請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94659
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張書瑋 | zh_TW |
dc.contributor.advisor | Shu-Wei Chang | en |
dc.contributor.author | 李佩澄 | zh_TW |
dc.contributor.author | Pei-Cheng Li | en |
dc.date.accessioned | 2024-08-16T17:22:30Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-08 | - |
dc.identifier.citation | 1. Kull, F.J. and S.A. Endow, Force generation by kinesin and myosin cytoskeletal motor proteins. Journal of Cell Science, 2013. 126(1): p. 9-19.
2. Titus, M.A., Myosin-driven intracellular transport. Cold Spring Harbor perspectives in biology, 2018. 10(3): p. a021972. 3. DePina, A.S. and G.M. Langford, Vesicle transport: the role of actin filaments and myosin motors. Microscopy research and technique, 1999. 47(2): p. 93-106. 4. Miki, H., Y. Okada, and N. Hirokawa, Analysis of the kinesin superfamily: insights into structure and function. Trends in cell biology, 2005. 15(9): p. 467-476. 5. Hirokawa, N. and R. Takemura, Kinesin superfamily proteins and their various functions and dynamics. Experimental cell research, 2004. 301(1): p. 50-59. 6. Canty, J.T. and A. Yildiz, Activation and regulation of cytoplasmic dynein. Trends in biochemical sciences, 2020. 45(5): p. 440-453. 7. Pfarr, C., et al., Cytoplasmic dynein is localized to kinetochores during mitosis. Nature, 1990. 345(6272): p. 263-265. 8. Hirokawa, N., S. Niwa, and Y. Tanaka, Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron, 2010. 68(4): p. 610-638. 9. Holzbaur, E.L., Motor neurons rely on motor proteins. Trends in cell biology, 2004. 14(5): p. 233-240. 10. Ikenaka, K., et al., Disruption of axonal transport in motor neuron diseases. International journal of molecular sciences, 2012. 13(1): p. 1225-1238. 11. Chen, X.-J., et al., Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases. Science China Life Sciences, 2014. 57: p. 372-377. 12. Woehlke, G. and M. Schliwa, Walking on two heads: the many talents of kinesin. Nature Reviews Molecular Cell Biology, 2000. 1(1): p. 50-58. 13. Gross, S.P., M. Vershinin, and G.T. Shubeita, Cargo transport: two motors are sometimes better than one. Current biology, 2007. 17(12): p. R478-R486. 14. Rayment, I., Kinesin and myosin: molecular motors with similar engines. Structure, 1996. 4(5): p. 501-504. 15. Jon Kull, F., et al., Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature, 1996. 380(6574): p. 550-555. 16. Tang, W., et al., Modulating beta-cardiac myosin function at the molecular and tissue levels. Frontiers in physiology, 2017. 7: p. 228510. 17. Kawaguchi, K., Energetics of kinesin-1 stepping mechanism. FEBS letters, 2008. 582(27): p. 3719-3722. 18. Neuwald, A.F., et al., AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome research, 1999. 9(1): p. 27-43. 19. Cho, C., S.L. Reck-Peterson, and R.D. Vale, Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. Journal of Biological Chemistry, 2008. 283(38): p. 25839-25845. 20. Reck-Peterson, S.L., et al., Single-molecule analysis of dynein processivity and stepping behavior. Cell, 2006. 126(2): p. 335-348. 21. Kon, T., et al., Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nature structural & molecular biology, 2009. 16(3): p. 325-333. 22. Schmidt, H., et al., Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature, 2015. 518(7539): p. 435-438. 23. Gleave, E.S., H. Schmidt, and A.P. Carter, A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein. Journal of structural biology, 2014. 186(3): p. 367-375. 24. Carter, A.P., et al., Crystal structure of the dynein motor domain. Science, 2011. 331(6021): p. 1159-1165. 25. Reck-Peterson, S.L. and R.D. Vale, Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 2004. 101(6): p. 1491-1495. 26. Nicholas, M.P., et al., Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. Proceedings of the National Academy of Sciences, 2015. 112(20): p. 6371-6376. 27. Kon, T., et al., Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry, 2004. 43(35): p. 11266-11274. 28. DeWitt, M.A., et al., The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nature structural & molecular biology, 2015. 22(1): p. 73-80. 29. Liu, X., L. Rao, and A. Gennerich, The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nature communications, 2020. 11(1): p. 5952. 30. Wendler, P., et al., Structure and function of the AAA+ nucleotide binding pocket. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2012. 1823(1): p. 2-14. 31. Iyer, L.M., et al., Evolutionary history and higher order classification of AAA+ ATPases. Journal of structural biology, 2004. 146(1-2): p. 11-31. 32. Miller, J.M. and E.J. Enemark, Fundamental characteristics of AAA+ protein family structure and function. Archaea, 2016. 2016(1): p. 9294307. 33. Hattendorf, D.A. and S.L. Lindquist, Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor‐1 mutants. The EMBO journal, 2002. 34. Hanson, P.I. and S.W. Whiteheart, AAA+ proteins: have engine, will work. Nature reviews Molecular cell biology, 2005. 6(7): p. 519-529. 35. Ogura, T. and A.J. Wilkinson, AAA+ superfamily ATPases: common structure–diverse function. Genes to Cells, 2001. 6(7): p. 575-597. 36. Schmidt, H., Dynein motors: How AAA+ ring opening and closing coordinates microtubule binding and linker movement. BioEssays, 2015. 37(5): p. 532-543. 37. Bhabha, G., et al., Allosteric communication in the dynein motor domain. Cell, 2014. 159(4): p. 857-868. 38. Nishikawa, Y., et al., Structural change in the dynein stalk region associated with two different affinities for the microtubule. Journal of molecular biology, 2016. 428(9): p. 1886-1896. 39. Johnson, K., Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annual review of biophysics and biophysical chemistry, 1985. 14: p. 161-188. 40. Burgess, S.A., et al., Dynein structure and power stroke. Nature, 2003. 421(6924): p. 715-718. 41. Schmidt, H. and A.P. Carter, Structure and mechanism of the dynein motor ATPase. Biopolymers, 2016. 105(8): p. 557-567. 42. Schmidt, H., E.S. Gleave, and A.P. Carter, Insights into dynein motor domain function from a 3.3-Å crystal structure. Nature Structural & Molecular Biology, 2012. 19(5): p. 492-497. 43. Lee, S., J.-M. Choi, and F.T. Tsai, Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Molecular cell, 2007. 25(2): p. 261-271. 44. Meller, J., Molecular dynamics. Encyclopedia of life sciences, 2001. 18. 45. Brooks, B.R., et al., CHARMM: the biomolecular simulation program. Journal of computational chemistry, 2009. 30(10): p. 1545-1614. 46. Laio, A. and F.L. Gervasio, Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 2008. 71(12): p. 126601. 47. Izrailev, S., et al. Computational Molecular Dynamics: Challenges, Methods. in Ideas. 1998. 48. Fu, H., et al., Finding an optimal pathway on a multidimensional free-energy landscape. Journal of Chemical Information and Modeling, 2020. 60(11): p. 5366-5374. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94659 | - |
dc.description.abstract | 馬達蛋白作為細胞中物質運輸的關鍵角色,參與了許多細胞活動如細胞分裂、胞器定位、複合蛋白移動等等。馬達蛋白分為三大類-肌球蛋白 (myosin) 、驅動蛋白 (kinesin) 及動力蛋白 (dynein),其中不同於肌球蛋白與驅動蛋白單體的運動結構域 (motor domain) 僅由一個核苷酸結合位構成的,動力蛋白單體的運動結構域-AAA+環具有六個互相串聯的AAA+結構域 (ATPases associated with diverse cellular activities) ,代表可有多個核苷酸同時與蛋白結合,也因此衍伸了不同的行為機制。目前已知動力蛋白的機制由AAA1的核苷酸狀態控制,而要使運作循環得以開始的先決條件是AAA3中的ATP水解;過去的研究指出,在具有完整功能的AAA1、AAA3與AAA4中,AAA1與AAA3這兩個位點能否水解ATP會直接影響動力蛋白的移動能力,而AAA4中發生水解與否則影響不大,因此本研究將目光聚焦在AAA1與AAA3,首先觀察水解產物ADP的結合位,接著利用增強採樣模擬了解ADP的釋放過程與路徑,使現有的機制更加完善。
平衡的結構顯示兩位點會由相同的催化基序 (motif) 構成ADP結合位,且結合位與ADP間形成的氫鍵數量並無明顯差異,但在AAA1中與ADP形成氫鍵的殘基中有四個位在負責結合功能的Walker A基序,而AAA3中只會有兩個。關於ADP的釋放行為,兩組增強採樣模擬的結果皆顯示AAA1擁有更高的勢能壘, ADP會較難從AAA1脫離;至於ADP離開所走的路徑,氫鍵分析的結果說明,除了構成結合位的殘基之外,都會有一個在AAAS-H7上的殘基參與釋放過程,代表兩位點擁有相同ADP釋放路徑,不過此過程中ADP會以不同的方式斷開與結合位間的氫鍵,一種是許多氫鍵一起被斷開,另一種則是逐一斷開,這可能是最初結合位構成差異所導致的,然而確切原因還需深入探討才可得知。總而言之,這項研究確定了ADP在AAA1及AAA3中的結合位構成,計算出了ADP離開AAA1與AAA3兩位點所需的能量以及釋放的路徑,並發現在類似的條件下 AAA1比起AAA3擁有更高的勢能壘需要克服。 | zh_TW |
dc.description.abstract | Motor proteins play a critical role in intracellular material transport, participating in numerous cellular activities such as cell division, organelle positioning, and the movement of protein complexes. Motor proteins are classified into three major categories: myosin, kinesin, and dynein. Unlike the motor domains of myosin and kinesin monomers, which consist of only one nucleotide-binding site, the motor domain of dynein monomers—the AAA+ ring—features six tandemly linked AAA+ domains (ATPases associated with diverse cellular activities), allowing multiple nucleotides to bind to the protein simultaneously. This leads to diverse behavioral mechanisms. Currently, it is known that dynein's mechanism is controlled by the nucleotide state of AAA1, with the prerequisite for initiating the operational cycle being ATP hydrolysis in AAA3. Previous research has indicated that in the fully functional AAA1, AAA3, and AAA4 sites, the ability to hydrolyze ATP of AAA1 and AAA3 directly affects dynein's motility, while hydrolysis in AAA4 has a minimal impact. Therefore, this study focuses on AAA1 and AAA3, first observing the ADP binding sites and then using enhanced sampling simulations to understand the ADP release process and pathways, thereby refining the existing mechanism.
Equilibrium structures show that both sites form ADP binding sites with the same catalytic motif and the number of hydrogen bonds between the binding site and ADP does not differ significantly. However, in AAA1, four residues forming hydrogen bonds with ADP are located in the Walker A motif which is responsible for binding functions, while in AAA3, only two residues are involved. Regarding ADP release behavior, results from two sets of enhanced sampling simulations show that AAA1 has a higher energy barrier, making ADP more difficult to dissociate from AAA1. As for the pathway of ADP release, hydrogen bond analysis indicates that, besides the residues forming the binding site, a residue on AAAS-H7 participates in the release process, indicating that both sites have the same ADP release pathway. However, during this process, ADP breaks hydrogen bonds with the binding site in different ways: in one, many hydrogen bonds break simultaneously, while in the other, they break one by one. This may be due to the initial differences in binding site composition, but the exact reasons require further investigation. In summary, this study identifies the composition of ADP binding sites in AAA1 and AAA3, calculates the energy required for ADP to leave the two sites and their release pathways, and found that under similar conditions, AAA1 has a higher energy barrier to overcome compared to AAA3. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:22:30Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:22:30Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv 目次 vi 圖次 x 表次 xiii 第1章 緒論 1 1.1 研究背景 1 1.1.1 馬達蛋白種類與功能 1 1.1.2 馬達蛋白間的差異 2 1.1.3 動力蛋白結構 3 1.1.4 核苷酸狀態與動力蛋白功能之關係 4 1.2 研究動機與目的 5 第2章 文獻回顧 7 2.1 AAA+ 結構域 7 2.2 動力蛋白運作機制 8 2.3 AAA1引起的蛋白構型變化 10 2.4 AAA3的影響力 11 2.5 ADP釋放 14 第3章 方法 15 3.1 分子動力學(Molecular dynamics, MD) 15 3.1.1 力場 (Force feild) 15 3.1.2 系綜 (Ensemble) 16 3.1.3 週期性邊界 (Periodic boundary condition) 17 3.2 元動力模擬 (Matadynamics) 18 3.2.1 集體變量(collective variables,CVs) 18 3.2.2 高斯位能函數(Gaussian potential) 19 3.3 拉伸分子動力學(Steered molecular dynamics, SMD) 19 3.4 模型資訊 20 3.5 參數設定 21 3.5.1 平衡模擬 21 3.5.2 元動力模擬 21 3.5.3 拉伸分子動力模擬 22 3.6 分析方法 23 3.6.1 方均根偏差(root-mean-square deviation, RMSD) 23 3.6.2 氫鍵分析 24 3.7 模擬步驟 24 第4章 系統平衡結果 26 4.1 蛋白穩定態 26 4.1.1 蛋白整體結構 26 4.1.2 蛋白局部結構 27 4.2 ADP結合位 28 4.2.1 氫鍵分析 28 4.2.2 結合位胺基酸所在位置 30 4.2.3 ADP構型 32 第5章 元動力模擬結果 33 5.1 AAA1之模擬結果 33 5.1.1 最小能量路徑與勢能壘 33 5.1.2 氫鍵分析結果與釋放途徑 35 5.2 AAA3之模擬結果 37 5.2.1 最小能量路徑與勢能壘 37 5.2.2 氫鍵分析結果與釋放途徑 38 5.3 兩位點比較 41 5.3.1 需克服之勢能壘大小 41 5.3.2 ADP釋放途徑 42 第6章 拉伸分子動力模擬 44 6.1 模擬初始結構 44 6.2 拉伸方向 46 6.3 拉伸模擬結果 48 6.3.1 AAA1 48 6.3.2 AAA3 50 6.3.3 AAA1與AAA3拉伸模擬結果比較 51 第7章 結論與未來展望 55 7.1 總結 55 7.2 未來展望 57 參考文獻 58 | - |
dc.language.iso | zh_TW | - |
dc.title | 以分子動力模擬探討動力蛋白之運作機制 | zh_TW |
dc.title | Explore Dynein Mechanism by Molecular Dynamics Simulation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 周佳靚;洪子倫;胡念仁 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Ching Chou;Tzyy-Leng Horng;Nien-Jen Hu | en |
dc.subject.keyword | 分子動力模擬,元動力模擬,拉伸分子動力模擬,馬達蛋白,動力蛋白, | zh_TW |
dc.subject.keyword | Molecular dynamics simulation,metadynamics,steered molecular dynamics,motor protein,dynein, | en |
dc.relation.page | 61 | - |
dc.identifier.doi | 10.6342/NTU202402671 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
dc.date.embargo-lift | 2029-08-08 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 13.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。