Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94648
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author林大禾zh_TW
dc.contributor.authorDahe Linen
dc.date.accessioned2024-08-16T17:18:54Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citationAndrevski, G., Brass, D. J., & Ferrier, W. J. (2016). Alliance portfolio configurations and competitive action frequency. Journal of Management, 42(4), 811-837. https://doi.org/10.1177/0149206313498901
Barnett, W. P., & Hansen, M. T. (1996). The Red Queen in organizational evolution. Strategic Management Journal, 17, 139-157. http://www.jstor.org/stable/2486908
Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150.
Ben Sassi, D., Frini, A., Ben Abdessalem Karaa, W., & Kraiem, N. (2016). A competitive intelligence solution to predict competitor action using k-modes algorithm and rough set theory. Procedia Computer Science, 96, 597-606.
Ben Sassi, D., Frini, A., Chaieb, M., & Ben Abdessalem Karaa, W. (2022). A rough set-based competitive intelligence approach for anticipating competitor’s action. Expert Systems with Applications, 204, 117523.
Bettis, R. A., & Hitt, M. A. (1995). The new competitive landscape. Strategic Management Journal, 16(S1), 7-19.
Cattani, G., Porac, J. F., & Thomas, H. (2017). Categories and competition. Strategic Management Journal, 38(1), 64-92. https://doi.org/10.1002/smj.2591
Chen, E. L., Katila, R., McDonald, R., & Eisenhardt, K. M. (2010). Life in the fast lane: Origins of competitive interaction in new vs. established markets. Strategic Management Journal, 31(13), 1527-1547. https://doi.org/https://doi.org/10.1002/smj.894
Chen, M.-J. (1996). Competitor analysis and interfirm rivalry: Toward a theoretical integration. The Academy of Management Review, 21(1), 100-134. https://doi.org/10.2307/258631
Chen, M.-J., & Hambrick, D. C. (1995). Speed, stealth, and selective attack: How small firms differ from large firms in competitive behavior. The Academy of Management Journal, 38(2), 453-482. https://doi.org/10.2307/256688
Chen, M.-J., & MacMillan, I. C. (1992). Nonresponse and delayed response to competitive moves: The roles of competitor dependence and action irreversibility. The Academy of Management Journal, 35(3), 539-570.
Chen, M.-J., & Miller, D. (1994). Competitive attack, retaliation and performance: An expectancy-valence framework. Strategic Management Journal, 15(2), 85-102. http://www.jstor.org/stable/2486865
Chen, M.-J., & Miller, D. (2012). Competitive dynamics: Themes, trends, and a prospective research platform. The Academy of Management Annals, 6(1), 135-210. https://doi.org/10.1080/19416520.2012.660762
Chen, M.-J., Smith, K. G., & Grimm, C. M. (1992). Action characteristics as predictors of competitive responses. Management Science, 38(3), 439–455.
Chi, L., Ravichandran, T., & Andrevski, G. (2010). Information technology, network structure, and competitive action. Information Systems Research, 21(3), 543-570.
Debruyne, M., Moenaertb, R., Griffinc, A., Hartd, S., Hultinke, E. J., & Robben, H. (2002). The impact of new product launch strategies on competitive reaction in industrial markets. Journal of Product Innovation Management, 19(2), 159-170.
Deng, H., Yeh, C.-H., & Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 27(10), 963-973. https://doi.org/10.1016/S0305-0548(99)00069-6
Derfus, P. J., Maggitti, P. G., Grimm, C. M., & Smith, K. G. (2008). The Red Queen effect: Competitive actions and firm performance. The Academy of Management Journal, 51(1), 61-80.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Dishman, P. L., & Calof, J. L. (2008). Competitive intelligence: A multiphasic precedent to marketing strategy. European Journal of Marketing, 42(7/8), 766-785.
Donald Hopkins, H. (2003). The response strategies of dominant US firms to Japanese challengers. Journal of Management, 29(1), 5-25. https://doi.org/https://doi.org/10.1016/S0149-2063(02)00219-2
Ferrier, W. J. (2001). Navigating the competitive landscape: The drivers and consequences of competitive aggressiveness. The Academy of Management Journal, 44(4), 858-877. https://doi.org/10.2307/3069419
Ferrier, W. J., Smith, K. G., & Grimm, C. M. (1999). The role of competitive action in market share erosion and industry dethronement: A study of industry leaders and challengers. The Academy of Management Journal, 42(4), 372-388. https://doi.org/10.2307/257009
Hannigan, T. J., Hamilton III, R. D., & Mudambi, R. (2015). Competition and competitiveness in the US airline industry. Competitiveness Review, 25(2), 134-155.
Henderson, B. D. (1970). The product portfolio. The Boston Consulting Group Perspective, 66.
Horn, J. (2023). Inside the Competitor's Mindset: How to Predict Their Next Move and Position Yourself for Success. MIT Press. https://doi.org/https://doi.org/10.7551/mitpress/14628.001.0001
Joel, A. C. B., & Korn, H. J. (1996). Competitive dynamics of interfirm rivalry. The Academy of Management Journal, 39(2), 255-291. https://doi.org/10.2307/256781
Kim, K.-H., Kim, M., & Qian, C. (2018). Effects of corporate social responsibility on corporate financial performance: A competitive-action perspective. Journal of Management, 44(3), 1097-1118. https://doi.org/10.1177/0149206315602530
Knutson, R., & Sider, A. (2024, 06/24). Southwest changed flying. Can it change itself? The Wall Street Journal. https://www.wsj.com/podcasts/the-journal/southwest-changed-flying-can-it-change-itself/ae22441d-019a-4a6e-9e78-e068533c64fe
Kwoka, J., & Batkeyev, B. (2019). Strategic responses to competitive threats: Airlines in action. Review of Industrial Organization, 54(1), 83-109. https://doi.org/10.1007/s11151-018-9664-6
Larrañeta, B., Zahra, S. A., & González, J. L. G. (2014). Strategic repertoire variety and new venture growth: The moderating effects of origin and industry dynamism. Strategic Management Journal, 35(5), 761-772. http://www.jstor.org/stable/24037248
Li, Y., Zhu, Z., Kong, D., Han, H., & Zhao, Y. (2019). EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowledge-Based Systems, 181, 104785. https://doi.org/https://doi.org/10.1016/j.knosys.2019.05.028
Ma, Z., Pant, G., & Sheng, O. R. L. (2011). Mining competitor relationships from online news: A network-based approach. Electronic Commerce Research and Applications, 10(4), 418-427. https://doi.org/https://doi.org/10.1016/j.elerap.2010.11.006
MacMillan, I. C. (1988). Controlling competitive dynamics by taking strategic initiative. The Academy of Management Executive 2(2), 111-118.
Miller, D., & Chen, M.-J. (1994). Sources and consequences of competitive inertia: A study of the US airline industry. Administrative Science Quarterly, 1-23.
Montgomery, D., Moore, M., & Urbany, J. (2005). Reasoning about competitive reactions: Evidence from executives. Marketing Science, 24, 138-149. https://doi.org/10.1287/mksc.1040.0076
Ndofor, H. A., Sirmon, D. G., & He, X. (2011). Firm resources, competitive actions and performance: Investigating a mediated model with evidence from the in-vitro diagnostics industry. Strategic Management Journal, 32(6), 640-657. https://doi.org/https://doi.org/10.1002/smj.901
Nicolau-Gonzálbez, J. L., & Ruiz-Moreno, F. (2014). Who performs a stronger response to whom? Detecting individual competitive actions and reactions. Review of Managerial Science, 8, 385-403.
Porter, M. E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free Press.
Qi, H., Yao, X., & Fan, W. (2023). Competitive rivalry in the digital market: An action-configuration perspective. Management Decision, 61(1), 144-175.
Radder, L., & Louw, L. (1998). The SPACE matrix: A tool for calibrating competition. Long Range Planning, 31(4), 549-559. https://doi.org/10.1016/S0024-6301(98)80048-4
Rindova, V., Ferrier, W. J., & Wiltbank, R. (2010). Value from gestalt: How sequences of competitive actions create advantage for firms in nascent markets. Strategic Management Journal, 31(13), 1474-1497. https://doi.org/https://doi.org/10.1002/smj.892
Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
Smith, K. G., Ferrier, W. J., & Ndofor, H. (2005). Competitive dynamics research: Critique and future directions. The Blackwell Handbook of Strategic Management, 309-354.
Smith, K. G., Grimm, C. M., Gannon, M. J., & Chen, M.-J. (1991). Organizational information processing, competitive responses, and performance in the U.S. domestic airline industry. The Academy of Management Journal, 34(1), 60-85. https://doi.org/10.2307/256302
Song, K., Tan, X., Qin, T., Lu, J., & Liu, T.-Y. (2020). MPNet: Masked and permuted pre-training for language understanding. Advances in Neural Information Processing Systems, 33, 16857-16867.
Sun, X., Zheng, C., Wandelt, S., & Zhang, A. (2024). Airline competition: A comprehensive review of recent research. Journal of the Air Transport Research Society, 2, 100013. https://doi.org/https://doi.org/10.1016/j.jatrs.2024.100013
Tej Adidam, P., Banerjee, M., & Shukla, P. (2012). Competitive intelligence and firm's performance in emerging markets: An exploratory study in India. Journal of Business & Industrial Marketing, 27(3), 242-254.
Thatchenkery, S. M., Katila, R., & Chen, E. L. (2012). Sequences of competitive moves and effects on firm performance. Academy of Management Best Paper Proceedings, Boston.
Turner, K., Harris, M. C., Crook, T. R., & Ranft, A. L. (2022). Too much of a good thing? An assessment of the effects of competitive and cooperative action repertoires on firm performance. Management Decision, 60(1), 123-145.
Wei, W., Hu, X., Li, Y., & Peng, P. (2015). Integrating nonmarket and market action, response, and initiating firm performance in competitive dynamics. Management Decision, 53(3), 512-532.
Weihrich, H. (1982). The TOWS matrix—A tool for situational analysis. Long Range Planning, 15(2), 54-66. https://doi.org/10.1016/0024-6301(82)90120-0
Wright, S., Pickton, D. W., & Callow, J. (2002). Competitive intelligence in UK firms: A typology. Marketing Intelligence & Planning, 20(6), 349-360.
Yang, W., & Meyer, K. E. (2015). Competitive dynamics in an emerging economy: Competitive pressures, resources, and the speed of action. Journal of Business Research, 68(6), 1176-1185. https://doi.org/https://doi.org/10.1016/j.jbusres.2014.11.012
Yang, Y., Pierce, T., & Carbonell, J. (1998). A study of retrospective and on-line event detection. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia.
Yang, Y., Tang, J., & Li, J. (2018). Learning to Infer Competitive Relationships in Heterogeneous Networks. ACM Transactions on Knowledge Discovery from Data, 12(1), Article 12. https://doi.org/10.1145/3051127
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XLNet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems, 32.
Ye, F., Xia, Q., Zhang, M., Zhan, Y., & Li, Y. (2022). Harvesting online reviews to identify the competitor set in a service business: Evidence from the hotel industry. Journal of Service Research, 25(2), 301-327. https://doi.org/10.1177/1094670520975143
Young, G., Smith, K. G., & Grimm, C. M. (1996). "Austrian" and industrial organization perspectives on firm-level competitive activity and performance. Organization Science, 7(3), 243-254. http://www.jstor.org/stable/2635089
Yu, T., & Cannella Jr, A. A. (2007). Rivalry between multinational enterprises: An event history approach. The Academy of Management Journal, 50(3), 665-686.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94648-
dc.description.abstract在變動迅速的商業世界中,企業之間的互動與關聯顯得益發複雜,以至於確實了解競爭對手並精準地預判其可能之競爭行爲即顯得至關緊要。這些競爭行爲相當常見,舉凡價格戰、行銷企劃、訴訟等皆屬之;而當一家企業發起這樣的行爲時,其競爭對手也會因此迅捷地反應,調整自己的策略,以求不再競爭行列中脫隊。是故,若企業能夠有效地分析當下的競爭態勢,乃至於精確地預測出其競爭對手的潛在行爲,將大大地有助益。然因搜集競爭資料並進行全面分析會引發之成本甚鉅,要做到有效分析、精確預測並不容易。
本研究從「競爭動態」的角度出發,試分析企業所面臨之競爭態勢。競爭動態是一個以競爭行爲爲主體、描繪在策略層面上,競業之間如何反覆利用不同行爲進行競爭的框架。我們看到過去的文獻已針對競爭動態進行一定的研究,包含進行個案探討、提出解釋性模型等,然而我們亦發現,預測競爭行爲本身之相關文獻甚少,實爲該領域有待深掘之處。我們因此在本研究中提出一個涵蓋競爭行爲之分類、分群與預測的端到端的分析流程。我們搜羅了大量新聞文件,建構了一自動分類器來將文件依所提及之競爭行爲分類、整合,藉此爲每家標的企業梳理出其過往的歷史競爭行爲。接著,我們分別利用二種不同的方法——依文件共同提及或是共同歷史行爲——爲標的企業識別出其最主要的競爭企業以便爲標的企業建構其競爭態勢。根據標的企業的競爭態勢,我們提出了一個以閘門循環單元(GRU)和注意力機制(Attention)爲基底的時間序列預測模型,該模型被用來預測標的企業在下一個時間點所會進行之不同競爭行爲之次數。
此研究主要集中在航空業,其不但以高度競爭聞名,資料也相對容易取得,過去研究和其使用的公開新聞資料的量體就證明了這一點。我們使用與航空公司相關的新聞文件資料進行實驗,並證明建構以深度學習爲基底的時間序列預測模型會表現得比傳統統計模型更佳;我們也探討了用不同方法識別競爭對手如何影響預測結果。這項研究不僅能協助產業內的企業進行決策,我們的預測結果亦對投資者、第三方諮詢行業提供資訊,成爲其決策過程的一部分。
zh_TW
dc.description.abstractIn a fast-paced business world, interactions between firms are increasingly complex, making the understanding and prediction of competitors’ actions critical for strategic decision-making. Competitive actions often include price wars, marketing campaigns, litigations, and more. When such actions are initiated, it is crucial for rival firms to react swiftly and update their strategies to maintain their market positions. Therefore, firms benefit significantly from effectively analyzing the current competitive landscape and predicting future actions to gain an advantage over their competitors. However, performing such predictions is challenging due to the difficulty in data collection and efficient comprehension.
In this study, we analyze the competitive landscape through the lens of competitive dynamics, an action-based perspective that investigates how rival firms compete through specific actions within their strategic contexts. Although previous studies in this field have proposed case studies and explanatory models to estimate the volume and complexity of competitive actions, directly predicting the occurrences of specific competitive actions has not been extensively explored.
Our study presents an end-to-end pipeline to profile and forecast firms’ competitive actions using advanced machine learning techniques. By leveraging a large dataset of news articles, we built an auto-profiler that annotates articles and consolidates them to form competitive events for each firm. We then identify the main competitors for a firm based on criteria such as co-mentioning in articles and the frequency of performing matching actions. Finally, we constructed a time series prediction model incorporating Gated Recurrent Unit (GRU) and Attention mechanisms capable of predicting the frequency of certain competitive actions in the future. Our study focuses mainly on the airline industry, which is known for its high competitiveness and the relative ease of obtaining data, as evidenced by previous research and the frequency of public news data. Using a dataset of airline-related news articles, our experiments demonstrate that deep learning-based time series prediction models outperform traditional statistical models. We also examine how different mechanisms for competitor identification affect the prediction outcomes. This study is beneficial not only to industry players but also to investors and third-party advisors, as they can incorporate the prediction results into their decision-making processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:18:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:18:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Table of Contents vi
List of Tables viii
List of Figures ix
1. Introduction 1
1.1. Background 1
1.2. Research motivation 3
1.3. Research objective 6
2. Related Work 7
2.1. Competitive dynamics and competitive actions: definition and typologies 7
2.2. Methods for competitive actions profiling 11
2.3. Competitive actions prediction 13
3. Proposed Methodology 17
3.1. Problem formulation 17
3.2. Competitive action profiling 18
3.3. Competitor identification 22
3.3.1. Co-mention graphs 23
3.3.2. Co-action graphs 24
3.4. Competitive action prediction 25
4. Experiments 27
4.1. Introduction of target industry: the airlines industry 27
4.2. Dataset 29
4.3. Experimental setup 33
4.4. Evaluation metrics 39
4.5. Baselines 39
4.6. Results 40
4.7. Additional experiments 41
4.7.1. Additional experiment 1: Ablation test 41
4.7.2. Additional experiment 2: Predicting action existence 41
4.7.3. Additional experiment 3: Data augmentation 43
5. Conclusion 46
6. References 48
7. Appendix 53
7.1. List of airlines in our research (sorted by average revenue through 2011-2023) 53
-
dc.language.isoen-
dc.subject競爭動態zh_TW
dc.subject競爭行爲zh_TW
dc.subject競爭者識別zh_TW
dc.subject文件分類zh_TW
dc.subject漸增式分群zh_TW
dc.subject時間序列預測zh_TW
dc.subjectcompetitor identificationen
dc.subjectcompetitive dynamicsen
dc.subjecttime series predictionen
dc.subjectincremental clusteringen
dc.subjecttext classificationen
dc.subjectcompetitive actionsen
dc.title競爭動態:剖析企業競爭行動與預測未來行動組合zh_TW
dc.titleCompetitive dynamics: Profiling firms’ competitive actions and predicting future repertoireen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊錦生;胡雅涵zh_TW
dc.contributor.oralexamcommitteeChin-Sheng Yang;Ya-Han Huen
dc.subject.keyword競爭動態,競爭行爲,競爭者識別,文件分類,漸增式分群,時間序列預測,zh_TW
dc.subject.keywordcompetitive dynamics,competitive actions,competitor identification,text classification,incremental clustering,time series prediction,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202403608-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved