請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94632
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 莊昀叡 | zh_TW |
dc.contributor.advisor | Ray Y. Chuang | en |
dc.contributor.author | 廖冠至 | zh_TW |
dc.contributor.author | Guan-Zh Liao | en |
dc.date.accessioned | 2024-08-16T17:12:31Z | - |
dc.date.available | 2024-12-27 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | 大江二郎 (1939)。台中州南投油田調查報告。臺灣總督府殖產局,866。
內政部 (2024)。中華民國人口統計季刊。 石再添、鄧國雄、張瑞津、石慶得、楊貴三、許陽 (1984)。臺灣西部與南部活斷層的地形學研究。師大地理研究所地理研究報告,10,49-94。 何春蓀 (1959)。臺灣中部台中與南投間之逆衝斷層構造。臺灣省地質調查所彙刊,11,13-20。 林朝棨 (1957)。臺灣地形。臺灣省文獻委員會。 林啟文、陳文山、饒瑞鈞 (2007)。臺灣活動斷層調查的近期發展。經濟部中央地質調查所特刊,18,85-110。 林啟文、盧詩丁、石同生、林偉雄、劉彥求、陳柏村 (2008)。臺灣中部的活動斷層(2008)。經濟部中央地質調查所特刊,21,1-136。 林啟文、林啟文、劉彥求、周稟珊、林燕慧 (2021)。臺灣活動斷層調查的近期發展。經濟部中央地質調查所彙刊,34,1-40。 莊昀叡、景國恩、張午龍、陳宏宇、李易叡、莊怡蓉、邵國士 (2023)。重要活動斷層地區地表變形觀測與斷層潛勢評估-第二階段(1/3)(第1年度)。經濟部中央地質調查所報告,計畫編號:B11208。 陳文山、鄂忠信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉 (2000)。上-更新世臺灣西部前陸盆地的演化:沈積層序與沈積物組成的研究。經濟部中央地質調查所彙刊,13,137-156。 陳文山、游能悌、松多信尚、楊小青 (2008)。地震地質與地變動潛勢分析計畫:斷層長期滑移速率與再現週期研究(1/4)(期末報告書)。經濟部中央地質調查所報告,計畫編號: 96-5226902000-04-01。 景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡 (2018)。斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估(2/4)(第2年度)。經濟部中央地質調查所報告,計畫編號:107-5226904000-07-01。 景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡 (2020)。斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估 (總報告書)。經濟部中央地質調查所報告,計畫編號:109-5226904000-05-01。 黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威、徐祥宏 (2004)。台灣陸上斷層帶地質構造與地殼變形調查研究. (5/5), 台灣西部麓山帶地區地下構造綜合分析。經濟部中央地質調查所報告,計畫編號:5226902000-02-93-02。 董倫道、陳文山、李奕亨 (2005)。地震地質調查及活動斷層資料庫建置計畫-地球物理探勘計畫(4/5)。經濟部中央地質調查所報告第94-09號,共176頁。 鄧屬予 (2007)。 臺灣第四紀大地構造。經濟部中央地質調查所特刊,18,1-24。 饒瑞鈞、余致義、洪日豪、胡植慶、李建成、詹瑜璋、許麗文 (2006)。地震地質調查及活動斷層資料庫建置-活動斷層監測系統計畫(5/5)。經濟部中央地質調查所研究報告95-10號,計畫編號:5226902000-02-95-03。 Aki, K. (1966). Generation and propagation of G waves from Niigata earthquake of June 16, 1964, II, Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull. Earthquake Res. Inst. Univ. Tokyo, 44, 73-88. Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of Science, 304(1), 1-20. Ambraseys, N. N. (1971). Value of historical records of earthquakes. Nature, 232(5310), 375-379. Arora, K., Cazenave, A., Engdahl, E. R., Kind, R., Manglik, A., Roy, S., Sain, K. & Uyeda, S. (2011). Encyclopedia of solid earth geophysics. Springer Science & Business Media. Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois, J., Darienzo, M. E., Grant, W. C. Hemphill-Haley, E., Kelsey, H. M., Jacoby, G. C., Nishenko, S. P., Palmer, S. P., Peterson, C. D. & Reinhart, M. A. (1995). Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthquake spectra, 11(1), 1-18. Bawden, G. W., Thatcher, W., Stein, R. S., Hudnut, K. W., & Peltzer, G. (2001). Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature, 412(6849), 812-815. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383. Bilham, R., Larson, K., & Freymueller, J. (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386(6620), 61-64. Biq, C. (1971). Dual-trench structure in the Taiwan-Luzon region. Proceedings of the Geological Society of China, 5, 65-75. Bird, D. (2001). Shear margins Continent-ocean transform and fracture zone boundaries. The Leading Edge, 20(2), 150-159. Bonilla, M. G. (1975). A review of recently active faults in Taiwan. Bowin, C., Lu, R. S., Lee, C. S., & Schouten, H. (1978). Plate convergence and accretion in Taiwan-Luzon region. AAPG Bulletin, 62(9), 1645-1672. Brandes, C., & Tanner, D. C. (2014). Fault-related folding: A review of kinematic models and their application. Earth-Science Reviews, 138, 352-370. Briggs, R. W., Sieh, K., Meltzner, A. J., Natawidjaja, D., Galetzka, J., Suwargadi, B., Hsu, Y.J., Simons, M., Hananto, N., Suprihanto, I. & Bock, Y. (2006). Deformation and slip along the Sunda megathrust in the great 2005 Nias-Simeulue earthquake. Science, 311(5769), 1897-1901. Bürgmann, R., Ergintav, S., Segall, P., Hearn, E. H., McClusky, S., Reilinger, R. E., Woith, H. & Zschau, J. (2002). Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture. Bulletin of the Seismological Society of America, 92(1), 126-137. Cavalié, O., Lasserre, C., Doin, M. P., Peltzer, G., Sun, J., Xu, X., & Shen, Z. K. (2008). Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth and Planetary Science Letters, 275(3-4), 246-257. Chai, B. H. (1972). Structure and tectonic evolution of Taiwan. American Journal of Science, 272(5), 389-422. Chang, C. H., Wu, Y. M., Shin, T. C., & Wang, C. Y. (2000). Relocation of the 1999 Chi-Chi earthquake in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 11(3), 581-590. Chang, S. L. (1971). Subsurface geologic study of the Taichung Basin, Taiwan. Petroleum Geology of Taiwan 8, 21–45. Chang, W. L., Ching, K. E., Lee, C. H., Lee, Y. R., & Lee, C. F. (2016). Earthquake potential of active faults in Taiwan from GPS observations and block modeling. Seismological Research Letters, 87(6), 1274-1286. Chen, J. S. (1978). A comparative study of the refraction and reflection seismic data obtained on the Changhua plain to the Peikang shelf, Taiwan. Petrol. Geol. Taiwan, 15, 199-217. Chen, L., & Khan, S. D. (2010). InSAR observation of the strike-slip faults in the northwest Himalayan frontal thrust system. Geosphere, 6(5), 731-736. Cheng, S. N., & Yeh, Y. T. (1989). Catalog of the Earthquakes in Taiwan from 1604 to 1988. Institute of Earth Sciences, Academia Sinica. Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251. Cigna, F., Esquivel Ramírez, R., & Tapete, D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR displacement velocities against GNSS and geodetic leveling monitoring data. Remote Sensing, 13(23), 4800. Clague, J. J. (1997). Evidence for large earthquakes at the Cascadia subduction zone. Reviews of Geophysics, 35(4), 439-460. Cohen, S. C. (1999). Numerical models of crustal deformation in seismic zones. Advances in Geophysics, 41, 133-231. Coleman, T. F., & Li, Y. (1996). A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, 6(4), 1040-1058. Collot, J. Y., Delteil, J., Lewis, K. B., Davy, B., Lamarche, G., Audru, J. C., Barnes, P., Chanier, F., Chaumillon, E., Lallemand, S., de Lepinay, B. M., Orpin, A., Pelletier, B., Sosson, M., Toussaint, B. & Uruski, C. (1996). From oblique subduction to intra-continental transpression: Structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection. Marine Geophysical Researches, 18, 357-381. Connolly, J. A. D. (2009). The geodynamic equation of state: what and how. Geochemistry, geophysics, geosystems, 10(10). Faure, M., Shu, L., Wang, B., Charvet, J., Choulet, F., & Monie, P. (2009). Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5), 360-368. Feldl, N., & Bilham, R. (2006). Great Himalayan earthquakes and the Tibetan plateau. Nature, 444(7116), 165-170. Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20. Flück, P., Hyndman, R. D., & Wang, K. (1997). Three‐dimensional dislocation model for great earthquakes of the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 102(B9), 20539-20550. Freed, A. M. (2007). Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake. Geophysical Research Letters, 34(6). Freymueller, J. T., Cohen, S. C., & Fletcher, H. J. (2000). Spatial variations in present‐day deformation, Kenai Peninsula, Alaska, and their implications. Journal of Geophysical Research: Solid Earth, 105(B4), 8079-8101. Fukuda, J. I., & Johnson, K. M. (2008). A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bulletin of the Seismological Society of America, 98(3), 1128-1146. Gahalaut, V. K., & Chander, R. (1997). On interseismic elevation changes and strain accumulation for great thrust earthquakes in the Nepal Himalaya. Geophysical research letters, 24(9), 1011-1014. Garzanti, E., Doglioni, C., Vezzoli, G., & Ando, S. (2007). Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115(3), 315-334. Geller, R. J., Jackson, D. D., Kagan, Y. Y., & Mulargia, F. (1997). Earthquakes cannot be predicted. Science, 275(5306), 1616-1616. Grandin, R., Doin, M. P., Bollinger, L., Pinel-Puysségur, B., Ducret, G., Jolivet, R., & Sapkota, S. N. (2012). Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology, 40(12), 1059-1062. Han, S., Carbotte, S. M., Canales, J. P., Nedimović, M. R., Carton, H., Gibson, J. C., & Horning, G. W. (2016). Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research: Solid Earth, 121(3), 1849-1872. Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350. Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2). Springer Science & Business Media. Heaton, T. H., & Hartzell, S. H. (1987). Earthquake hazards on the Cascadia subduction zone. Science, 236(4798), 162-168. Hetland, E. A., & Hager, B. H. (2004). Relationship of geodetic velocities to velocities in the mantle. Geophysical Research Letters, 31(17). Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16. Hobbs, B. E., Ord, A., Archibald, N. J., Walshe, J. L., Zhang, Y., Brown, M., & Zhao, C. (2000). Geodynamic modelling as an exploration tool. In Australian Institute of Mining and Metallurgy Proceedings of Annual Conference, after (pp. 10-12). Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13. Hsu, M. T. (1983). Estimation Of Earthquake Magnitudes And Seismic Intensities Of Destructive Earthquakes In The Ming And Ching Eras. Meteorological Bulletin, 1(38), 14-22. Hsu, Y. J., Bechor, N., Segall, P., Yu, S. B., Kuo, L. C., & Ma, K. F. (2002). Rapid afterslip following the 1999 Chi‐Chi, Taiwan earthquake. Geophysical Research Letters, 29(16), 1-4. Hsu, Y. J., Simons, M., Yu, S. B., Kuo, L. C., & Chen, H. Y. (2003). A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt. Earth and Planetary Science Letters, 211(3-4), 287-294. Huang, C. Y., Yuan, P. B., & Tsao, S. J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288. Huang, Y. S., Hsu, S. K., Su, C. C., Lin, A. T. S., Yu, P. S., Babonneau, N., Ratzov, G., Lallemand, S., Huang, P. C., Lin, S. S., Lin, J. Y., Wei, K. Y., Chang, Y. P., Yu, N. T. & Tsai, C. H. (2021). Shallow gas hydrates off southwest Taiwan and their mechanisms. Marine Geophysical Research, 42, 1-12. Hyndman, R. D., & Wang, K. (1993). Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 98(B2), 2039-2060. Hyndman, R. D., & Wang, K. (1995). The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. Journal of Geophysical Research: Solid Earth, 100(B11), 22133-22154. Jiang, G., Xu, C., Wen, Y., Liu, Y., Yin, Z., & Wang, J. (2013). Inversion for coseismic slip distribution of the 2010 M w 6.9 Yushu Earthquake from InSAR data using angular dislocations. Geophysical Journal International, 194(2), 1011-1022. Johnson, K. M. (2013), Slip rates and off-fault deformation in Southern California inferred from GPS data and models, J. Geophys. Res. Solid Earth, 118, 5643–5664, doi:10.1002/jgrb.50365. Johnson, K. M., & Segall, P. (2004). Imaging the ramp–décollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake. Tectonophysics, 378(1-2), 123-139. Johnson, K. M., Segall, P., & Yu, S. B. (2005). A viscoelastic earthquake cycle model for Taiwan. Journal of Geophysical Research: Solid Earth, 110(B10). Jónsson, S., Segall, P., Pedersen, R., & Björnsson, G. (2003). Post-earthquake ground movements correlated to pore-pressure transients. Nature, 424(6945), 179-183. Jónsson, S., Zebker, H., Segall, P., & Amelung, F. (2002). Fault slip distribution of the 1999 M w 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bulletin of the Seismological Society of America, 92(4), 1377-1389. Kao, H., & Chen, W. P. (2000). The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan. Science, 288(5475), 2346-2349. Kao, H., Shen, S. S. J., & Ma, K. F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region. Journal of Geophysical Research: Solid Earth, 103(B4), 7211-7229. Karim, K. H., Koyi, H., Baziany, M. M., & Hessami, K. (2011). Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold–thrust belt, Kurdistan Region, NE Iraq. Geological Magazine, 148(5-6), 925-939. Kasahara, K. (1979). Migration of crustal deformation. In Developments in Geotectonics (Vol. 13, pp. 329-341). Elsevier. Lee, C. T., & Wang, Y. (1988). Quaternary stress changes in northern Taiwan and their tectonic implication. Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y., & Rau, R. J. (2002). Geometry and structure of northern surface ruptures of the 1999 Mw= 7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures. Journal of Structural Geology, 24(1), 173-192. Lee, J. C., Lu, C. Y., Chu, H. T., Delcaillau, B., Angelier, J., & Deffontaines, B. (1996). Active deformation and paleostress analysis in the Pakua anticline area, western Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 7(4), 431-446. Lee, W. H., Wu, F. T., & Jacobsen, C. (1976). A catalog of historical earthquakes in China compiled from recent Chinese publications. Bulletin of the Seismological Society of America, 66(6), 2003-2016. Lee, Y. H. (2024). Monitoring Coastal Land Subsidence in Western Taiwan by Using SBAS-InSAR Technique. [Unpublished master’s dissertation]. National Taiwan University. Lin, C. W., Shih, R. C., Lin, Y. H., & Chen, W. S. (2002). Structural characteristics of the Chelungpu fault zone in the Taichung area, central Taiwan. Western Pacific Earth Sciences, 2(4), 411-426. Ma, K. F., Lee, C. T., Tsai, Y. B., Shin, T. C., & Mori, J. (1999). The Chi‐Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos, Transactions American Geophysical Union, 80(50), 605-611. Ma, K. F., Mori, J., Lee, S. J., & Yu, S. B. (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 1069-1087. Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of structural geology, 12(8), 973-986. Matsu'ura, M., Jackson, D. D., & Cheng, A. (1986). Dislocation model for aseismic crustal deformation at Hollister, California. Journal of Geophysical Research: Solid Earth, 91(B12), 12661-12674. McCaffrey, R. (2005), Block kinematics of the Pacific–North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data, J. Geophys. Res., 110, B07401, doi:10.1029/2004JB003307. Meade, B. J., & Loveless, J. P. (2009). Block modeling with connected fault-network geometries and a linear elastic coupling estimator in spherical coordinates. Bulletin of the Seismological Society of America, 99(6), 3124-3139. Molnar, P., & Tapponnier, P. (1978). Active tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11), 5361-5375. Murray, J. R., Minson, S. E., & Svarc, J. L. (2014). Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data. Journal of Geophysical Research: Solid Earth, 119(7), 6023-6047. Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San Diego. Nur, A., & Booker, J. R. (1972). Aftershocks caused by pore fluid flow?. Science, 175(4024), 885-887. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154. Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 82(2), 1018-1040. Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., & Schemmann, K. (2006). Deformation of the central Andean upper plate system—Facts, fiction, and constraints for plateau models. The Andes: Active Subduction Orogeny, 3-27. Osmanoğlu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102. Ota, Y., Shyu, J. B. H., Chen, Y. G., & Hsieh, M. L. (2002). Deformation and age of fluvial terraces south of the Choushui River, central Taiwan, and their tectonic implications. Western Pacific Earth Sciences, 3, 43-72. Otuka, Y. (1936). The earthquake of central Taiwan (Formosa), April 21, 1935, and earthquake faults. Bull. Earthquake Res. Inst. Tokyo Univ, 3, 22-74. Petersen, M. D., Zeng, Y., Haller, K. M., McCaffrey, R., Hammond, W. C., Bird, P., Moschetti, M., Shen, Z. K., Bormann, J., & Thatcher, W. R. (2014). Geodesy-and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps. Pollitz, F. F., Wicks, C., & Thatcher, W. (2001). Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake. science, 293(5536), 1814-1818. Powell, C. M., & Conaghan, P. J. (1973). Plate tectonics and the Himalayas. Earth and Planetary Science Letters, 20(1), 1-12. Roberts, D. G., & Bally, A. W. (Eds.). (2012). Regional geology and tectonics: Principles of geologic analysis (Vol. 1). Elsevier. Rosen, C. Brown, J. Heiman, S. Leiblum, C. Meston, R. Shabsigh, D. Ferguson, R. D'Agostino, R. (2000). The Female Sexual Function Index (FSFI): a multidimensional self-report instrument for the assessment of female sexual function. Journal of sex & marital therapy, 26(2), 191-208. Rosen, P. A., Gurrola, E., Sacco, G. F., & Zebker, H. (2012). The InSAR scientific computing environment. In EUSAR 2012; 9th European conference on synthetic aperture radar (pp. 730-733). VDE. Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984-4996. Searle, M. P. (1986). Structural evolution and sequence of thrusting in the High Himalayan, Tibetan—Tethys and Indus suture zones of Zanskar and Ladakh, Western Himalaya. Journal of structural geology, 8(8), 923-936. Searle, M. P., & Stevens, R. K. (1984). Obduction processes in ancient, modern and future ophiolites. Geological Society, London, Special Publications, 13(1), 303-319. Şengör, A. C. (2020). Orogenic belts. Encyclopedia of Solid Earth Geophysics, 1-20. Shih, T. T., & Yang, G. S. (1985). The active faults and geomorphic surfaces of Pakua Tableland in Taiwan. Geogr. Res, 11, 173-186. Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3). Shyu, J. B. H., Sieh, K., & Chen, Y. G. (2005). Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements. Earth and Planetary Science Letters, 233(1-2), 167-177. Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci, 31(4), 469. Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295-28326. Simoes, M., Avouac, J. P., & Chen, Y. G. (2007b). Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna river, west central Taiwan. Journal of Geophysical Research: Solid Earth, 112(B3). Simoes, M., Avouac, J. P., Chen, Y. G., Singhvi, A. K., Wang, C. Y., Jaiswal, M., Chan Y. C. & Bernard, S. (2007a). Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan: Shortening rate and age of folding inception. Journal of Geophysical Research: Solid Earth, 112(B3). Sun, S. C. (1965). Geology and petroleum potentialities of the Chingshui-Yuanlin area. Petrol. Geol. Taiwan, 4, 161-173. Suppe, J. (1980a). A retrodeformable cross section of northern Taiwan. In Proc. Geol. Soc. China (Vol. 23, No. January 1980, pp. 46-55). Suppe, J., Schaer, J. P., & Rodgers, J. (1987). The active Taiwan mountain belt. The Anatomy of Mountain Ranges, 277-293. Tanaka, H., Wang, C.H., Chen, W.M., Sakiguchi, A., Ujiie, K., Ito, H. and Ando, M. (2002) Initial science report of shallow drilling penetrating into the Chelungpu fault zone, Taiwan: Terr. Atmos. Ocean. Sci., Vol. 13, no.3, 227-251. Tang, C. H., Hsu, Y. J., Barbot, S., Moore, J. D., & Chang, W. L. (2019). Lower-crustal rheology and thermal gradient in the Taiwan orogenic belt illuminated by the 1999 Chi-Chi earthquake. Science Advances, 5(2), eaav3287. Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76. Thatcher, W. (2007). Microplate model for the present day deformation of Tibet. Journal of Geophysical Research: Solid Earth, 112(B1). Tikoff, B., & Teyssier, C. (1994). Strain modeling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology, 16(11), 1575-1588. Tomita, Y. (1932). Topography Of The Southern Part Of The Hakki Hills In Taiwan. Taiwan Tigaku Kizi, 3(4), 78-85. Tsai, Y.B. (1985) A Study Of Disastrous Earthquake In Taiwan, 1683-1895. Bulletin of the Institute of Earth Sciences, Academia Sinica, 5, 1-44. Vanicek, P., Castle, R. O., & Balazs, E. I. (1980). Geodetic leveling and its applications. Reviews of Geophysics, 18(2), 505-524. Vergne, J., Cattin, R., & Avouac, J. P. (2001). On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophysical Journal International, 147(1), 155-162. Wang, C. Y., Kuo, S. Y., Shyu, W. L., & Hsiao, J. W. (2003). Investigating Near-surface Structures under the Changhua Fault, Westcentral Taiwan by the Reflection Seismic Method. TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES, 14(3), 343-367. Wang, C.Y., Tanaka, H., Chou, J., Chen, C.C. and Hong, J.H. (2002) Shallow reflection seismics aiding geological drilling into the Chelungpu fault after the 1999 Chi-Chi earthquake, Taiwan: Terr. Atmos. Ocean. Sci., Vol. 13, no.2, 153-170. Wang, H., Wright, T. J., & Biggs, J. (2009). Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36(3). Wright, T. J., Lu, Z., & Wicks, C. (2003). Source model for the Mw 6.7, 23 October 2002, Nenana mountain earthquake (Alaska) from InSAR. Geophysical Research Letters, 30(18). Wu, F. T., Rau, R. J., & Salzberg, D. (1997). Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274(1-3), 191-220. Wu, W. N., Lo, C. L., Doo, W. B., Lin, J. Y., & Hsu, S. K. (2021). Seismogenic structure along the deformation front off SW Taiwan revealed by the aftershocks of the 2017 Tainan near-shore earthquake with ocean bottom seismometers. Tectonophysics, 815, 228995. Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological society of America, 75(4), 939-964. Yu, H. S. (2004). Nature and distribution of the deformation front in the Luzon Arc-Chinese continental margin collision zone at Taiwan. Marine Geophysical Researches, 25, 109-122. Yu, S. B., Kuo, L. C., Punongbayan, R. S., & Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan‐Luzon region. Geophysical Research Letters, 26(7), 923-926. Yue, L. F., Suppe, J., & Hung, J. H. (2005). Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw= 7.6). Journal of Structural Geology, 27(11), 2058-2083. Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331. Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing, 30(5), 950-959. Zweck, C., Freymueller, J. T., & Cohen, S. C. (2002). Three‐dimensional elastic dislocation modeling of the postseismic response to the 1964 Alaska earthquake. Journal of Geophysical Research: Solid Earth, 107(B4), ECV-1 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94632 | - |
dc.description.abstract | 造山帶是地球上地質活動最劇烈和危險的區域之一,其特點是劇烈的構造活動和褶皺逆衝。造山帶的變形前緣作為一個標誌,指示了活動構造運動和非活動構造運動之間的邊界。一般來說,變形前緣也是造山帶最活躍的構造區域,因此迫切需要對該區域進行深入了解和持續監測。
臺灣的造山帶是世界上最活躍的造山帶之一。在臺灣中部,造山帶的前緣構造是彰化斷層。據信彰化斷層最近一次引發的地震發生在1848年,距今已近180年。車籠埔地震的發生使得彰化斷層及臺灣中部造山帶的變形前緣更值得進一步調查。因此,本研究集中於彰化斷層的應變積累和地震潛勢。研究目標是整合各種大地測量數據,包括GNSS、水準測量和InSAR,分析地表速度,並利用地表速度的數據建立模型,以確定斷層的滑移虧損速率。 本研究發現,儘管造山活動向西推進,且彰化斷層處於最前緣,但彰化斷層並未顯示出最高的滑移虧損速率,反而是車籠埔斷層顯示出最高的滑移虧損速率。然而,車籠埔斷層剛剛進入新的地震週期,而彰化斷層已在其當前週期中持續了近180年。一旦彰化斷層引發地震,將對超過300萬人構成重大風險。因此,不能忽視彰化斷層相關的潛在危害。 | zh_TW |
dc.description.abstract | The orogenic belt is one of the most geologically dynamic and hazardous areas on Earth, characterized by intense tectonic activity and fold-and-thrust belts. The deformation front of the orogenic belts serves as a marker, indicating the boundary between active and inactive tectonic movements. Generally, the deformation front is also the most active structure of orogenic belts, and there is an urgent need for a thorough understanding and continuous monitoring of this region.
The orogenic belt in Taiwan, which is one of the most active orogenic belts in the world. In the central Taiwan, the frontal structure of the orogenic belt is the Changhua fault. The most recent earthquake triggered by the Changhua fault is believed in 1848, nearly 180 years ago. The out-of-sequence Chi-Chi earthquake makes the Changhua fault and the deformation front of the Taiwan central orogenic belt even more worthy of investigation. Therefore, this study focuses on the fault strain accumulation and seismic potential of the Changhua fault. This research aims to integrate varied geodetic data including GNSS, leveling, and InSAR to analyze surface velocities, and conducting a model with geodetic data to determine the slip deficit rates. It is found that despite the westward propagation of orogenic activity and the Changhua fault being at the forefront, the Changhua fault does not show the highest slip deficit rate. Instead, the Chelungpu fault shows the highest slip deficit rate. However, the Chelungpu fault has just started a new seismic cycle, whereas the Changhua fault has been in its current cycle for 176 years, posing a significant risk to over 3,000,000 people in the event of an earthquake triggered by the Changhua fault. Therefore, the potential hazards associated with the Changhua fault should not be ignored. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:12:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T17:12:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures ix List of Tables xii Chapter 1 Research motivation and purpose 1 1.1 Research motivation 1 1.2 Research purposes 5 Chapter 2 Literature review 6 2.1 The orogenic belt and deformation front in the world 6 2.2 The orogenic belt and deformation front in Taiwan 10 2.2.1 The tectonic process in Taiwan 10 2.2.2 The tectonic process and geological setting in the central Taiwan 11 2.3 Synthetic aperture radar 12 2.4 Numeric model 16 2.5.1 Two-dimensional model 17 2.5.2 Three-dimensional model 19 Chapter 3 Study area 22 3.1 Study area 22 3.2 The faults in the central Taiwan 24 3.2.1 Changhua fault 24 3.2.2 Chelungpu fault 30 3.2.3 Tamaopu-Shuangtung fault 32 3.2.4 Sanyi fault 32 3.2.5 Tuntzuchiao fault 34 3.2.6 Chushiang fault 35 3.3 Geodetic slip deficit rates of faults in the central Taiwan 37 3.4 The geometry of faults 39 Chapter 4 Data and methods 43 4.1 Study data 43 4.1.1 GNSS 43 4.1.2 Leveling 44 4.1.3 SAR 44 4.2 Methods 45 4.2.1 Research workflow 45 4.2.2 Process GNSS and leveling data 47 4.2.3 InSAR time series and velocity 54 4.2.4 Modelling the faults in the central Taiwan 59 4.2.5 The assessment of the moment magnitude of the faults 68 Chapter 5 Results 69 5.1 Two-dimensional dislocation model 69 5.1.1 Testing the lower and upper detachment 69 5.1.2 The southern profile of 2-D model 74 5.1.3 The northern profile of 2-D model 75 5.2 Three-dimensional dislocation model 80 5.2.1 The results of 3-D model 80 5.2.2 3-D model testing 88 5.3 The moment magnitude of the faults 96 Chapter 6 Discussions 99 6.1 Comparison with results of other studies 99 6.1.1 The slip deficit rates from the 3-D model results 99 6.1.2 The moment magnitude of the faults 100 6.2 Comprehensive assessment of slip deficit rates in three scenarios 101 6.3 The impact of the Changhua fault’s slip deficit rate 105 6.3.1 The impact to faults structures 105 6.3.2 The impact to earthquake hazards 106 Chapter 7 Conclusions 108 Reference 111 Appendix 132 Appendix A: Velocity of GNSS stations in horizontal direction 132 Appendix B: Velocity of GNSS and leveling in vertical direction 145 Appendix C: Velocity of InSAR in line-of-sight direction 162 Appendix D: Fitting result of GNSS and leveling data 181 Appendix D1: Continuous-mode GNSS 181 Appendix D2: Campaign-mode GNSS 206 Appendix D3: Leveling 234 Appendix E: Posterior distribution of 2-D model results 254 Appendix F: The 3-D model results 257 | - |
dc.language.iso | en | - |
dc.title | 臺灣造山帶西部前緣在震間期的變形與應變累積 | zh_TW |
dc.title | Interseismic Deformation and Strain Accumulation Along Western Front of Taiwan Orogen | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 景國恩;黃文正;郭昱廷;鐘令和 | zh_TW |
dc.contributor.oralexamcommittee | Kuo-En Ching;Wen-Jeng Huang;Yu-Ting Kuo;Ling-Ho Chung | en |
dc.subject.keyword | 彰化斷層,造山帶變形前緣,數值模型,震間期變形,地震潛勢, | zh_TW |
dc.subject.keyword | The Changhua fault,Deformation front,Numeric model,Interseismic deformation,Seismic Potential, | en |
dc.relation.page | 264 | - |
dc.identifier.doi | 10.6342/NTU202403926 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 16.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。