請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94634完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬劍清 | zh_TW |
| dc.contributor.advisor | Chien-Ching Ma | en |
| dc.contributor.author | 王禹淮 | zh_TW |
| dc.contributor.author | Yu-Huai Wang | en |
| dc.date.accessioned | 2024-08-16T17:13:13Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, vol. 32, 647-649.
Meltz, G., Morey, W., & Glenn, W. H. (1989). Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, vol. 14, 823-825. Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., & Albert, J. (1993). Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, vol. 62, 1035-1037. Anderson, D. Z., Mizrahi, V., Erdogan, T., & White, A. E. (1993). Production of in-fiber gratings using a diffractive optical element. Electronics Letters, vol. 29, 566-568. Bennion, I., Williams, J. A. R., Zhang L., Doran, S. K., & Doran, N. J. (1996). Tutorial review, UV-written in-fiber Bragg gratings. Optics Quantum Electronics, vol. 28, 93-135. Hill, K. O., & Meltz, G. (1997). Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, vol. 15, 1263-1276. Kashyap, R. (1999). Fiber Bragg Gratings. Academic press. Erdogan, T. (1997). Fiber grating spectra. Journal of Lightwave Technology, vol. 15, 1277-1294. Nye, J. F. (1957).Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford university press. Bertholds, A., & Dandliker, R. (1988). Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology, vol. 6, 17-20. Takahashi, S., & Shibata, S. (1979). Thermal variation of attenuation for optical fibers. Journal of Non-Crystalline Solids, vol. 30, 359-370. Tao, X., Tang, L., Du, W. C., & Choy, C. L. (2000). Internal strain measurement by fiber Bragg grating sensors in textile composites. Composites Science and Technology, vol. 60, 657-669. Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter. Optics Letters, vol. 18, 1370-1372. Sun, Q., Liu, D., Xia, L., Wang, J., Liu, H., & Shum, P. (2008). Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating. Photonics Technology Letters, IEEE, vol. 20, 933-935. Murukeshan, V. M., Chan, P. Y., Ong, L. S., & Seah, L. K. (2000). Cure monitoring of smart composites using fiber Bragg grating based embedded sensors. Sensors and Actuators A: Physical, vol. 79, 153-161. Zhao, X., Song, G., Fernandez, M., & Ou, J. (2009). One kind of fiber Bragg grating displacement sensor using micro-elastic spring. Second International Conference on Smart Materials and Nanotechnology in Engineering, 74932X-74932X-6. Biswas, P., Bandyopadhyay, S., Kesavan, K., Parivallal, S., Sundaram, B. A., Ravisankar, K., & Dasgupta, K. (2010). Investigation on packages of fiber Bragg grating for use as embeddable strain sensor in concrete structure. Sensors and Actuators A: Physical, vol. 157, 77-83. Ball, G. A., & Morey, W. W. (1992). Continuously tunable single-mode erbium fiber laser. Optics Letters, vol. 17, 420-422. Ball, G., & Morey, W. W. (1994). Compression-tuned single-frequency Bragg grating fiber laser. Optics Letters, vol. 19, 1979-1981. YoonKim, S., BaeLee, S., WonKwon, S., & SamChoi, S. (1998). Channel-switching active add/drop multiplexer with tunable gratings. Electronics Letters, vol. 34, 104-105. Mavoori, H., Jin, S., Espindola, R. P., & Strasser, T. A. (1999). Enhanced thermal and magnetic actuations for broad-range tuning of fiber Bragg grating based reconfigurable add drop devices. Optics Letters, vol. 24, 714-716. Inui, T., Komukai, T., & Nakazawa, M. (2001). Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers. Optics Communications, vol. 190, 1-4. Yoffe, G. W., Krug, P. A, Ouellette, F., & Thorncraft, D. A. (1995). Passive temperature-compensation package for optical fiber gratings. Applied Optics, vol. 34, 6859-6861. Melle, S. M., & Liu, K. (1992). A passive wavelength demodulation system for guided-wave Bragg grating sensors. IEEE Photonics Technology Letters, vol. 4, 516-518. Kersey, A. D., Berkoff, T. A., & Morey, W. W. (1993). Two-channel fiber Bragg-grating strain sensor with high-resolution interferometric wavelength-shift detection. Fibers', vol. 92, 48-55. 葉耀文,馬劍清,"短週期光纖光柵在動態系統的量測與應用",碩士論文,機械工程學研究所,臺灣大學,2004。 龔瑞清,馬劍清,"開發布拉格光纖光柵感測器於多點與即時量測系統並應用在高速內藏式主軸與銑削工件之溫升、變形及轉速之精密量測",碩士論文,機械工程學研究所,臺灣大學,2017。 凃哲維,馬劍清,"應用布拉格光纖光柵感測器於加工系統之溫升、變形與動態特性之精密量測與遠端監控",碩士論文,機械工程學研究所,臺灣大學,2019。 廖尉翔,馬劍清,"布拉格光纖光柵於固體結構多點動態應變及熱學量測之技術開發及資料解析",碩士論文,機械工程學研究所,臺灣大學,2022。 李承融,馬劍清,"應用布拉格光纖光柵感測器於懸臂梁應變與位移多點量測及風力發電機葉片監測系統開發",碩士論文,機械工程學研究所,臺灣大學,2023。 馬鈺棠,何昭慶,"應用先進光學感測及量測技術於複材風機結構的預兆診斷",碩士論文,機械工程系機電整合碩士班,臺北科大,2023。 Wen, B., Tian, X., Jiang, Z., Li, Z., Dong, X., & Peng, Z. (2020). Monitoring blade loads for a floating wind turbine in wave basin model tests using Fiber Bragg Grating sensors: A feasibility study. Marine Structures, 71, 102729. Zhu, P., Feng, X., Liu, Z., Huang, M., Xie, H., & Soto, M. A. (2021). Reliable packaging of optical fiber Bragg grating sensors for carbon fiber composite wind turbine blades. Composites Science and Technology, 213, 108933. Mieloszyk, M. (2021). Fatigue crack propagation monitoring using fibre Bragg grating sensors. Vibration, 4(3), 700-721. Kim, S. I., Jung, H. Y., Yang, S., Yoon, J., Lee, H., & Ryu, W. (2022). 3D Printing of a miniature turbine blade model with an embedded fibre Bragg grating sensor for high-temperature monitoring. Virtual and Physical Prototyping, 17(2), 156-169. Sánchez-Botello, X., Roig, R., De La Torre, O., Madrigal, J., Sales, S., & Escaler, X. (2023). Assessment of fiber Bragg grating sensors for monitoring shaft vibrations of hydraulic turbines. Sensors, 23(15), 6695. Tien, C. L., Cheng, T. C., Chen, L. C., Lin, G. R., & Liu, W. F. (2009). Simultaneous measurement of bending curvature and axial stress using D-shaped fiber Bragg gratings. Advanced Sensor Technologies and Applications. SPIE. Zheng, Y., Huang, D., & Shi, L. (2018). A new deflection solution and application of a fiber Bragg grating-based inclinometer for monitoring internal displacements in slopes. Measurement Science and Technology, vol. 29, 055088. Yang, S., Li, J., Tang, Y., Sun, M., Gao, G., Liu, X. A., Shi, B., & Dong, F. Z. (2018). Analysis of the performance of strain magnification using uniform rectangular cantilever beam with fiber Bragg gratings. Sensors Actuators A: Physics, vol. 273, 266-275. Theodosiou, A., Komodromos, M., & Kalli, K. (2018). Carbon Cantilever Beam Health Inspection Using a Polymer Fiber Bragg Grating Array. Journal of Lightwave Technology, vol. 36, no. 4. Zhou, Y., Dongjian, Z., Zhuoyan, C., & Yongtao, L. (2020). Research on a novel inclinometer based on distributed optical fiber strain and conjugate beam method. Measurement, 153, 107404. Abushagar, A. A. G., Arsad, N., & Bakar, A. A. A. (2021). Cantilever Beam with a Single Fiber Bragg Grating to Measure Temperature and Transversal Force Simultaneously. Sensor, vol. 21. Zeng, B., Zheng, Y., Yu, J., & Yang, C. (2021). Deformation calculation method based on FBG technology and conjugate beam theory and its application in landslide monitoring. Optical Fiber Technology, vol. 63. Li, Y., Xin, C., Jia, Z., Han, X., & Huang, Y. (2021). Deformation measurement based on high resolution distributed optical fiber sensing and conjugated beam method. Optik, 241, 167065. Zhang, Q., Li, R., Yuan, H., & Zhong, H. (2023). Vertical Displacement Measurement of Tunnel Structures Based on Long-Gauge Fiber Bragg Grating Strain Sensing. Applied Sciences, 13(20), 11496. Westergaard, H. M. Deflections of beams by the conjugate beam method, 26 (1921). pp. 369–396. 黃婉瑈,馬劍清,"開發布拉格光纖光柵感測器量測系統於機械加工系統之溫升、變形與振動特性之分析",碩士論文,機械工程學研究所,臺灣大學,2020。 許詠荏,馬劍清,"布拉格光纖光柵感測器於高速內藏式主軸及超精密平面磨床動態特性、溫升及變形之精密量測",碩士論文,機械工程學研究所,臺灣大學,2016。 詹惠媛,馬劍清,"布拉格光纖光柵感測器於高速內藏式主軸之健康檢測分析與工具機量測之應用",碩士論文,機械工程學研究所,臺灣大學,2019。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94634 | - |
| dc.description.abstract | 布拉格光纖光柵(Fiber Bragg Grating, FBG)作為感測器已發展數十年,具有相當多優點,包含傳輸能力優異、質量輕盈半徑小、不受電磁波影響、靈敏度高等,做為可以同時量測應變與溫度變化的感測器,且能夠達到同時多點監測,在學界及工業界應用皆相當廣泛,本實驗室過去已投入相當多精力於相關研究,擁有相當成熟的量測技術。
本文主要利用光纖光柵感測器的多點量測特性,將其應用於風力發電機葉片及高速內藏式主軸,利用風力發電機葉片表面貼附的一條十段光柵和多條單段光柵,量測葉片在受外力或負載時的暫態和穩態訊號,並分析底座螺栓鬆弛時的應變變化,根據變化制定螺栓鬆弛的監測方案,並結合即時量測系統,建立葉片的自動化監測與通報系統。除此之外,利用共軛梁演算法,能夠將風力發電機葉片應變訊號轉換為面外位移訊號,並透過雷射位移計進行驗證。同時將光纖光柵應用於高速內藏式主軸,監測螺栓鬆弛時的應變和共振頻率變化,並建立自動化監測系統,進行長時間溫度監測。在第七章中,於複合材料板與鋁板上貼附三條不同方向的單段光纖光柵,進行重複性實驗,量測其熱學性值,分析各材料與不同方向熱膨脹係數的差異。 | zh_TW |
| dc.description.abstract | Fiber Bragg grating (FBG) has been developed as sensor for several decades. It possesses many advantages, including excellent transmission capabilities, high sensitivity, lightweight, small diameter, and not affected by electromagnetic waves. As a multifunctional sensor, it can simultaneously measure strain and temperature, it can also achieve multi-point monitoring. FBG have been widely applied in both academia and industry. Our laboratory has invested considerable effort in related research and possesses mature measurement technology.
In the thesis, the experiment setup primarily utilizes the multi-point measurement characteristics of FBG sensor, applied to wind turbine blade, and built-in high-speed spindle. First, a ten-segment grating sensor and several single-segment gratings are attached to the surface of a wind turbine blade to measure transient and steady-state signals with external forces or loads and to analyze strain changes. Additionally, the phenomenon of screws loosening on the base also measured and analyzed by FBGs. Based on the results of different scenarios of screw loosening conditions, a monitoring scheme for screw loosening is proposed, and an automated monitoring and reporting system is established by integrating a real-time measurement system. Furthermore, the conjugate beam method is used to convert strain signals into displacement signals, which are verified using a laser displacement sensor. This thesis also applies FBG to built-in high-speed spindle to monitor variations of strain and resonance frequencies for the screw loosening and to establish a long-term temperature monitoring system. In the Chapter 7, three single-segment FBGs with different orientations are attached to composite and aluminum alloy plates with different boundary conditions. Every experiments are conducted repeatedly, for three times, to measure the thermal properties, including thermal expansion coefficients of different materials and directions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:13:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:13:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 摘要 I Abstract III 目次 V 圖次 XI 表次 XXVII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 論文內容簡介 6 第二章 光纖光柵基本原理與製作方法 11 2.1 光纖的光學原理 11 2.2 光纖光柵基本原理 14 2.3 光彈效應與熱光效應 15 2.3.1 光彈效應 15 2.3.2 熱光效應 18 2.4 共振波長飄移理論 18 2.4.1 共振波長飄移原理 19 2.4.2 承受平面應力 21 2.4.3 承受單軸向應力 22 2.4.4 承受溫度影響 22 2.5 本文所使用的光纖光柵種類 23 2.6 光纖光柵製作方法 24 2.6.1 光纖的光感性 24 2.6.2 內部寫入法 25 2.6.3 橫向全像法 25 2.6.4 相位光罩法 25 第三章 實驗量測技術與儀器設備 33 3.1 布拉格光纖光柵量測系統 33 3.1.1 光纖光柵感測器的事前準備工作 33 3.1.2 波長解調器(I-MON)量測系統 33 3.1.3 多光柵多點量測之I-MON系統 34 3.2 光纖光柵量測系統所需之相關儀器 35 3.2.1 寬頻光源 35 3.2.2 光隔離器與光循環器 35 3.2.3 光耦合器 35 3.2.4 波長解調器(I-MON 256 USB) 36 3.2.5 高速波長解調器(I-MON 256 High Speed) 36 3.3 溫度記錄器與熱電偶 37 3.4 加熱型電磁攪拌器與控制器 37 3.5 雷射位移計(Laser Displacement Sensor) 38 第四章 應用光纖光柵感測器於風力發電機葉片之螺栓鬆弛分析與監測系統開發 51 4.1 風力發電機葉片之基本規格及光纖光柵與螺栓資訊 51 4.1.1 風力發電機葉模型規格尺寸 51 4.1.2 光纖光柵與螺栓資訊 52 4.2 風力發電機葉片螺栓鬆弛與鎖緊之動態量測 52 4.2.1 實驗架設 53 4.2.2 實驗結果分析:無鬆弛螺栓之動態應變及共振頻率 53 4.2.3 實驗結果分析:鬆弛螺栓之動態應變及共振頻率 54 4.3 風力發電機葉片螺栓鬆弛與鎖緊之應變量測 55 4.3.1 實驗架設 56 4.3.2 實驗結果分析 56 4.3.3 螺栓鬆弛情形之標準定義 58 4.3.4 重複性實驗驗證 58 4.4 風力發電機葉片之即時量測與通報系統 60 4.4.1 雲端監測系統(Cloud Monitoring System, CMS) 60 4.4.2 簡訊警報系統 60 4.4.3 風機葉片訊號之實際結果 61 4.5 本章小結 62 第五章 應用光纖光柵感測器量測風力發電機葉片之面外位移 109 5.1 共軛梁理論演算法 110 5.2 風力發電機葉片代入共軛梁演算法之參數 112 5.3 風力發電機葉片面外位移量測:無負載敲擊動態實驗 113 5.3.1 實驗架設 113 5.3.2 實驗結果分析:單次敲擊實驗 114 5.3.3 實驗結果分析:雙次敲擊實驗 114 5.3.4 實驗結果分析:多次敲擊實驗 115 5.4 風力發電機葉片面外位移量測:負載穩態實驗 115 5.4.1 實驗架設 115 5.4.2 實驗結果分析 116 5.5 風力發電機葉片面外位移量測:負載敲擊動態實驗 117 5.5.1 實驗架設 117 5.5.2 實驗結果分析 117 5.6 風力發電機葉片面外位移量測:於不同位置敲擊實驗 118 5.6.1 實驗架設 119 5.6.2 實驗結果分析:有負載敲擊實驗 119 5.6.3 實驗結果分析:無負載敲擊實驗 120 5.7 本章小結 121 第六章 應用光纖光柵感測器偵測高速內藏式主軸 螺栓鬆弛及長時間監測分析 171 6.1 高速內藏式主軸之基本規格及光纖光柵與螺栓資訊 171 6.1.1 高速內藏式主軸基本規格 171 6.1.2 光纖光柵與螺栓資訊 172 6.2 高速內藏式主軸鬆弛與鎖緊底座螺栓之動態資訊量測 172 6.2.1 實驗架設 172 6.2.2 實驗結果分析:無鬆弛螺栓之動態應變及共振頻率 173 6.2.3 實驗結果分析:不同數量鬆弛螺栓之動態應變及共振頻率 173 6.3 高速內藏式主軸底座螺栓鬆弛與鎖緊之應變量測 174 6.3.1 實驗架設 174 6.3.2 實驗結果分析 175 6.3.3 螺栓鬆弛情形之標準定義 175 6.4 高速內藏式主軸之即時量測與通報系統 176 6.4.1 及時量測及通報系統介紹 176 6.4.2 高速內藏式主軸訊號之實際結果 176 6.5 高速內藏式主軸長時間溫度監測實驗 177 6.5.1 光纖光柵之熱學簡介 177 6.5.2 實驗架設 178 6.5.3 實驗結果分析 179 6.6 本章小結 181 第七章 應用光纖光柵感測器於複合材料板及鋁板熱學量測 235 7.1 複合材料薄板之熱學量測 235 7.1.1 複合材料薄板規格與光纖光柵貼附位置介紹 235 7.1.2 實驗架設 236 7.1.3 將複合材料薄板墊高5mm之實驗結果分析 236 7.1.4 將複合材料薄板墊高3mm之實驗結果分析 237 7.1.5 無墊高複合材料薄板之實驗結果分析 237 7.2 複合材料厚板之熱學量測 238 7.2.1 複合材料厚板規格與光纖光柵貼附位置介紹 238 7.2.2 實驗架設 239 7.2.3 實驗結果分析 239 7.3 長方形鋁板之熱學量測 240 7.3.1 長方形鋁板規格與光纖光柵貼附位置介紹 240 7.3.2 實驗架設 241 7.3.3 實驗結果分析 241 7.4 正方形鋁板之熱學量測 242 7.4.1 正方形鋁板規格與光纖光柵貼附位置介紹 242 7.4.2 實驗架設 243 7.4.3 實驗結果分析 243 7.5 本章小結 244 第八章 結論與未來展望 311 8.1 結論 311 8.2 未來展望 314 參考文獻 317 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 布拉格光纖光柵 | zh_TW |
| dc.subject | 風力發電機葉片 | zh_TW |
| dc.subject | 位移 | zh_TW |
| dc.subject | 即時監測 | zh_TW |
| dc.subject | 共軛梁法 | zh_TW |
| dc.subject | 高速內藏式主軸 | zh_TW |
| dc.subject | 熱膨脹係數 | zh_TW |
| dc.subject | wind turbine blade | en |
| dc.subject | thermal expansion coefficient | en |
| dc.subject | built-in high-speed spindle | en |
| dc.subject | conjugate beam method | en |
| dc.subject | real-time monitoring | en |
| dc.subject | displacement | en |
| dc.subject | Fiber Bragg Grating | en |
| dc.title | 應用光纖光柵感測器於風力發電機葉片與高速主軸之螺栓鬆動檢測與複合板材之熱學量測 | zh_TW |
| dc.title | Application of Fiber Bragg Grating Sensors for Detecting Loosening of Screws in Wind Turbine Blade and High-speed Spindle and Thermal Measurement of Composite Plates | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃育熙;張敬源;廖展誼;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsi Huang;Ching-Yuan Chang;Chan-Yi Liao;Yi-Zhuang Wu | en |
| dc.subject.keyword | 布拉格光纖光柵,風力發電機葉片,位移,即時監測,共軛梁法,高速內藏式主軸,熱膨脹係數, | zh_TW |
| dc.subject.keyword | Fiber Bragg Grating,wind turbine blade,displacement,real-time monitoring,conjugate beam method,built-in high-speed spindle,thermal expansion coefficient, | en |
| dc.relation.page | 322 | - |
| dc.identifier.doi | 10.6342/NTU202403416 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 36.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
