Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94652
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王昱力zh_TW
dc.contributor.advisorYu-Li Wangen
dc.contributor.authorMpendulo Mangaliso Mtsetfwazh_TW
dc.contributor.authorMpendulo Mangaliso Mtsetfwaen
dc.date.accessioned2024-08-16T17:20:12Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationAdeyeri, O. E., Zhou, W., Ndehedehe, C. E., Wang, X., Ishola, K. A., & Laux, P. (2024). Minimizing uncertainties in climate projections and water budget reveals the vulnerability of freshwater to climate change. One Earth, 7(1), 72-87.
Ahmed, A. S., Jardani, A., Revil, A., & Dupont, J.-P. (2016). Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data. Advances in water resources, 89, 80-90.
Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied groundwater modeling: simulation of flow and advective transport. Academic press.
Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., & Harrington, R. M. (2016). Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismological research letters, 87(3), 631-647.
Baú, D. A. (2012). Planning of groundwater supply systems subject to uncertainty using stochastic flow reduced models and multi-objective evolutionary optimization. Water resources management, 26, 2513-2536.
Bear, J., & Cheng, A. H.-D. (2010). Modeling groundwater flow and contaminant transport (Vol. 23). Springer.
Berg, S. J., & Illman, W. A. (2011). Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments. Water Resources Research, 47(9).
Chang, Y., & Yeh, H.-D. (2009). New solutions to the constant-head test performed at a partially penetrating well. Journal of hydrology, 369(1-2), 90-97.
Chowdhury, F., Gong, J., Rau, G. C., & Timms, W. A. (2022). Multifactor analysis of specific storage estimates and implications for transient groundwater modelling. Hydrogeology journal, 30(7), 2183-2204.
Cole, T. J., & Altman, D. G. (2017). Statistics Notes: What is a percentage difference? Bmj, 358.
Dagan, G. (1985). Stochastic modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem. Water Resour. Res., 21(1), 65–72. doi:10.1029/WR021i001p00065.
Daranond, K., Yeh, T.-C. J., Hao, Y., Wen, J.-C., & Wang, W. (2020). Identification of groundwater basin shape and boundary using hydraulic tomography. Journal of hydrology, 588, 125099.
Furter, J., & Eilbeck, J. (1995). Analysis of bifurcations in reaction–diffusion systems with no-flux boundary conditions: the Sel'kov model. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 125(2), 413-438.
Gasda, S. E., Bachu, S., & Celia, M. A. (2004). Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environmental geology, 46, 707-720.
Hartnick, E. K. (2020). Assessing the potential of using microcomputerized tomography to determine the physical properties of different textured soils Stellenbosch: Stellenbosch University].
Hill, M. C., & Tiedeman, C. R. (2006). Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons.
Illman, W. A., Zhu, J., Craig, A. J., & Yin, D. (2010). Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study. Water Resources Research, 46(4).
Jiao, J., & Zhang, Y. (2014). Two-dimensional physical-based inversion of confined and unconfined aquifers under unknown boundary conditions. Advances in water resources, 65, 43-57.
Kabala, Z. (2001). Sensitivity analysis of a pumping test on a well with wellbore storage and skin. Advances in water resources, 24(5), 483-504.
KC, S., Shrestha, S., Nguyen, T. P. L., Gupta, A. D., & Mohanasundaram, S. (2022). Groundwater governance: a review of the assessment methodologies. Environmental Reviews, 30(2), 202-216. https://doi.org/10.1139/er-2021-0066
Kitanidis, P.K., and Vomvoris, E.G. (1983). A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour. Res., 19(3), 677–690. doi:10.1029/WR019i003p00677.
Kitanidis, P.K. (1995). Quasi-Linear Geostatistical Theory for Inversing. Water Resour. Res., 31(10), 2411–2419. doi:10.1029/95WR01945.
Konikow, L. (1996). Use of numerical models to simulate groundwater flow and transport. US Geological Survey.
Ling, M., Rifai, H. S., Newell, C. J., Aziz, J. J., & Gonzales, J. R. (2003). Groundwater monitoring plans at small-scale sites—an innovative spatial and temporal methodology. Journal of Environmental Monitoring, 5(1), 126-134.
Liu, F., Yeh, T. C. J., Wang, Y. L., Song, X., Lei, X., Wen, J. C., Wang, W., & Hao, Y. (2020). Potential of hydraulic tomography in identifying boundary conditions of groundwater basins. Water Resources Research, 56(12), e2020WR028331.
Marshall, S., Cook, P., Simmons, C., Konikow, L., & Dogramaci, S. (2022). An approach to include hydrogeologic barriers with unknown geometric properties in groundwater model inversions. Water Resources Research, 58(7), e2021WR031458.
