/
[34] Mou, H., Liu, L., & Xu, Y. (2023). Panel data visualization in R (panelView) and Stata (panelview). Journal of Statistical Software, 107(7), 1–20. https://doi.org/ 10.18637/jss.v107.i07
[35] Nguyen, T. C. (2020). Power to the people? Community solar and energy democracy in New York and Minnesota (Doctoral dissertation, Franklin & Marshall College). https://doi.org/10.15823/p.2016.28
[36] Noll, D., Dawes, C., & Rai, V. (2014). Solar community organizations and active peer effects in the adoption of residential PV. Energy Policy, 67, 330-343. https:// doi.org/10.1016/j.enpol.2013.12.050
[37] O'Neill, S., Kreif, N., Grieve, R., Sutton, M., & Sekhon, J. S. (2016). Estimat- ing causal effects: Considering three alternatives to difference-in-differences estima- tion. Health Services and Outcomes Research Methodology, 16, 1-21. https://doi.org/ 10.1007/s10742-016-0146-8
[38] Palm, A. (2020). Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics. Renewable and Sustainable Energy Reviews, 133, 110142. https://doi.org/10.1016/j.rser.2020.110142
[39] Pailañir, D., & Clarke, D. (2022). SDID: Stata module to perform syn- thetic difference-in-differences estimation, inference, and visualization. Statisti- cal Software Components, Boston College Department of Economics. https:// ideas.repec.org/c/boc/bocode/s459058.html
[40] Pollitt, H., Summerton, P., & Klaassen, G. (2015). A model-based assessment of first-mover advantage and climate policy. Environmental Economics and Policy Studies, 17, 299-312. https://doi.org/10.1007/s10018-014-0098-6
[41] Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
[42] Schelly, C. (2014). Implementing renewable energy portfolio standards: The good, the bad, and the ugly in a two state comparison. Energy Policy, 67, 543-551. https:// doi.org/10.1016/j.enpol.2013.11.075
[43] Schelly, C. (2014). Residential solar electricity adoption: What motivates, and what matters? A case study of early adopters. Energy Research & Social Science, 2, 183- 191. https://doi.org/10.1016/j.erss.2014.01.001
[44] Schunder, T., Yin, D., Bagchi-Sen, S., & Rajan, K. (2020). A spatial analysis of the development potential of rooftop and community solar energy. TIDEE: TERI Infor- mation Digest on Energy and Environment, 20(2), 197-197. https://doi.org/10.1016/ j.rsase.2020.100355
[45] Shittu, E., Kamdem, B. G., & Weigelt, C. (2019). Heterogeneities in energy technological learning: Evidence from the US electricity industry. Energy Policy, 132, 1034-1049. https://doi.org/10.1016/j.enpol.2019.06.052
[46] Singh, S., & Wu, O. (2021). Community solar value generation and distribution. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3795453
[47] Simpson,G.,&Clifton,J.(2017).Testingdiffusionofinnovationstheorywithdata: financial incentives, early adopters, and distributed solar energy in Australia. Energy Research & Social Science, 29, 12-22. https://doi.org/10.1016/j.erss.2017.04.005
[48] Soeiro,S.,&Dias,M.(2019).Renewableenergycooperatives:Asystematicreview. 2019 16th International Conference on the European Energy Market (EEM) (pp. 1- 6). IEEE. https://doi.org/10.1109/EEM.2019.8916546
[49] SolarEnergyIndustriesAssociation.(2024).USsolarmarketinsightexecutivesum- mary Q2 2024. https://www.seia.org/us-solar-market-insight
[50] Thakur, P., & Wilson, V. H. (2024). Analysis of barriers affecting the adoption of community solar from consumer’s perspective: A hybrid ISM- DEMATEL approach. Energy & Environment, 35(1), 113-141. https://doi.org/ 10.1177/0958305x221122930
[51] USDepartmentofEnergy.(n.d.).Communitysolarmarkettrends.USDepartmentof Energy. https://www.energy.gov/communitysolar/community-solar-market-trends
[52] US Environmental Protection Agency. (2024). Shared Renewables. US Envi- ronmental Protection Agency. https://www.epa.gov/green-power-markets/shared- renewablestwo. doi:10.6342/NTU202402474
[53] Weinrub, A. (2011). Community power: Decentralized renewable energy in Cal- ifornia. US Department of Energy.Clean Coalition. https://doi.org/10.1109/IC- CEP.2011.6036306
[54] Xu, K., Chan, G., & Sumner, J. (2023). Sharing the sun: Community solar deploy- ment and subscriptions (as of June 2023). National Renewable Energy Laboratory. https://doi.org/10.2172/2217117
[55] Xu, K., Nabirye, S., Sandler, S., & Harmon, J. (2024). State policies and programs for community solar (2024 Q3 Update). NREL Data Catalog. Golden, CO: Na- tional Renewable Energy Laboratory. Last updated: June 27, 2024. https://doi.org/ 10.7799/2377753
[56] Zahran, S., Brody, S. D., Peacock, W. G., Vedlitz, A., & Grover, H. (2008). Social vulnerability and the natural and built environment: A model of flood casualties in Texas. Disasters, 32(4), 537-560. https://doi.org/10.1111/j.1467-7717.2008.01054.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94664-
dc.description.abstract社群太陽能是一種共享光電模式,參與者可以購買或租賃部分比例的大型太陽光電系統,而不必在自家屋頂或土地裝設,並可獲得與持有比例相應的電費收益或抵減。如此一來,過去無法或不願安裝光電板者,也能藉此參與再生能源發展並共享其成果。為推動社群太陽能,自2008年起,美國陸續有多個州通過了相關法規。然而,這些州級政策的實際效果尚未獲得充分研究。本研究填補了此一研究缺口,探討州級社群太陽能立法對太陽光電裝置容量的影響。研究採用合成雙重差分法,透過對未實施政策的州和政策實施前的時期進行加權,以建構控制組。此方法確保了政策實施前,實驗組和對照組的裝置容量趨勢保持平行,以利比較政策前後、實驗組與對照組之間的差異。本研究兼論社群太陽能是否對屋頂太陽能的採用產生外溢效果。結果顯示,在2017年之前頒布政策的州,社群太陽能的裝置容量顯著增加,且未對屋頂太陽能的採用造成替代效應。這份研究貢獻了社群太陽能政策有效性的實證證據,並闡釋了不同太陽能市場間獨立或互相影響的關係。zh_TW
dc.description.abstractBearing the mission of accelerating renewable energy development and engaging a broader population, community solar allows its participants to own or lease a portion of large solar energy systems and get rebates on utility bills. To encourage the adoption of community solar, several U.S. states have passed legislation since 2008 and in the following years. However, the effectiveness of these state-level community solar policies remains unexplored. This study addresses this gap by examining the impact of state-level community solar PV legislation on solar installation capacity in the U.S. To estimate the effects of the inception of community solar legislation on solar PV adoption at the state level, I leverage the synthetic difference-in-differences approach, by which I construct a control group by weighting a combination of untreated states and pre-treatment time periods, ensuring that pre-intervention trends in solar capacity are parallel between treated and untreated states. I also investigate if community solar has any spillover effect on the adoption of rooftop solar. The results show that the state policies significantly increased community solar capacity in states with policies enacted before 2017 and did not substitute rooftop solar adoption. The paper not only provides some of the first evidence on the effectiveness of community solar in promoting solar adoption but also sheds light on the dynamics between different solar markets.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:24:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:24:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgments ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Background 5
Chapter 3 Literature Review 11
Chapter 4 Data and Methods 17
4.1 Data 17
4.1.1 Solar Capacity 17
4.1.2 Legislation and Policy 18
4.1.3 Demographic Data 19
4.2 Methods 22
4.2.1 Synthetic Difference-in-Differences 22
4.2.2 The Staggered Adoption Design 26
4.2.3 Covariates 32
4.2.4 Inference 34
Chapter 5 Results 36
5.1 Model Testing and Robustness Checks 36
5.1.1 SC, DID, and SDID with Two Inference Options 36
5.1.2 Results with Covariates 38
5.2 Primary Results from the Selected Model 39
5.3 Heterogeneity: Early and Late Adopters 43
5.4 Spillover Effect on Rooftop Adoptions 48
Chapter 6 Conclusion 51
References 54
Appendix A — Weights, Trends, and Point Estimates of Each Event Year 62
A.1 Event Studies: Synthetic Weights in Each Event Year 62
A.2 Outcome Trends in Each Event Year 64
A.3 Point Estimates and Confidence Intervals in Each Event Year 66
-
dc.language.isoen-
dc.title美國社群太陽能立法對太陽能採用之影響zh_TW
dc.titleShining a Light on Shared Savings: An Examination of the Effect of Community Solar Legislation on Solar Adoption in the United Statesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊豐安;謝依芸zh_TW
dc.contributor.oralexamcommitteeFeng-An Yang;I-Yun Hsiehen
dc.subject.keyword社群太陽能,太陽光電政策分析,合成雙重差分,交錯採用,再生能源,zh_TW
dc.subject.keywordcommunity solar,solar policy analysis,synthetic difference-in-differences,staggered adoption,renewable energy,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202404232-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業經濟學系-
顯示於系所單位:農業經濟學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf10.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved