Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94660
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑zh_TW
dc.contributor.advisorChun-Chieh Wuen
dc.contributor.author陳俊宇zh_TW
dc.contributor.authorJun Yu Chenen
dc.date.accessioned2024-08-16T17:22:53Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAbarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230. https://doi.org/10.1175/JAS-D-12-0318.1
——, and ——, 2014: Departures from the axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 3723–3738. https://doi.org/10.1175/JAS-D-14-0018.1
——, and ——, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 82–87. https://doi.org/10.1175/JAS-D-14-0151.1
Ahern, K., Hart, R.E., Bourassa, M.A., 2021. Asymmetric hurricane boundary layer structure during storm decay. Part I: formation of descending inflow. Mon. Wea. Rev. 149, 3851–3874. https://doi.org/10.1175/MWR-D-21-0030.1
Alland, J.J., Tang, B.H., Corbosiero, K.L., Bryan, G.H., 2021a. Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. J. Atmos. Sci. 78, 763–782. https://doi.org/10.1175/JAS-D-20-0055.1
Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947–957. https://doi.org/10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2
——, J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312. https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2
Casas, E. G., Tao, D., & Bell, M. M. (2023). An intensity and size phase space for tropical cyclone structure and evolution. J. Geophy. Res. Atmos., 128, e2022JD037089. https://doi.org/10.1029/2022JD037089
Chou, M.-D., and M. J. Suarez, A solar radiation parameterization (CLIR-AD-SW) developed at Goddard Climate and Radiation Branch for Atmospheric Studies, Goddard Space Flight Center, Greenbelt, NASA Tech.Memo., NASA/TM-1999-104606(15), 1999
Corbosiero K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123. https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2
——, and ——, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci, 60(2), 366–376. https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2
DeHart, J.C., Houze, R.A., Rogers, R.F., 2014. Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci. 71, 2713–2732. https://doi.org/10.1175/JAS-D-13-0298.1
Demaria, M., 1996: The Effect of Vertical Shear on Tropical Cyclone Intensity Change. J. Atmos. Sci, 53, 2076-2087. https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
Didlake, A. C., Jr., and R. A. Houze Jr., 2013b: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891-1911. https://doi.org/10.1175/JAS-D-12-0245.1
——, P. D. Reasor, R. F. Rogers, and W. C. Lee, 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 2909-2929. https://doi.org/10.1175/JAS-D-17-0348.1
Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 19–60
Finocchio, P. M., Majumdar, S. J., Nolan, D. S., & Iskandarani, M., 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev. 144(6), 2155–2175. https://doi.org/10.1175/MWR-D-15-0320.1
Fischer, M. S., R. F. Rogers, and P. D. Reasor, 2020: The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Mon. Wea. Rev., 148, 981-1004. https://doi.org/10.1175/MWR-D-19-0185.1
Fortner, L. E., Jr., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39, 633–639.
Frank, W. M., & Ritchie, E. A. (2001). Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev. 129(9), 2249–2269. https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
Hawkins, J. D., and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, 33 Amer. Meteor. Soc., 14B.1
Houze, R. A., Jr., S. S. Chen, B. F. Smull, W. C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315(5816), 1235– 1239. DOI: 10.1126/science.113565
Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674. https://doi.org/10.1175/JAS-D-11-0114.1
——, C.-C. Wu, and M. T. Montgomery, 2018: Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analyses. J. Atmos. Sci., 75, 3541–3563. https://doi.org/10.1175/JAS-D-18-0037.1
Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
Jones, S.C., 1995: The evolution of vortices in vertical shear. I: initially barotropic vortices. Quart. J. Roy. Meteor. Soc. 121, 821–851. https://doi.org/10.1002/qj.49712152406
Judt, F., and S. S. Chen, 2010: Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. J. Atmos. Sci.,67, 3581–3599. https://doi.org/10.1175/2010JAS3471.1
Kain, J., Fritsch, J., 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784–2802.
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
Kaplan, J., Demaria, M., 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting 18 (6), 1093–1108. https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 2808–2830. https://doi.org/10.1175/JAS-D-13-046.1
—, and D. S. Nolan, 2014: Reply to ‘‘Comments on ‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’’ J. Atmos. Sci., 71, 4692–4704. https://doi.org/10.1175/JAS-D-14-0014.1
Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876–892. https://doi.org/10.1175/2008MWR2701.1
Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. Wea. Forecasting, 27, 484–488. https://doi.org/10.1175/WAF-D-11-00106.1
——, 2015: Hurricane wind–pressure relationship and eyewall replacement cycles. Wea. Forecasting, 30, 177–181. https://doi.org/10.1175/WAF-D-14-00121.1
——, and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. Wea. Forecasting, 31, 601–608. https://doi.org/10.1175/WAF-D-15-0123.1
Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722–2734. https://doi.org/10.1175/JAS3286.1
——, C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 3758–3770. https://doi.org/10.1175/2009MWR2850.1
——, Tsujino, S., Hsu, T.-Y.,Peng, M. S., & Su, S.-H. (2022): Scaling law for boundary layer inner eyewall pumping in concentric eyewalls. J. Geophy. Res. Atmos.,127, e2021JD035518. https://doi.org/10.1029/2021JD035518
Lai, T.-K., K. Menelaou, and M. K. Yau, 2019: Barotropic instability across the moat and inner eyewall dissipation: A numerical study of Hurricane Wilma (2005). J. Atmos. Sci.,76, 989–1013. https://doi.org/10.1175/JAS-D-18-0191.1
——, E. A. Hendricks, K. Menelaou, and M. K. Yau, 2021a: Roles of barotropic instability across the moat in inner eyewall decay and outer eyewall intensification: Three-dimensional numerical experiments. J. Atmos. Sci., 78, 473–496. https://doi.org/10.1175/JAS-D-20-0168.1
Lin, I.-I., Rogers, R.F., Huang, H.-C., Liao, Y.-C., Herndon, D., Yu, J.-Y.,Chang, Y.-T., Zhang, J.A., Patricola, C.M., Pun, I.-F., Lien, C.-C., 2021: A tale of two rapidly intensifying supertyphoons: Hagibis (2019) and Haiyan (2013). Bull. Am. Meteorol. Soc. 102, E1645–E1664. https://doi.org/10.1175/BAMS-D-20-0223.1
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465. https://doi.org/10.1002/qj.49712353810
——, and R. K. Smith, 2014: Paradigms for tropical cyclone in tensification. Aust. Meteor. Oceanogr. J., 64, 37–66, DOI: 10.1002/qj.000
——, S. F. Abarca, R. K. Smith, C.-C. Wu, and Y.-H. Huang, 2014: Comments on ‘‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’’ J. Atmos. Sci., 71, 4682–4691. https://doi.org/10.1175/JAS-D-13-0286.1
Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779–1805. https://doi.org/10.1175/2010JAS3171.1
Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953–974. https://doi.org/10.1175/JAS-D-12-084.1
Rogers, R., P. Reasor, and S. Lorsolo, 2010: Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification. J. Atmos. Sci., 67, 44–70. https://doi.org/10.1175/2009JAS3122.1
Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325–340. https://doi.org/10.1175/JAS3595.1
——, ——, and J. P. Kossin, 2008: Some dynamical aspects of 36 hurricane eyewall replacement cycles. Quart. J. Roy. Meteor. Soc., 134, 583–593. https://doi.org/10.1175/MWR-D-11-00349.1
——, D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 2621–2643. https://doi.org/10.1175/JAS-D-11-0326.1
Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainband. Mon. Wea. Rev., 123, 3502–3517. https://doi.org/10.1175/1520-0493(1995)123<3502:SWMIHA>2.0.CO;2
Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394. https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2
Sheets, R. C., and N. E. LaSeur, 1979: Project STORMFURY: Present status—Future plans. WMO Bull., 28, 17–23.
Shimada, U., Kubota, H., Yamada, H., Cayanan, E.O., Hilario, F.D., 2018. Intensity and inner-core structure of Typhoon Haiyan (2013) near Landfall: Doppler radar analysis. Mon. Wea. Rev.. 146, 583–597. https://doi.org/10.1175/MWR-D-17-0120.1
Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829–3847. https://doi.org/10.1175/MWR-D-11-00034.1
Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 3020–3031. https://doi.org/10.1175/JAS-D-15-0017.1
——, and ——, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 2081–2086. https://doi.org/10.1002/qj.2804
——, ——, and N. V. Sang, 2009: Tropical cyclone spin-up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321–1335. https://doi.org/10.1002/qj.428
Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 1978–2007. https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
Sun, Y. Q., Y. Jiang, B. Tan, and F. Zhang, 2013: The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70(12), 3818– 3837. https://doi.org/10.1175/JAS-D-13-044.1
Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112. https://doi.org/10.1029/2007JD008897
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115. https://doi.org/10.1175/2008MWR2387.1
Tsujino, S., K. Tsuboki, and H.-C. Kuo, 2017: Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven (2012). J. Atmos. Sci., 74, 3609–3634. https://doi.org/10.1175/JAS-D-16-0236.1
Velden, C., T. Olander, D. Herndon, and J. P. Kossin, 2017: Reprocessing the most intense historical tropical cyclones in the satellite era using the Advanced Dvorak Technique. Mon. Wea. Rev., 145,971–983. https://doi.org/10.1175/MWR-D-16-0312.1
Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66(5), 1250–1273. https://doi.org/10.1175/2008JAS2737.1
——, Y. Rao, Z. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the Western North Pacific. Mon. Wea. Rev., 143, 3434–3453. https://doi.org/10.1175/MWR-D-15-0049.1
Wang, H., C.-C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci.,73, 3911–3930. https://doi.org/10.1175/JAS-D-15-0146.1
Wang, Y.-F., & Tan, Z.-M. (2020). Outer rainbands–driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77(6), 2217–2236. https://doi.org/10.1175/JAS-D-19-0304.1
——, ——, 2022: Essential dynamics of the vertical wind shear affecting the secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 79(11), 2831–2847. https://doi.org/10.1175/JAS-D-21-0340.1
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411. https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2
——, 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183–191.
Wu, C.-C., T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 1289–1300. https://doi.org/10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2
——, Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008) – Part I: Assimilation of T-PARC data based on the Ensemble Kalman Filter (EnKF). Mon. Wea. Rev., 140, 506-527. https://doi.org/10.1175/MWR-D-11-00057.1
——, ——, 2015: “Tropical cyclones: Secondary eyewall formation”, Encyclopedia of Atmospheric Sciences. 2nd Edition; Edited by Gerald R. North; Elsevier. 85-90.
——, ——, and Z. Tan, 2016: “Secondary eyewall formation in tropical cyclones”, Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events. Chapter 13, 168-175. Cambridge University Press.
Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 65–86. https://doi.org/10.1175/JAS3597.1
Yang, Y.-T., Kuo, H.-C., Hendricks, E. A., & Peng, M. S. (2013). Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev, 141(8), 2632–2648. https://doi.org/10.1175/MWR-D-12-00251.1
——, ——, Tsujino, S., Chen, B.-F., & Peng, M. S. (2021). Characteristics of the long-lived concentric eyewalls in tropical cyclones. J. Geophys. Res. Atmos.., 126, e2020JD033703. https://doi.org/10.1029/2020JD033703
Yu, C. L., and A. C. Didlake, 2019: Impact of stratiform rainband heating on the tropical cyclone wind field in idealized simulations. J. Atmos. Sci., 76 (8), 2443–2462. https://doi.org/10.1175/JAS-D-18-0335.1
——, ——, F. Zhang, and R. G. Nystrom, 2021: Asymmetric rainband processes leading to secondary eyewall formation in a model simulation of hurricane Matthew (2016). J. Atmos. Sci., 78 (1), 29 – 49. https://doi.org/10.1175/JAS-D-20-0061.1
——, ——, and ——, 2022: Updraft maintenance and axisymmetrization during secondary eyewall formation in a model simulation of hurricane Matthew (2016). J. Atmos. Sci., 79 (4), 1105 – 1125. https://doi.org/10.1175/JAS-D-21-0103.1
Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones, J. Atmos. Sci., 70, 975–983. https://doi.org/10.1002/2015MS000474
——, ——, Y. Q. Sun, and J. D. Kepert, 2017: Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones. J. Adv. Model. Earth Syst., 9, 89–112. https://doi.org/10.1002/2016MS000729
Zhu, T., D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225–241. https://doi.org/10.1175/1520-0493(2004)132<0225:NSOHBP>2.0.CO;2
Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119,8049–8072. https://doi.org/10.1002/2014JD021899
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94660-
dc.description.abstract在過去的研究中,已發現不同時長的眼牆置換會造成熱帶氣旋在眼牆置換過程中出現不同的強度和結構上的變化,而moat區域的寬度是影響眼牆置換時長的因子之一,但關於決定moat區寬度的因子仍缺乏相關研究,因此本研究的目標為試圖找出決定雙眼牆形成時moat寬度之因子。本研究了使用NCEP FNL模式的分析場資料作為初始場和邊界條件,搭配WRF 4.2.1模式模擬2013年海燕颱風眼牆置換過程。模擬結果顯示,海燕颱風的路徑基本與JTWC最佳路徑一致,但在強度演變方面仍有高估的情形。模擬重現的海燕雙眼牆形成時間與實際觀測接近,雙眼牆形成時的Moat寬度為25公里,眼牆置換時長約為12小時,均小於氣候平均值。
為探討海燕形成較窄Moat雙眼牆的原因,本研究進行系集模擬。透過WRF-VAR系統產生150個系集成員,其中40個成員出現完整的眼牆置換過程。初始Moat寬度與眼牆置換時長呈正相關,相關係數平方達0.5352。將系集成員中Moat寬度前25%之成員挑選出來作為寬組(Wide Group, WG),後25%成員挑選出來作為窄組(Narrow Group, NG)進行分和比對。由內部動力場分析顯示,NG和WG組別在切向風場、慣性穩定度場和帶狀化的時間分布上無顯著差異,顯示內部初始動力結構的差異可能不是造成雙眼牆形成時不同寬度Moat的原因。在背景環境比對中, WG在雙眼牆形成20小時前有較強且較深厚的垂直風切,這個差異同樣通過統計顯著性檢定,並在雙眼牆形成前11小時消失。本研究將時間區分為兩組:Stage I(雙眼牆形成21小時至11小時以前)和Stage II(雙眼牆形成前10小時)。
在Stage I期間,WG在上風切象限有不活躍的上升運動和沉降運動分布,下風切則有較活躍的上升運動,符合受垂直風切影響的熱帶氣旋特徵。進入Stage II後,隨著垂直風切減弱,WG的垂直運動變得對稱且活躍。NG在Stage I期間的垂直運動一直維持對稱分布,且在雨帶對流分析中,WG在Stage I期間的對流不活躍且不對稱,而在Stage II期間逐漸活躍並形成較寬的Moat。NG的對流一直較為活躍且對稱,形成較窄的Moat。WG在由Stage I進入Stage II過程中,外圍雨帶轉變為活躍,低層徑向入流增強,可能是由於非絕熱加熱增加,增強了次環流。在軸對稱平均切向風場演變分析中,伴隨徑向入流增強,切向風場也出現明顯增強和擴張,邊界層頂也出現超梯度力加強的現象,推測徑向入流的增強確實引發切向風場擴張和邊界層非平衡動力機制,促成雙眼牆的形成。NG在Stage II時,外圍雨帶中的對流轉變為層狀降水過程中,非絕熱作用分布的改變引發Mesoscale Descending Inflow (MDI)-Like徑向入流,增強低層徑向入流,透過增強低層切向風或觸發邊界層非平衡動力機制來形成雙眼牆。由於MDI-Like徑向入流所造成的低層徑向入流較強,能更深入颱風內核區域,在更靠近中心的位置製造Forcing,形成較窄的Moat,縮短眼牆置換所需時間。
總結來說,背景垂直風切和外圍雨帶對流活動情形對雙眼牆的形成和Moat寬度有顯著影響。較弱的垂直風切和活躍的外圍雨帶造成較強的MDI-Like徑向入流,導致了較窄的Moat和較短的眼牆置換時間;反過來說,較強的垂直風切和不活躍外圍雨帶會產生較寬的Moat和較長的眼牆置換時間。
zh_TW
dc.description.abstractThe duration of eyewall replacement cycles (ERC) is a critical factor influencing the intensity changes of TC during ERC. Previous studies have proposed relationships between the duration of ERC and the width of the moat (Fischer et al., 2020; Yang et al., 2021). There are also related studies investigating how the width of the moat affects the duration of ERC (Lai et al., 2019). However, as a key factor determining the duration of ERC, there is still a lack of literature discussing the factors that determine the width of the moat.
The objective of this study is to investigate which internal dynamics or external environmental factors determine the size of the moat during the secondary eyewall formation (SEF) in tropical cyclones. The first part of this study utilizes the Weather Research and Forecasting (WRF) model to simulate the narrow moat concentric eyewall events observed in Typhoon Haiyan (2013) which involved a short-duration eyewall replacement during the intensifying phase, with a small secondary eyewall and no significant intensity weakening (Lin et al. 2021). In the second part, using the same model configuration as the first part, we employ WRF Variational data assimilation (WRF-VAR) to generate 40 ensemble members as control groups for comparison and analysis, aiming to identify factors that lead to a narrower moat width.
The WRF simulations reveal that Haiyan exhibited a narrower initial moat (25 km) compared to the climatological mean (71 km). The WRF-VAR ensemble results indicate a positive correlation between the duration of eyewall replacement and the initial moat width, in accordance with the findings of Yang et al. (2021). Subsequently, the ensemble members were divided into two groups, narrow (NG) and wide (WG), based on the lowest 25% and the highest 25% moat width. Prior to the SEF, there were no significant differences between the two groups for the initial structural characteristics (e.g., tangential wind, inertial stability, and filamentation time). In terms of environmental factors, WG experienced greater environment vertical wind shear (VWS), which induces asymmetric structures and inactive rainbands. As VWS weakens, rainbands gradually become active and axisymmetric. Tangential wind tendency and agradient force analysis show that as rainband axisymmetrization, it generates forcing (Unbalanced dynamic, Wu et al., 2012; Huang et al., 2012) away from the primary eyewall, ultimately leading to a wider moat during SEF. In the NG group, weaker VWS results in more active and symmetric rainbands. Diabatic heating distribution and precipitation type analysis reveal that as convection within these rainbands gradually weakens into stratiform precipitation, an inflow band similar to mesoscale descending inflow (MDI, Didlake and Houze 2013b) develops from diabatic heating distribution appears. Agradient force analysis indicates that this MDI-like inflow creates forcing (Didlake et al., 2018) closer to the primary eyewall, ultimately leading to the formation of a narrower moat during SEF. The results indicate that varying VWS results in differences in rainband activity, leading to differences in the source and location of forcing, ultimately resulting in TCs exhibiting varying widths of moat during the SEF.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:22:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:22:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 I
摘要 II
Abstract IV
目次 VI
圖次 VIII
第一章 前言 2
1.1雙眼牆結構 2
1.2 眼牆置換過程 3
1.2.1 內眼牆減弱機制 3
1.2.2 外眼牆內縮機制 3
1.2.3 眼牆置換期間颱風強度變化 4
1.2.4 特殊眼牆置換過程 4
1.3 雙眼牆形成理論回顧 5
1.3.1 早期雙眼牆形成機制理論回顧 5
1.3.2 平衡動力觀點 6
1.3.3 非平衡動力觀點 7
1.3.4 不對稱外圍雨帶觀點 8
1.4 Moat區寬度和眼牆置換時間長度之關聯 8
1.5 研究動機與科學目的 9
第二章 研究工具與方法 10
2.1 模式介紹 10
2.2 模式設定與使用資料 10
2.3 系集模式設定 11
第三章 控制組實驗 12
3.1 海燕颱風(Typhoon Haiyan)介紹 12
3.2 WRF模式模擬結果 13
3.2.1 颱風強度與路徑之比較 13
3.2.3 眼牆置換過程 14
第四章 系集模擬實驗 16
4.1 內部動力結構差異 17
4.2 外部背景環境場差異 18
4.4 WG雙眼牆形成機制探討 22
4.5 NG雙眼牆形成機制探討 25
第五章 結論及未來展望 33
5.1 結論 33
5.2 未來展望 37
Reference: 38
-
dc.language.isozh_TW-
dc.subject外圍雨帶zh_TW
dc.subject垂直風切zh_TW
dc.subject雙眼牆zh_TW
dc.subject颱風zh_TW
dc.subject眼牆置換zh_TW
dc.subjectTyphoonen
dc.subjectconcentric eyewallen
dc.subjecteyewall replacement cycleen
dc.subjectvertical wind shearen
dc.subjectouter rainbanden
dc.title以系集模擬方法探討不同寬度 moat 雙眼牆之成因-以海燕颱風(2013)為例zh_TW
dc.titleExploring the causes of difference in moat width in concentric eyewalls -Ensemble simulation of Typhoon Haiyan (2013)en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游政谷;連國淵zh_TW
dc.contributor.oralexamcommitteeCheng-Ku Yu;Guo-Yuan Lienen
dc.subject.keyword颱風,雙眼牆,眼牆置換,垂直風切,外圍雨帶,zh_TW
dc.subject.keywordTyphoon,concentric eyewall,eyewall replacement cycle,vertical wind shear,outer rainband,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202402954-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-01
5.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved