Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝伯讓zh_TW
dc.contributor.advisorPo-Jang Hsiehen
dc.contributor.author胡家毓zh_TW
dc.contributor.authorChia-Yu Huen
dc.date.accessioned2024-08-16T17:21:10Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citationAkechi, H., Stein, T., Senju, A., Kikuchi, Y., Tojo, Y., Osanai, H., & Hasegawa, T. (2014). Absence of preferential unconscious processing of eye contact in adolescents with autism spectrum disorder. Autism Research, 7(5), 590-597.
Altschuler, M. R., Trevisan, D. A., Wolf, J. M., Naples, A. J., Foss-Feig, J. H., Srihari, V. H., & McPartland, J. C. (2021). Face perception predicts affective theory of mind in autism spectrum disorder but not schizophrenia or typical development. Journal of Abnormal Psychology, 130(4), 413.
American Psychiatric Association, D. S. M. T. F., & American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5, No. 5). Washington, DC: American psychiatric association.
Austin, E. J. (2005). Personality correlates of the broader autism phenotype as assessed by the Autism Spectrum Quotient (AQ). Personality and Individual Differences, 38(2), 451-460.
Aydin, Ü., Cañigueral, R., Tye, C., & McLoughlin, G. (2023). Face processing in young adults with autism and ADHD: An event related potentials study. Frontiers in Psychiatry, 14, 1080681.
Axelrod, V., Bar, M., & Rees, G. (2015). Exploring the unconscious using faces. Trends in Cognitive Sciences, 19(1), 35-45.
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5-17.
Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & Wheelwright, S. (2003). The systemizing quotient: an investigation of adults with Asperger syndrome or high–functioning autism, and normal sex differences. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1430), 361-374.
Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34, 163-175.
Baron‐Cohen, S. (2009). Autism: the empathizing–systemizing (E‐S) theory. Annals of the New York Academy of Sciences, 1156(1), 68-80.
Bentin, S., & Deouell, L. Y. (2000). Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cognitive Neuropsychology, 17(1-3), 35-55.
Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: visual processing in autism. Trends in Cognitive Sciences, 10(6), 258-264.
Bird, G., Catmur, C., Silani, G., Frith, C., & Frith, U. (2006). Attention does not modulate neural responses to social stimuli in autism spectrum disorders. Neuroimage, 31(4), 1614-1624.
Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.
Bossi, F., Premoli, I., Pizzamiglio, S., Balaban, S., Ricciardelli, P., & Rivolta, D. (2020). Theta-and gamma-band activity discriminates face, body and object perception. Frontiers in Human Neuroscience, 14, 74.
Bralten, J., Van Hulzen, K. J., Martens, M. B., Galesloot, T. E., Arias Vasquez, A., Kiemeney, L. A., ... & Poelmans, G. (2018). Autism spectrum disorders and autistic traits share genetics and biology. Molecular Psychiatry, 23(5), 1205-1212.
Cakar, M. E., Okada, N. J., Cummings, K. K., Jung, J., Bookheimer, S. Y., Dapretto, M., & Green, S. A. (2024). Functional connectivity of the sensorimotor cerebellum in autism: Associations with sensory over-responsivity. Frontiers in Psychiatry, 15, 1337921.
Carver, L. J., & Dawson, G. (2002). Development and neural bases of face recognition in autism. Molecular Psychiatry, 7(2), S18-S20.
Cauvet, É., Van’t Westeinde, A., Toro, R., Kuja-Halkola, R., Neufeld, J., Mevel, K., & Bölte, S. (2019). Sex differences along the autism continuum: A twin study of brain structure. Cerebral Cortex, 29(3), 1342-1350.
Cheng, Y., Chou, K. H., Chen, I. Y., Fan, Y. T., Decety, J., & Lin, C. P. (2010). Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage, 50(3), 873-882.
Cheng, W., Rolls, E. T., Gu, H., Zhang, J., & Feng, J. (2015). Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain, 138(5), 1382-1393.
Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231-239.
Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: a twin study. Archives of General Psychiatry, 60(5), 524-530.
Curby, K. M., Willenbockel, V., Tanaka, J. W., & Schultz, R. T. (2010). Face processing in autism: Insights from the perceptual expertise framework. In I. Gauthier, M. J. Tarr, & D. Bub (Eds.), Perceptual epertise: Bridging brain and behavior (pp. 139–166). Oxford University Press.
Dawson, G., Webb, S. J., & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27(3), 403-424.
Desai, A., Foss-Feig, J. H., Naples, A. J., Coffman, M., Trevisan, D. A., & McPartland, J. C. (2019). Autistic and alexithymic traits modulate distinct aspects of face perception. Brain and Cognition, 137, 103616.
Du, B., Cheng, X., Duan, Y., & Ning, H. (2022). fmri brain decoding and its applications in brain–computer interface: A survey. Brain Sciences, 12(2), 228.
Eimer, M., & Holmes, A. (2002). An ERP study on the time course of emotional face processing. Neuroreport, 13(4), 427-431.
Floris, D. L., Llera, A., Zabihi, M., Moessnang, C., Jones, E. J., Mason, L., Haartsen, R., Holz, N. E., Mei, T., Elleaume, C., Vieira, B. H., Pretzsch, C. M., Forde, N., Baumeister, S., Dell’Acqua, F., Durston, S., Banaschewski, T., Ecker, C., Holt, R. J., ... & Langer, N. (2024). A multimodal neural signature of face processing in autism within the fusiform gyrus. medRxiv, 2024-01.
Freiwald, W. A. (2020). The neural mechanisms of face processing: Cells, areas, networks, and models. Current opinion in Neurobiology, 60, 184-191.
Garman, H. D., Spaulding, C. J., Webb, S. J., Mikami, A. Y., Morris, J. P., & Lerner, M. D. (2016). Wanting it too much: An inverse relation between social motivation and facial emotion recognition in autism spectrum disorder. Child Psychiatry & Human Development, 47, 890-902.
Golarai, G., Grill-Spector, K., & Reiss, A. L. (2006). Autism and the development of face processing. Clinical Neuroscience Research, 6(3-4), 145-160.
Gunji, A., Goto, T., Kita, Y., Sakuma, R., Kokubo, N., Koike, T., ... & Inagaki, M. (2013). Facial identity recognition in children with autism spectrum disorders revealed by P300 analysis: a preliminary study. Brain and Development, 35(4), 293-298.
Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager‐Flusberg, H. (2007). Abnormal activation of the social brain during face perception in autism. Human Brain Mapping, 28(5), 441-449.
Herrington, J. D., Riley, M. E., Grupe, D. W., & Schultz, R. T. (2015). Successful face recognition is associated with increased prefrontal cortex activation in autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 902-910.
Hubl, D., Bolte, S., Feineis–Matthews, S., Lanfermann, H., Federspiel, A., Strik, W., ... & Dierks, T. (2003). Functional imbalance of visual pathways indicates alternative face processing strategies in autism. Neurology, 61(9), 1232-1237.
Hung, S. M., & Hsieh, P. J. (2021). Subliminal temporal integration of linguistic information under discontinuous flash suppression. Journal of Vision, 21(5), 27-27.
Grove, R., Hoekstra, R. A., Wierda, M., & Begeer, S. (2017). Exploring sex differences in autistic traits: A factor analytic study of adults with autism. Autism, 21(6), 760-768.
JASP Team (2024). JASP (Version 0.18.3) [Computer software].
Kang, E., Keifer, C. M., Levy, E. J., Foss-Feig, J. H., McPartland, J. C., & Lerner, M. D. (2018). Atypicality of the N170 event-related potential in autism spectrum disorder: a meta-analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(8), 657-666.
Ko, H. Y., Lee, W. H., Won, E. K., Ban, J. J., & Kim, Y. (2018). The reliability and validity of the Korean Version of the Autism-Spectrum Quotient. Psychiatry Investigation, 15(8), 783.
Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2008). fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2), 289-300.
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems neuroscience, 2, 249.
Latreche, K., Kojovic, N., Franchini, M., & Schaer, M. (2021). Attention to face as a predictor of developmental change and treatment outcome in young children with autism spectrum disorder. Biomedicines, 9(8), 942.
Lau, W. K., Leung, M. K., & Lau, B. W. (2019). Resting-state abnormalities in autism spectrum disorders: a meta-analysis. Scientific Reports, 9(1), 3892.
Libero, L. E., Schaer, M., Li, D. D., Amaral, D. G., & Nordahl, C. W. (2019). A longitudinal study of local gyrification index in young boys with autism spectrum disorder. Cerebral Cortex, 29(6), 2575-2587.
Liu, M. (2008). Screening adults for asperger syndrome and high-functioning autism by using the Autism-Spectrum Quotient (AQ) (Mandarin Version). Bulletin of Special Education, 33(1), 73-92.
Luo, W., Feng, W., He, W., Wang, N. Y., & Luo, Y. J. (2010). Three stages of facial expression processing: ERP study with rapid serial visual presentation. Neuroimage, 49(2), 1857-1867.
Madipakkam, A. R., Rothkirch, M., Dziobek, I., & Sterzer, P. (2017). Unconscious avoidance of eye contact in autism spectrum disorder. Scientific Reports, 7(1), 13378.
Mamashli, F., Khan, S., Bharadwaj, H., Losh, A., Pawlyszyn, S. M., Hämäläinen, M. S., & Kenet, T. (2018). Maturational trajectories of local and long‐range functional connectivity in autism during face processing. Human Brain Mapping, 39(10), 4094-4104.
Naumann, S., Senftleben, U., Santhosh, M., McPartland, J., & Webb, S. J. (2018). Neurophysiological correlates of holistic face processing in adolescents with and without autism spectrum disorder. Journal of Neurodevelopmental Disorders, 10, 1-13.
Nomi, J. S., & Uddin, L. Q. (2015). Face processing in autism spectrum disorders: From brain regions to brain networks. Neuropsychologia, 71, 201-216.
Parish-Morris, J., Chevallier, C., Tonge, N., Letzen, J., Pandey, J., & Schultz, R. T. (2013). Visual attention to dynamic faces and objects is linked to face processing skills: a combined study of children with autism and controls. Frontiers in Psychology, 4, 24776.
Pender, R., Fearon, P., Heron, J., & Mandy, W. (2020). The longitudinal heterogeneity of autistic traits: A systematic review. Research in Autism Spectrum Disorders, 79, 101671.
Pierce, K., Müller, R. A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiformface area'in autism: evidence from functional MRI. Brain, 124(10), 2059-2073.
Pitcher, D., Dilks, D. D., Saxe, R. R., Triantafyllou, C., & Kanwisher, N. (2011). Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage, 56(4), 2356-2363.
Rana, K., Sargeant, M., Taubert, J., Ungerleider, L., & Merriam, E. (2022). Gamma-band connectivity suggests a functional pathway from the amygdala to the anterior temporal lobe during face processing. Journal of Vision, 22(14), 3836-3836.
Ratto, A. B., Kenworthy, L., Yerys, B. E., Bascom, J., Wieckowski, A. T., White, S. W., ... & Anthony, L. G. (2018). What about the girls? Sex-based differences in autistic traits and adaptive skills. Journal of Autism and Developmental Disorders, 48, 1698-1711.
Remington, A., Campbell, R., & Swettenham, J. (2012). Attentional status of faces for people with autism spectrum disorder. Autism, 16(1), 59-73.
Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(3), 255-274.
Ruzich, E., Allison, C., Smith, P., Watson, P., Auyeung, B., Ring, H., & Baron-Cohen, S. (2015). Measuring autistic traits in the general population: A systematic review of the Autism-Spectrum Quotient (AQ) in a nonclinical population sample of 6,900 typical adult males and females. Molecular Autism, 6, 1-12.
Safra, L., Ioannou, C., Amsellem, F., Delorme, R., & Chevallier, C. (2018). Distinct effects of social motivation on face evaluations in adolescents with and without autism. Scientific Reports, 8(1), 10648.
Schultz, R. T. (2005). Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. International Journal of Developmental Neuroscience, 23(2-3), 125-141.
Shah, P., Bird, G., & Cook, R. (2016). Face processing in autism: Reduced integration of cross-feature dynamics. Cortex, 75, 113-119.
Sindermann, C., Cooper, A., & Montag, C. (2019). Empathy, autistic tendencies, and systemizing tendencies—Relationships between standard self-report measures. Frontiers in Psychiatry, 10, 451801.
Stavropoulos, K. K., Viktorinova, M., Naples, A., Foss-Feig, J., & McPartland, J. C. (2018). Autistic traits modulate conscious and nonconscious face perception. Social Neuroscience, 13(1), 40-51.
Turbett, K., Jeffery, L., Bell, J., Burton, J., & Palermo, R. (2022). Autistic traits are associated with less precise perceptual integration of face identity. Journal of Autism and Developmental Disorders, 52(5), 2168-2179.
Valla, J. M., Maendel, J. W., Ganzel, B. L., Barsky, A. R., & Belmonte, M. K. (2013). Autistic trait interactions underlie sex-dependent facial recognition abilities in the normal population. Frontiers in Psychology, 4, 286.
Wheelwright, S., Baron-Cohen, S., Goldenfeld, N., Delaney, J., Fine, D., Smith, R., ... & Wakabayashi, A. (2006). Predicting autism spectrum quotient (AQ) from the systemizing quotient-revised (SQ-R) and empathy quotient (EQ). Brain Research, 1079(1), 47-56.
Wilson, C. E., Freeman, P., Brock, J., Burton, A. M., & Palermo, R. (2010). Facial identity recognition in the broader autism phenotype. PLoS One, 5(9), e12876.
Yeung, M. K. (2022). A systematic review and meta-analysis of facial emotion recognition in autism spectrum disorder: The specificity of deficits and the role of task characteristics. Neuroscience & Biobehavioral Reviews, 133, 104518.
Zion-Golumbic, E., & Bentin, S. (2007). Dissociated neural mechanisms for face detection and configural encoding: evidence from N170 and induced gamma-band oscillation effects. Cerebral Cortex, 17(8), 1741-1749.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94655-
dc.description.abstract異常的人臉訊息處理歷程是自閉症類群障礙(Autism Spectrum Disorder, ASD)的特徵之一。即使過去的相關研究已經廣泛地檢驗自閉症類群障礙在處理有意識人臉訊息的神經機制,目前的研究對於自閉症個案如何處理無意識人臉訊息的了解仍然不足。此研究透過功能性磁振造影實驗、執行不連續閃現抑制作業(discontinuous flashing suppression task, dCFS task),並採用單變量分析及關注區域(ROI)分析,來檢驗具有不同程度自閉症特質的一般發展(typical development, TD)成年族群在處理有意識及無意識人臉訊息的神經運作模式。研究結果顯示,高自閉症特質的受試者與低自閉症特質的受試者相比,在處理有意識人臉訊息時具有異常的神經機制,包括招募較多與視覺訊息處理相關的神經活動反應,以及招募較少與人臉訊息處理相關的神經活動反應。另外,高自閉症特質的受試者在區辨無意識人臉訊息與無意識非人臉訊息的能力較差。除此之外,本研究發現中央旁小葉(paracentral lobule, PCL)的活化反應 – 與自閉症相關的潛在神經標記 – 在高自閉症特質受試者處理無意識人臉訊息時顯著下降。未來研究需要採用其他分析方法來進一步了解高自閉症特質族群在處理有意識及無意識人臉訊息背後的神經機制。zh_TW
dc.description.abstractAtypical face processing is a distinctive feature of autism spectrum disorder (ASD). While previous research has extensively studied the mechanisms of conscious face processing in autism, a notable gap in understanding how individuals with autism process unconscious face information still exists. This study investigates the neural patterns associated with both conscious and unconscious face processing among typically developed populations with varying levels of autistic traits by using fMRI experiments involving the discontinuous flashing suppression (dCFS) task. Univariate analyses and ROI analysis were applied to this study. Results show that participants with higher autistic traits recruited alternated neural patterns during conscious face processing, characterized by reduced activity in face-related regions and increased activity in regions related to visual processing. Moreover, these participants show difficulty in differentiating between unconscious face information and unconscious non-face information compared to those with lower autistic traits. Furthermore, decreased activity in the paracentral lobule (PCL), a potential marker for autism, is associated with atypical unconscious face processing among participants with higher autistic traits. Additional analytical approaches are warranted to further elucidate the mechanisms underlying atypical conscious and unconscious face processing in relation to higher autistic traits.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:21:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:21:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsChinese Abstract i
English Abstract ii
Chapter 1. Introduction 1
1.1. Literature Review 1
1.2. Research Purpose 5
Chapter 2. Materials and Methods 6
2.1. Participants 6
2.2. Experimental Design 6
2.3. Statistical Analysis 13
Chapter 3. Results 19
3.1. Behavioral Results 19
3.2. Neuroimaging Results 22
Chapter 4. Discussion 49
4.1. Summary 49
4.2. Alternated Neural Mechanisms in Conscious Face Processing 49
4.3. Inability to Differentiate Unconscious Face Information 50
4.4. Identification of Atypical Unconscious Face Processing by the Paracentral Lobule 51
4.5. Absence of Male-Bias Effect in AQ Scores. 51
4.6. Potential Confounds and Further Statistical Analyses 52
4.7. Future Direction 54
4.8. Limitations and Conclusions 55
Reference 57
Appendix 70
A. Whole-Brain Results of the Contrasts between Face and Scene Processing. 70
B. Whole-Brain Results of the Face-Scene Contrasts 79
C. Whole-Brain Results of Face Processing and Scene Processing 83
D. ROI Analyses in Face and Scene Processing. 94
-
dc.language.isoen-
dc.title高自閉症特質與有意識及無意識人臉訊息歷程之神經機制zh_TW
dc.titleNeural Correlates of Conscious and Unconscious Face Processing in Individuals with High and Low Autistic Traitsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪紹閔;曾祥非zh_TW
dc.contributor.oralexamcommitteeShao-Ming Hung;Philip Tsengen
dc.subject.keyword自閉症特質,無意識人臉訊息處理歷程,不連續閃現抑制作業,人臉知覺,功能性磁振造影,zh_TW
dc.subject.keywordautistic traits,unconscious face processing,dCFS,face perception,fMRI,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202403188-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved