Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94650Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳示國 | zh_TW |
| dc.contributor.advisor | Shih-Kuo Chen | en |
| dc.contributor.author | 蔡恩霈 | zh_TW |
| dc.contributor.author | Ern-Pei Chua | en |
| dc.date.accessioned | 2024-08-16T17:19:31Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | Akiyama, M., Kouzu, Y., Takahashi, S., Wakamatsu, H., Moriya, T., Maetani, M., Watanabe, S., Tei, H., Sakaki, Y., & Shibata, S. (1999). Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci, 19(3), 1115-1121. https://doi.org/10.1523/jneurosci.19-03-01115.1999
Albrecht, U., Sun, Z. S., Eichele, G., & Lee, C. C. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell, 91(7), 1055-1064. https://doi.org/10.1016/s0092-8674(00)80495-x Allen, W. E., DeNardo, L. A., Chen, M. Z., Liu, C. D., Loh, K. M., Fenno, L. E., Ramakrishnan, C., Deisseroth, K., & Luo, L. (2017). Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 357(6356), 1149-1155. https://doi.org/10.1126/science.aan6747 Aschoff, J., Fatranská, M., Giedke, H., Doerr, P., Stamm, D., & Wisser, H. (1971). Human circadian rhythms in continuous darkness: entrainment by social cues. Science, 171(3967), 213-215. https://doi.org/10.1126/science.171.3967.213 Barson, J. R., Mack, N. R., & Gao, W. J. (2020). The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci, 14, 598469. https://doi.org/10.3389/fnbeh.2020.598469 Brancaccio, M., Maywood, E. S., Chesham, J. E., Loudon, A. S., & Hastings, M. H. (2013). A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron, 78(4), 714-728. https://doi.org/10.1016/j.neuron.2013.03.011 Butler, M. P., & Silver, R. (2011). Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proceedings of the Royal Society B: Biological Sciences, 278(1706), 745-750. Castel, M., Belenky, M., Cohen, S., Wagner, S., & Schwartz, W. J. (1997). Light-induced c-Fos expression in the mouse suprachiasmatic nucleus: immunoelectron microscopy reveals co-localization in multiple cell types. Eur J Neurosci, 9(9), 1950-1960. https://doi.org/10.1111/j.1460-9568.1997.tb00762.x Cermakian, N., & Sassone-Corsi, P. (2000). Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol, 1(1), 59-67. https://doi.org/10.1038/35036078 Challet, E., Poirel, V. J., Malan, A., & Pévet, P. (2003). Light exposure during daytime modulates expression of Per1 and Per2 clock genes in the suprachiasmatic nuclei of mice. J Neurosci Res, 72(5), 629-637. https://doi.org/10.1002/jnr.10616 Chaudhuri, A., Zangenehpour, S., Rahbar-Dehgan, F., & Ye, F. (2000). Molecular maps of neural activity and quiescence. Acta Neurobiol Exp (Wars), 60(3), 403-410. https://doi.org/10.55782/ane-2000-1359 Chen, C. R., Zhong, Y. H., Jiang, S., Xu, W., Xiao, L., Wang, Z., Qu, W. M., & Huang, Z. L. (2021). Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife, 10. https://doi.org/10.7554/eLife.69909 Daan, S. (2000). Learning and circadian behavior. J Biol Rhythms, 15(4), 296-299. https://doi.org/10.1177/074873000129001396 DeCoursey, P. J. (1986). Circadian photoentrainment: parameters of phase delaying. J Biol Rhythms, 1(3), 171-186. https://doi.org/10.1177/074873048600100301 DeNardo, L. A., Liu, C. D., Allen, W. E., Adams, E. L., Friedmann, D., Fu, L., Guenthner, C. J., Tessier-Lavigne, M., & Luo, L. (2019). Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci, 22(3), 460-469. https://doi.org/10.1038/s41593-018-0318-7 DiMicco, J. A., Samuels, B. C., Zaretskaia, M. V., & Zaretsky, D. V. (2002). The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav, 71(3), 469-480. https://doi.org/10.1016/s0091-3057(01)00689-x Ding, J. M., Buchanan, G. F., Tischkau, S. A., Chen, D., Kuriashkina, L., Faiman, L. E., Alster, J. M., McPherson, P. S., Campbell, K. P., & Gillette, M. U. (1998). A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature, 394(6691), 381-384. https://doi.org/10.1038/28639 Duy, P. Q., Komal, R., Richardson, M. E. S., Hahm, K. S., Fernandez, D. C., & Hattar, S. (2020). Light Has Diverse Spatiotemporal Molecular Changes in the Mouse Suprachiasmatic Nucleus. J Biol Rhythms, 35(6), 576-587. https://doi.org/10.1177/0748730420961214 Foster, R. G. (2020). Sleep, circadian rhythms and health. Interface Focus, 10(3), 20190098. https://doi.org/10.1098/rsfs.2019.0098 Gamble, K. L., Allen, G. C., Zhou, T., & McMahon, D. G. (2007). Gastrin-releasing peptide mediates light-like resetting of the suprachiasmatic nucleus circadian pacemaker through cAMP response element-binding protein and Per1 activation. J Neurosci, 27(44), 12078-12087. https://doi.org/10.1523/jneurosci.1109-07.2007 Gillespie, C. F., Mintz, E. M., Marvel, C. L., Huhman, K. L., & Albers, H. E. (1997). GABA(A) and GABA(B) agonists and antagonists alter the phase-shifting effects of light when microinjected into the suprachiasmatic region. Brain Res, 759(2), 181-189. https://doi.org/10.1016/s0006-8993(97)00235-7 Gooley, J. J., Schomer, A., & Saper, C. B. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci, 9(3), 398-407. https://doi.org/10.1038/nn1651 Hannibal, J. (2002). Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res, 309(1), 73-88. https://doi.org/10.1007/s00441-002-0574-3 Hannibal, J. (2006). Roles of PACAP-containing retinal ganglion cells in circadian timing. Int Rev Cytol, 251, 1-39. https://doi.org/10.1016/s0074-7696(06)51001-0 Harmar, A. J., Marston, H. M., Shen, S., Spratt, C., West, K. M., Sheward, W. J., Morrison, C. F., Dorin, J. R., Piggins, H. D., Reubi, J. C., Kelly, J. S., Maywood, E. S., & Hastings, M. H. (2002). The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell, 109(4), 497-508. https://doi.org/10.1016/s0092-8674(02)00736-5 Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W., & Berson, D. M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol, 497(3), 326-349. https://doi.org/10.1002/cne.20970 Herman, J. P., Flak, J., & Jankord, R. (2008). Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog Brain Res, 170, 353-364. https://doi.org/10.1016/s0079-6123(08)00429-9 Herman, J. P., & Tasker, J. G. (2016). Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation. Front Endocrinol (Lausanne), 7, 137. https://doi.org/10.3389/fendo.2016.00137 Hurley, J. M., Loros, J. J., & Dunlap, J. C. (2016). Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Trends Biochem Sci, 41(10), 834-846. https://doi.org/10.1016/j.tibs.2016.07.009 Hut, R. A., Oklejewicz, M., Rieux, C., & Cooper, H. M. (2008). Photic sensitivity ranges of hamster pupillary and circadian phase responses do not overlap. Journal of biological rhythms, 23(1), 37-48. Ibata, Y., Takahashi, Y., Okamura, H., Kawakami, F., Terubayashi, H., Kubo, T., & Yanaihara, N. (1989). Vasoactive intestinal peptide (VIP)-like immunoreactive neurons located in the rat suprachiasmatic nucleus receive a direct retinal projection. Neurosci Lett, 97(1-2), 1-5. https://doi.org/10.1016/0304-3940(89)90129-8 Jeong, J. H., Lee, D. K., & Jo, Y. H. (2017). Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol Metab, 6(3), 306-312. https://doi.org/10.1016/j.molmet.2017.01.001 Jhaveri, K. A., Trammell, R. A., & Toth, L. A. (2007). Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice. Brain Behav Immun, 21(7), 975-987. https://doi.org/10.1016/j.bbi.2007.03.007 Jones, J. R., Simon, T., Lones, L., & Herzog, E. D. (2018). SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System. J Neurosci, 38(37), 7986-7995. https://doi.org/10.1523/jneurosci.1322-18.2018 Koike, N., Yoo, S. H., Huang, H. C., Kumar, V., Lee, C., Kim, T. K., & Takahashi, J. S. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science, 338(6105), 349-354. https://doi.org/10.1126/science.1226339 Kokot, F., & Ficek, R. (1999). Effects of neuropeptide Y on appetite. Miner Electrolyte Metab, 25(4-6), 303-305. https://doi.org/10.1159/000057464 Li, L., Zhang, M. Q., Sun, X., Liu, W. Y., Huang, Z. L., & Wang, Y. Q. (2022). Role of Dorsomedial Hypothalamus GABAergic Neurons in Sleep-Wake States in Response to Changes in Ambient Temperature in Mice. Int J Mol Sci, 23(3). https://doi.org/10.3390/ijms23031270 Liou, S. Y., & Albers, H. E. (1990). Single unit response of neurons within the hamster suprachiasmatic nucleus to GABA and low chloride perfusate during the day and night. Brain Res Bull, 25(1), 93-98. https://doi.org/10.1016/0361-9230(90)90257-z Lu, J., Zhang, Y. H., Chou, T. C., Gaus, S. E., Elmquist, J. K., Shiromani, P., & Saper, C. B. (2001). Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci, 21(13), 4864-4874. https://doi.org/10.1523/jneurosci.21-13-04864.2001 Lunde, A., & Glover, J. C. (2020). A versatile toolbox for semi-automatic cell-by-cell object-based colocalization analysis. Sci Rep, 10(1), 19027. https://doi.org/10.1038/s41598-020-75835-7 Mazuski, C., Abel, J. H., Chen, S. P., Hermanstyne, T. O., Jones, J. R., Simon, T., Doyle, F. J., 3rd, & Herzog, E. D. (2018). Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron, 99(3), 555-563.e555. https://doi.org/10.1016/j.neuron.2018.06.029 McGinty, J. F., & Otis, J. M. (2020). Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci, 14, 590528. https://doi.org/10.3389/fnbeh.2020.590528 Meijer, J. H., Michel, S., Vanderleest, H. T., & Rohling, J. H. (2010). Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci, 32(12), 2143-2151. https://doi.org/10.1111/j.1460-9568.2010.07522.x Meijer, J. H., Watanabe, K., Schaap, J., Albus, H., & Détári, L. (1998). Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci, 18(21), 9078-9087. https://doi.org/10.1523/jneurosci.18-21-09078.1998 Mieda, M., Ono, D., Hasegawa, E., Okamoto, H., Honma, K., Honma, S., & Sakurai, T. (2015). Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron, 85(5), 1103-1116. https://doi.org/10.1016/j.neuron.2015.02.005 Miyake, S., Sumi, Y., Yan, L., Takekida, S., Fukuyama, T., Ishida, Y., Yamaguchi, S., Yagita, K., & Okamura, H. (2000). Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci Lett, 294(1), 41-44. https://doi.org/10.1016/s0304-3940(00)01545-7 Mohawk, J. A., & Takahashi, J. S. (2011). Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci, 34(7), 349-358. https://doi.org/10.1016/j.tins.2011.05.003 Myung, J., Hong, S., DeWoskin, D., De Schutter, E., Forger, D. B., & Takumi, T. (2015). GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. Proc Natl Acad Sci U S A, 112(29), E3920-3929. https://doi.org/10.1073/pnas.1421200112 Petrovich, G. D. (2021). The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci, 15, 671096. https://doi.org/10.3389/fnbeh.2021.671096 Pittendrigh, C. S. (1964). The Entrainment of Circadian Oscillations by Skeleton Photoperiods. Science, 144(3618), 565. https://doi.org/10.1126/science.144.3618.565-b Qin, C., Li, J., & Tang, K. (2018). The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology, 159(9), 3458-3472. https://doi.org/10.1210/en.2018-00453 Roenneberg, T., & Merrow, M. (2009). Type 1 and Type 0 Resetting. In M. D. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of Neuroscience (pp. 4146-4149). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_6170 Rollag, M. D., Berson, D. M., & Provencio, I. (2003). Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms, 18(3), 227-234. https://doi.org/10.1177/0748730403018003005 Roth, B. L. (2016). DREADDs for Neuroscientists. Neuron, 89(4), 683-694. https://doi.org/10.1016/j.neuron.2016.01.040 Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J. J., Dunlap, J. C., & Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell, 91(7), 1043-1053. https://doi.org/10.1016/s0092-8674(00)80494-8 Smith, K. L., Gardiner, J. V., Ward, H. L., Kong, W. M., Murphy, K. G., Martin, N. M., Ghatei, M. A., & Bloom, S. R. (2008). Overexpression of CART in the PVN increases food intake and weight gain in rats. Obesity (Silver Spring), 16(10), 2239-2244. https://doi.org/10.1038/oby.2008.366 Summy-Long, J. Y., Gestl, S., Terrell, M. L., Wolz, G., & Kadekaro, M. (1997). Osmoregulation of the magnocellular neuroendocrine system during lactation. Am J Physiol, 272(1 Pt 2), R275-288. https://doi.org/10.1152/ajpregu.1997.272.1.R275 Tanaka, M., Amaya, F., Tamada, Y., Okamura, H., Hisa, Y., & Ibata, Y. (1997). Induction of NGFI-A gene expression in the rat suprachiasmatic nucleus by photic stimulation. Brain Res, 756(1-2), 305-310. https://doi.org/10.1016/s0006-8993(97)00302-8 Tanaka, M., Hayashi, S., Tamada, Y., Ikeda, T., Hisa, Y., Takamatsu, T., & Ibata, Y. (1997). Direct retinal projections to GRP neurons in the suprachiasmatic nucleus of the rat. Neuroreport, 8(9-10), 2187-2191. https://doi.org/10.1097/00001756-199707070-00020 Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y., & Ibata, Y. (1993). The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull, 31(6), 637-640. https://doi.org/10.1016/0361-9230(93)90134-w Todd, W. D., Venner, A., Anaclet, C., Broadhurst, R. Y., De Luca, R., Bandaru, S. S., Issokson, L., Hablitz, L. M., Cravetchi, O., Arrigoni, E., Campbell, J. N., Allen, C. N., Olson, D. P., & Fuller, P. M. (2020). Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun, 11(1), 4410. https://doi.org/10.1038/s41467-020-17197-2 Van der Werf, Y. D., Witter, M. P., & Groenewegen, H. J. (2002). The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev, 39(2-3), 107-140. https://doi.org/10.1016/s0165-0173(02)00181-9 Vujovic, N., Gooley, J. J., Jhou, T. C., & Saper, C. B. (2015). Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol, 523(18), 2714-2737. https://doi.org/10.1002/cne.23812 Wagner, S., Castel, M., Gainer, H., & Yarom, Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 387(6633), 598-603. https://doi.org/10.1038/42468 Weber, E. T., Gannon, R. L., & Rea, M. A. (1995). cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci Lett, 197(3), 227-230. https://doi.org/10.1016/0304-3940(95)11961-u Wen, S., Ma, D., Zhao, M., Xie, L., Wu, Q., Gou, L., Zhu, C., Fan, Y., Wang, H., & Yan, J. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci, 23(3), 456-467. https://doi.org/10.1038/s41593-020-0586-x Winfree, A. T. (1980). The geometry of biological time (Vol. 2). Springer. Xie, L., Xiong, Y., Ma, D., Shi, K., Chen, J., Yang, Q., & Yan, J. (2023). Cholecystokinin neurons in mouse suprachiasmatic nucleus regulate the robustness of circadian clock. Neuron, 111(14), 2201-2217.e2204. https://doi.org/10.1016/j.neuron.2023.04.016 Yamaguchi, Y., Suzuki, T., Mizoro, Y., Kori, H., Okada, K., Chen, Y., Fustin, J. M., Yamazaki, F., Mizuguchi, N., Zhang, J., Dong, X., Tsujimoto, G., Okuno, Y., Doi, M., & Okamura, H. (2013). Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science, 342(6154), 85-90. https://doi.org/10.1126/science.1238599 Yan, L., & Okamura, H. (2002). Gradients in the circadian expression of Per1 and Per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci, 15(7), 1153-1162. https://doi.org/10.1046/j.1460-9568.2002.01955.x Yan, L., & Silver, R. (2002). Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur J Neurosci, 16(8), 1531-1540. https://doi.org/10.1046/j.1460-9568.2002.02224.x Yang, O. J., Robilotto, G. L., Alom, F., Alemán, K., Devulapally, K., Morris, A., & Mickle, A. D. (2023). Evaluating the transduction efficiency of systemically delivered AAV vectors in the rat nervous system. Front Neurosci, 17, 1001007. https://doi.org/10.3389/fnins.2023.1001007 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94650 | - |
| dc.description.abstract | 生理時鐘是一種進化上保守的機制,通過在特定時間喚醒動物來增強動物的適應性。在哺乳動物中,視交叉上核(SCN)作為中央晝夜振盪器。生理時鐘由時鐘基因驅動,如Cry和Per,這些基因對維持晝夜節律周期至關重要。光是晝夜節律同步的最重要因素,這個過程稱為光同步。不同時間的光刺激在相位反應曲線(PRC)上引起不同的相位的變化,分別會使得動物清醒時間在死區不變(CT8)、延遲區延遲(CT16)和提前區提前(CT22)。但是目前生理時鐘的光同步機制的當前理解是不完整的。過去的研究指出在所有時間點接受光刺激時,即使在行為死區(CT8),分子時鐘基因Per1仍會被誘導 (Meijer et al., 1998; Shigeyoshi et al., 1997)。最近的研究表明,CT16光和CT22光在齧齒動物SCN中誘導不同cFos表達模式 (Duy et al., 2020)。此外,我們的團隊通過活體內視鏡鈣離子影像揭示了死區(CT8)、延遲區(CT16)和提前區(CT22)期間SCN的不同光響應模式(Yeh, 2024)。因此,我們假設不同時間的SCN神經迴路分別控制相位延遲或提前。
使用TRAP2小鼠和化學遺傳學調控延遲區(CT16)和提前區(CT22)標記的SCN光反應神經元,我們的數據表明,提前區(CT22)光標記的神經迴路與典型的光誘導PRC反應模式一致。值得注意的是,在所有時間點延遲區(CT16)光標記的神經元會導致顯著的相位延遲,甚至在死區(CT8)和提前區(CT22)也如此。相對地,在CT16抑制CT16標記的神經元會減弱光誘導的延遲效應。然而,在CT22抑制CT16捕獲的神經元會提前內在時鐘。對於標記的神經元鑑定,我們發現標記的細胞類型比例與整個SCN中的細胞類型分布比例相似,表明晝夜節律光同步不是由單一細胞類型主導的,而是由多樣的SCN神經網絡主導的。總之,我們的研究結果表明,PRC的延遲部分可以成功地分離出來,挑戰了關於SCN如何整合和響應光刺激的既定範式,並推導出解釋哺乳動物晝夜節律光同步的可能的雙峰迴路。 | zh_TW |
| dc.description.abstract | The circadian clock is an evolutionarily conserved mechanism that enhances animal fitness by waking animals at specific times. The suprachiasmatic nucleus (SCN) is the mammalian central circadian oscillator. The circadian rhythm is driven by clock genes such as Cry and Per, which are crucial for maintaining the circadian cycle. Light is the most important factor for circadian entrainment, known as photoentrainment. Light stimuli at different times cause phase shifts on the phase response curve (PRC), resulting in no change in waking time in the dead zone (CT8), phase delay in the delay zone (CT16), and phase advance in the advance zone (CT22). However, the current understanding of the mechanism of circadian photoentrainment is incomplete. Previous studies indicated that the clock gene Per1 is induced at all times of light stimulation, even in the behavioral dead zone (CT8) (Meijer et al., 1998; Shigeyoshi et al., 1997). Recent studies have shown that light at CT16 and CT22 induces different cFos expression patterns in the SCN of rodents (Duy et al., 2020). Additionally, our team revealed different SCN light-responsive patterns during the dead zone (CT8), delay zone (CT16), and advance zone (CT22) using in vivo calcium imaging (Yeh, 2024). Therefore, we hypothesize that SCN neural circuits control phase delay or advance at different times.
Using TRAP2 mice and chemogenetic modulation of light-responsive SCN neurons labeled in the delay zone (CT16) and advance zone (CT22), our data show that the neural circuitry labeled by light at CT22 aligns with the typical pattern of light-induced PRC. Notably, neurons labeled by light at CT16 cause significant phase delay at all times, including the dead zone (CT8) and the advance zone (CT22). Conversely, inhibiting CT16-labeled neurons at CT16 reduces the light-induced delay effect. However, inhibiting CT16-labeled neurons at CT22 advances the internal clock. For the identification of labeled neurons, we found that the proportion of labeled cell types is similar to the distribution of cell types in the entire SCN, indicating that circadian photoentrainment is not dominated by a single cell type but by diverse SCN neural networks. In conclusion, our findings indicate that the delay portion of the PRC can be successfully isolated, challenging established paradigms regarding how the SCN integrates and responds to light stimuli, and deriving a possible bimodal circuitry to explain mammalian circadian photoentrainment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:19:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:19:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 iii 謝誌 iv 中文摘要 vii ABSTRACT viii CONTENTS x LIST OF FIGURES xiii Chapter 1 Introduction 1 1.1 Circadian clock 1 1.1.1 Transcription-translation feedback loop (TTFL) 1 1.2 Photoentrainment 2 1.2.1 Phase response curve (PRC) 2 1.2.2 Photoentrainment at the molecular level 3 1.3 The suprachiasmatic nucleus (SCN) 5 1.3.1 Input of the SCN 5 1.3.2 SCN networking 6 1.3.3 Output of the SCN 7 Statement of Propose 9 Chapter 2 Material and Method 10 2.1 Animal 10 2.2 Genotyping 10 2.2.1 DNA Extraction 10 2.2.2 Polymerase Chain Reaction (PCR) and Gel Electrophoresis 10 2.3 Time course of cFos and trapping experiment 11 2.4 DREADDs Manipulation 11 2.4.1 Virus injection and stereotaxic surgery 11 2.4.2 Drug Administration 12 2.5 Behavioral test 13 2.5.1 Experimental design 13 2.5.2 Behavioral Test Analysis 13 2.6 Immunostaining 13 2.7 Cell counting and statistics 14 Chapter 3 Result 16 3.1 Trapped neurons is consistent with the light-induced cFos expression 16 3.2 Activating CT2 and CT22-trapped neurons mimic normal light-induced phase shift 17 3.3 Activating CT16-trapped neurons causes phase delay consistently 18 3.4 Inhibiting CT16-trapped neurons dampen phase delay effect by CT16-light pulse while advance at CT22 19 3.5 The Gs-trapped neuronal circuitry is not dominated by specific cell type but by SCN network 19 Chapter 4 Discussion 21 4.1 Possible working model 21 4.2 GABAergic SCN neurons might serve as a switch from excitatory to inhibitory during day-night transition 22 4.3 The dynamic SCN neuronal activity causes the different consistency of trapped and cFos-positive neurons 25 4.4 DREADDs in the SCN 25 4.5 The role of specific SCN cell type in circadian phase shift 26 Chapter 5 Significance of Work 29 Table 1. List of antibodies for immunostaining 83 Table 2. List of p value for the statistic 84 REFERENCE 87 Appendix I. Spatial circuitry from ipRGC to SCN 93 Appendix II. Poster 111 | - |
| dc.language.iso | en | - |
| dc.subject | 光校正 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | cFos | zh_TW |
| dc.subject | 視交叉上核 | zh_TW |
| dc.subject | 內在感光視網膜神經節細胞 | zh_TW |
| dc.subject | ipRGCs | en |
| dc.subject | Suprachiasmatic nucleus | en |
| dc.subject | cFos | en |
| dc.subject | photoentrainment | en |
| dc.subject | Circadian rhythm | en |
| dc.title | 視交叉上核神經迴路調節哺乳動物生理時鐘之光校正 | zh_TW |
| dc.title | Discrete circuitries in the suprachiasmatic nucleus regulate circadian photoentrainment in mammals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周銘翊;張芳嘉;徐經綸;明智煥 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Yi Chou;Fang-Chia Chang;Ching-Lung Hsu;Ji-Hwan Myung | en |
| dc.subject.keyword | 生理時鐘,光校正,內在感光視網膜神經節細胞,視交叉上核,cFos, | zh_TW |
| dc.subject.keyword | Circadian rhythm,photoentrainment,ipRGCs,Suprachiasmatic nucleus,cFos, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202404117 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| Appears in Collections: | 生命科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 12.32 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