Mao, D., Yeh, T.-C. J., Wan, L., Hsu, K.-C., Lee, C.-H., & Wen, J.-C. (2013). Necessary conditions for inverse modeling of flow through variably saturated porous media. Advances in water resources, 52, 50-61.
Mucha, I., & Paulikova, E. (1986). Pumping test using large-diameter production and observation wells. Journal of hydrology, 89(1-2), 157-164.
NI, R. (2014). Refining Models for Quantifying the Water Quality Benefits of Improved Animal Management for Use in Water Quality Trading.
Priestley, M. B. (1982). Spectral Analysis and Time Series, Two-Volume Set (1st ed., Vols. I and II). ISBN: 9780125649223.
Sanchez‐Vila, X., Guadagnini, A., & Carrera, J. (2006). Representative hydraulic conductivities in saturated groundwater flow. Reviews of Geophysics, 44(3).
Sethi, R., & Molfetta, A. (2019). Groundwater Engineering. Springer.
Stoertz, M. W., & Bradbury, K. R. (1989). Mapping recharge areas using a ground‐water flow model–A case study. Groundwater, 27(2), 220-228.
Su, X., Yeh, T.-C. J., Li, K., Wang, G., & Wang, Z. (2024). Optimal strategies for assigning prior boundary settings in Hydraulic Tomography analysis. Advances in water resources, 186, 104674.
Sun, N. Z., & Yeh, W. W. G. (1990). Coupled inverse problems in groundwater modeling: 2. Identifiability and experimental design. Water Resources Research, 26(10), 2527-2540.
Sun, R., Yeh, T. C. J., Mao, D., Jin, M., Lu, W., & Hao, Y. (2013). A temporal sampling strategy for hydraulic tomography analysis. Water Resources Research, 49(7), 3881-3896.
Sykes, J., Wilson, J., & Andrews, R. (1985). Sensitivity analysis for steady state groundwater flow using adjoint operators. Water Resources Research, 21(3), 359-371.
Tartakovsky, D. M., & Neuman, S. P. (1998). Transient effective hydraulic conductivities under slowly and rapidly varying mean gradients in bounded three‐dimensional random media. Water Resources Research, 34(1), 21-32.
Wagner, B. J. (1999). Evaluating data worth for ground-water management under uncertainty. Journal of water resources planning and management, 125(5), 281-288.
Yeh, T., & Srivastava, R. (1990). VSAFT2: Variably Saturated Flow and Transport in 2-Dimensions, A Finite Element Simulation.
Yeh, T.-C., Gutjahr, A.L., Jin, M. (1995b). An iterative cokriging-like technique for groundwater flow modeling. Groundwater, 33(1), 33–41. doi:10.1111/gwat.1995.33.issue-110.1111/j.1745-6584.1995.tb00260.x.
Yeh, T. C. J., & Liu, S. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095-2105.
Zha, Y., Yeh, T.-C. J., Illman, W. A., Onoe, H., Mok, C. M. W., Wen, J.-C., Huang, S.-Y., and Wang, W. (2017). Incorporating geologic information into hydraulic tomography: A general framework based on geostatistical approach, Water Resour. Res., 53, 2850–2876, doi:10.1002/2016WR019185.
Zhang, Y. (2014). Nonlinear inversion of an unconfined aquifer: simultaneous estimation of heterogeneous hydraulic conductivities, recharge rates, and boundary conditions. Transport in porous media, 102(2), 275-299.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94652-
dc.description.abstract對含水層邊界條件進行全面採樣策略的表徵對於可持續地下水管理至關重要。本研究的主要目的是從空間和時間的角度評估在穩態和瞬態流動中使用由沙箱實驗生成的水力傳導係數(K)和比儲水量(Ss)估算值量化邊界條件的採樣策略。為實現這一目標,我們評估了四種錯誤邊界情況和一種真實邊界情況,在每種情況下進行了三種抽水測試方案(PT45、PT15 和 PT10),不包括僅在 PT45 進行的擴展域方案。在這些方案中,分配了恆定水頭和無通量邊界。採用連續線性估計器(SLE)算法進行參數估計後,進行了等高線圖和百分比差異分析。結果表明,瞬態流動在捕捉對邊界條件劃定有害的時間變化方面比穩態流動更有效,從而提供比穩態更詳細的邊界條件識別。不同的邊界情況表明,恆定水頭邊界比無通量邊界產生的 K 和 Ss 估算值更穩定,無通量邊界會引入一些異常。研究強調了在已知或疑似邊界附近布井的重要性,並整合了空間和時間採樣策略用於邊界條件識別和異質性分析。研究還得出結論,K 估算值比 Ss 估算值更適合用於邊界條件量化。通過使用井敏感性分佈圖觀察到,在沙箱中每隔 40 厘米至 60 厘米空間分佈至少 10 口井,可以有效地使用 K估算值來劃定邊界條件。為了進一步了解使用沙箱數據進行邊界量化的複雜性,未來的研究可以集中於調查無通量邊界引起異常的原因,以及為什麼邊界附近的井比模型中心區域的 Ss 敏感性低。zh_TW
dc.description.abstractAbstract
Comprehensive sampling strategies that characterize aquifer boundary conditions are essential for sustainable groundwater management. The primary objective of this study is to assess sampling strategies from spatial and temporal considerations in both steady state and transient state flow in quantifying boundary conditions using hydraulic conductivity (K) and specific storage (Ss) estimates generated from sandbox experiments. To achieve this, 4 wrong boundary scenarios and a true boundary were evaluated at three pumping test scenarios (PT45, PT15, and PT10) conducted in each scenario, excluding the extended domain scenario that was at PT45 only. Constant head and no flux boundaries were assigned in these scenarios. Contour maps and percentage difference analysis were conducted after employing the Successive Linear Estimator (SLE) algorithm for parameter estimation. Results demonstrate that transient state flow is more effective in capturing temporal variations that are detrimental in delineating boundary conditions than steady state flow thereby, providing more detailed boundary conditions identification compared to steady state. The different boundary scenarios indicated that constant head boundaries yield stable K and Ss estimates than no flux boundaries that introduce some anomalies. The study emphasizes on the significance of well placement near known or suspected boundaries and integrating spatial and temporal sampling strategies in boundary conditions identification and heterogeneity analysis. The study also concluded that K estimates are more suitable for boundary conditions quantification than Ss estimates. Using a well sensitivity distribution figure, it was observed that at least 10 wells spatially distributed in the sandbox at 40 cm - 60 cm apart could effectively help delineate boundary conditions using K estimates. To further understand the complexities of boundary quantification using sandbox data, future research could focus on the investigation of the causes of anomalies by no flux boundaries, and why wells along the boundary exhibited low Ss sensitivity than the central region of the model.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:20:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:20:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsOral Examination Board Certification i
Acknowledgements ii
中文摘要 iii
Abstract iv
Table of contents vi
List of figures viii
1 Introduction 1
2 Literature Review 5
2.1 Fixed Head 5
2.2 No-Flux 5
2.3 Hydraulic Conductivity and Specific Storage 5
2.4 Sampling Strategies 6
2.5 Forward and Inverse Modeling 7
3 Methods 8
3.1 Groundwater Flow Model 8
3.2 Sandbox Experiment 9
3.3 Inverse Algorithm 12
3.4 Scenarios Analyzed 14
3.5 Evaluation Criteria 17
3.5.1 Contour Maps 17
3.5.2 Percentage Differences 18
3.5.3 Well Sensitivity and Drawdown Curves 18
4 Results and Discussion 19
4.1 Identifying the Boundary Conditions Using Steady State HT 19
4.2 Identifying the Boundary Conditions Using Transient State HT 21
4.3 Effects of Well Location and Density on Identifying the Type of Boundary 24
4.4 The Constant Head or No Flux Boundary? 29
4.5 Identifying the Unknown Boundary Location and Type in the Extended Domain 31
4.6 Sensitivity Analysis of Pumping Wells 33
4.6.1 Sensitivity of Head with Respect to Hydraulic Conductivity 33
4.6.2 Sensitivity of Head with Respect to Specific Storage 34
4.6.3 Well Sensitivity Spatial Distribution 35
4.7 Sensitivity Analysis of Single Well Pumping Test 36
5 Conclusion and Future Perspectives 42
5.1 Conclusion 42
5.2 Future Perspectives 44
6 References 45
Appendices 50
-
dc.language.isoen-
dc.subject水力層析成像zh_TW
dc.subject比儲水量zh_TW
dc.subject採樣策略zh_TW
dc.subject邊界條件zh_TW
dc.subject水力傳導係數zh_TW
dc.subjectBoundary conditionsen
dc.subjectSampling strategiesen
dc.subjectHydraulic conductivityen
dc.subjectSpecific Storageen
dc.subjectHydraulic tomographyen
dc.title量化含水層邊界條件的採樣策略zh_TW
dc.titleSampling Strategies to Quantify Boundary Conditions of an Aquiferen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡明哲;蔡瑞彬;黃大肯zh_TW
dc.contributor.oralexamcommitteeMing-Che Hu;Jui-Pin Tsai;Ta-Ken Huangen
dc.subject.keyword邊界條件,採樣策略,水力傳導係數,比儲水量,水力層析成像,zh_TW
dc.subject.keywordBoundary conditions,Sampling strategies,Hydraulic conductivity,Specific Storage,Hydraulic tomography,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202403231-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2029-08-03-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
12.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved