請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅 | zh_TW |
| dc.contributor.advisor | Chih-I Wu | en |
| dc.contributor.author | 吳竣福 | zh_TW |
| dc.contributor.author | Jiun-Fu Wu | en |
| dc.date.accessioned | 2024-08-16T16:58:42Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | 1.Lemme, M.C., et al., 2D materials for future heterogeneous electronics. Nat Commun, 2022. 13(1): p. 1392.
2.Shanmugam, V., et al., A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle & Particle Systems Characterization, 2022. 39(6): p. 2200031. 3.Dong, R. and I. Kuljanishvili, Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science and Technology. B, Nanotechnology & Microelectronics, 2017. 35. 4.Presutti, D., et al., Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications. Materials (Basel), 2022. 15(1). 5.Kuc, A., Low-dimensional transition-metal dichalcogenides, in Chemical Modelling: Volume 11, M. Springborg and J.-O. Joswig, Editors. 2014, The Royal Society of Chemistry. p. 0. 6.Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010. 10(4): p. 1271-5. 7.Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53. 8.Chhowalla, M., D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors. Nature Reviews Materials, 2016. 1: p. 16052. 9.Chaudhry, A., Nanoscale Effects: Gate Oxide Leakage Currents, in Fundamentals of Nanoscaled Field Effect Transistors. 2013, Springer New York: New York, NY. p. 25-36. 10.He, G., et al., CVD-derived Hf-based High-k Gate Dielectrics. Critical Reviews in Solid State and Materials Sciences, 2013. 38(4): p. 235-261. 11.Lee, W.C., et al., MBE-grown high κ gate dielectrics of HfO2 and (Hf–Al)O2 for Si and III–V semiconductors nano-electronics. Journal of Crystal Growth, 2005. 278(1): p. 619-623. 12.Wu, T.Y., et al., AlGaN/GaN MOSHEMTs With Liquid-Phase-Deposited $ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\hbox{TiO}_{2}$ as Gate Dielectric. IEEE Transactions on Electron Devices, 2009. 56(12): p. 2911-2916. 13.Liu, H., et al., The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition. Applied Physics Letters, 2012. 100(15). 14.Wang, X., et al., Materials Characterization and Problem Solving. Ceramic Industry, 2011: p. 14-18. 15.Song, J., et al., High rectification efficiency direct bandgap Ge1−xSnx Schottky diode for microwave wireless power transfer. Applied Physics A, 2019. 125(10): p. 719. 16.Ogura, H., et al., Air-stable and efficient electron doping of monolayer MoS2 by salt–crown ether treatment. Nanoscale, 2021. 13(19): p. 8784-8789. 17.Das, S., M. Demarteau, and A. Roelofs, Nb-doped single crystalline MoS2 field effect transistor. Applied Physics Letters, 2015. 106(17). 18.Li, W., et al., Molten-Salt-Assisted Chemical Vapor Deposition Process for Substitutional Doping of Monolayer MoS2 and Effectively Altering the Electronic Structure and Phononic Properties. Advanced Science, 2020. 7(16): p. 2001080. 19.Li, W., et al., Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nature Electronics, 2019. 2(12): p. 563-571. 20.Kim, H., et al., Ultrathin monolithic HfO2 formed by Hf-seeded atomic layer deposition on MoS2: Film characteristics and its transistor application. Thin Solid Films, 2019. 673: p. 112-118. 21.Ahn, C., et al., Low‐temperature synthesis of large‐scale molybdenum disulfide thin films directly on a plastic substrate using plasma‐enhanced chemical vapor deposition. Advanced Materials, 2015. 27(35): p. 5223-5229. 22.Shahzad, R., T. Kim, and S.-W. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films, 2017. 641: p. 79-86. 23.Gao, E., et al., Mechanical exfoliation of two-dimensional materials. Journal of the Mechanics and Physics of Solids, 2018. 115: p. 248-262. 24.Zheng, B. and Y. Chen, Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace. IOP Conference Series: Materials Science and Engineering, 2017. 274(1): p. 012085. 25.Gatta, G.D., L. Mantovani, and G.D. Bromiley, Raman Spectroscopy and Forensic Mineralogy, in Mineralogical Analysis Applied to Forensics: A Guidance on Mineralogical Techniques and Their Application to the Forensic Field, M. Mercurio, et al., Editors. 2023, Springer International Publishing: Cham. p. 141-169. 26.Lv, B., T. Qian, and H. Ding, Angle-resolved photoemission spectroscopy and its application to topological materials. Nature Reviews Physics, 2019. 1(10): p. 609-626. 27.Nalwa, H.S., Supramolecular Photosensitive and Electroactive Materials. 2001: Elsevier Science. 28.Kim, J.W. and A. Kim, Absolute work function measurement by using photoelectron spectroscopy. Current Applied Physics, 2021. 31: p. 52-59. 29.Dobrescu, L., et al. Threshold voltage extraction methods for MOS transistors. in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No. 00TH8486). 2000. IEEE. 30.Lei, B., et al., Direct Observation of Semiconductor–Metal Phase Transition in Bilayer Tungsten Diselenide Induced by Potassium Surface Functionalization. ACS Nano, 2018. 12(2): p. 2070-2077. 31.Kim, T., Y. Kim, and E.K. Kim, Characteristics of Cl-doped MoS2 field-effect transistors. Sensors and Actuators A: Physical, 2020. 312: p. 112165. 32.Chastain, J. and R.C. King Jr, Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, 1992. 40: p. 221. 33.Woo, W.J., et al., Bi-layer high-k dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition. 2D Materials, 2018. 6(1): p. 015019. 34.Loi, F., et al., Growth Mechanism and Thermal Stability of a MoS2–Graphene Interface: A High-Resolution Core-Level Photoelectron Spectroscopy Study. The Journal of Physical Chemistry C, 2020. 124(38): p. 20889-20897. 35.Diebold, U. and T.E. Madey, TiO2 by XPS. Surface Science Spectra, 1996. 4(3): p. 227-231. 36.Kaushik, N., et al., Interfacial n-doping using an ultrathin TiO2 layer for contact resistance reduction in MoS2. ACS applied materials & interfaces, 2016. 8(1): p. 256-263. 37.Hoque, E., et al., Alkylphosphonate modified aluminum oxide surfaces. The Journal of Physical Chemistry B, 2006. 110(22): p. 10855-10861. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94600 | - |
| dc.description.abstract | 本實驗利用光電子能譜儀(PES)探討了不同摻雜劑對二硫化鉬(MoS2)的影響,使用的摻雜劑主要為鹼金族(IA)以及鹵素(VIIA)組成的鹽類,主要利用熱蒸鍍的方式對MoS2進行摻雜,而所有摻雜劑與MoS2間沒有化學鍵結的發生,其中,發現BiI3和KCl對MoS2摻雜後會使Mo 3d與S 2p的特徵峰往低束縛能的方向偏移;NaI和KI對MoS2摻雜後則會使Mo 3d與S 2p的特徵峰往高束縛能的方向偏移;LiCl和KBr對MoS2摻雜後Mo 3d與S 2p的特徵峰則維持不變。另外,利用電性分析去驗證,發現MoS2通道與BiI3和KCl進行摻雜後,電晶體的臨界電壓(Vt)往正偏壓的方向偏移,且載子遷移率(μ)以及開電流(Ion)皆有降低的趨勢;MoS2通道與NaI和KI進行摻雜後,電晶體的臨界電壓(Vt)則是往負偏壓的方向偏移,而載子遷移率(μ)以及開電流(Ion)皆有上升的趨勢。透過上述實驗結果可以得出,BiI3和KCl對MoS2具有電洞摻雜的效果;NaI和KI對MoS2具有電子摻雜的效果;而LiCl和KBr對MoS2則沒有明顯的摻雜效應,這些結果證實可以藉由摻雜劑去調節通道載子的濃度,可以應用在未來元件的製造上。
除了摻雜劑與MoS2的關係,本實驗還探討了直接利用ALD生長高介電材料是否會對MoS2造成破壞,透過XPS能譜發現,Mo 3d與S 2p會因為前驅物導致Mo-S斷鍵而產生MoxSy的訊號,其中y/x < 2。為了避免前驅物在製程中破壞MoS2,本實驗使用鋁(Al)與鈦(Ti)作為金屬種子層阻絕前驅物與MoS2間的接觸,其中Al和Ti都會使Mo 3d與S 2p往高束縛能的方向偏移,並且Ti在厚度1nm就可以杜絕前驅物對MoS2的破壞,接著在具有1nm Ti種子層的MoS2上用ALD生長氧化鋁(Al2O3)與二氧化鉿(HfO2),兩者皆會使Mo 3d與S 2p往高束縛能的方向偏移,同時也沒有MoxSy的訊號,確認1nm Ti種子層可以在ALD製程中有效的保護MoS2。另外,利用電性分析去驗證,發現在MoS2通道沉積Ti 1nm種子層後,電晶體的臨界電壓(Vt)往負偏壓的方向偏移,且載子遷移率(μ)以及開電流(Ion)皆有上升的趨勢,再利用ALD生長氧化鋁(Al2O3)與二氧化鉿(HfO2)後,電晶體的臨界電壓(Vt)也會往負偏壓的方向偏移,同時載子遷移率(μ)以及開電流(Ion)也會隨著上升。透過上述實驗結果可以得出,利用Ti作為種子層可以有效的保護MoS2在ALD製程中的破壞,同時也確認無論是Ti、Al、Al2O3、HfO2都對MoS2有電子摻雜的效果,這些結果對於未來在製作上閘極元件中有很大的幫助。 | zh_TW |
| dc.description.abstract | This study utilized photoelectron spectroscopy (PES) to investigate the effects of various dopants on molybdenum disulfide (MoS2). The primary dopants used were salts composed of alkali metals (IA) and halogens (VIIA), and doping was conducted using thermal evaporation. It was found that there were no chemical bonds formed between the dopants and MoS2. Specifically, doping MoS2 with BiI3 and KCl caused the Mo 3d and S 2p peaks to shift towards lower binding energy, while doping with NaI and KI caused these peaks to shift towards higher binding energy. Doping with LiCl and KBr did not alter the Mo 3d and S 2p characteristic peaks. Electrical analysis confirmed that doping MoS2 channels with BiI3 and KCl caused the transistor's threshold voltage (Vt) to shift towards positive bias, with a decrease in carrier mobility (μ) and on current (Ion). Conversely, doping with NaI and KI shifted the threshold voltage (Vt) towards negative bias, with an increase in carrier mobility (μ) and on-current (Ion). These results indicate that BiI3 and KCl have P-type doping trend for MoS2, NaI and KI have N-type doping trend, and LiCl and KBr show no significant doping effects for MoS2. These findings confirm that dopants can be used to adjust the channel carrier concentration, which is valuable for future device fabrication.
In addition to the relationship between dopants and MoS2, the study also explored whether directly growing high-κ materials using atomic layer deposition (ALD) would damage MoS2. XPS spectra revealed that Mo 3d and S 2p signals indicated Mo-S bond breaking due to the precursors, forming MoxSy signals with y/x < 2. To prevent precursor damage to MoS2 during the process, aluminum (Al) and titanium (Ti) were used as metal seeding layers to block the contact between the precursors and MoS2. Both Al and Ti caused Mo 3d and S 2p to shift towards higher binding energy. We have determined that a 1nm Ti seeding layer can effectively prevent damage to MoS2 from precursors. By utilizing atomic layer deposition (ALD) to grow aluminum oxide (Al2O3) and hafnium dioxide (HfO2) on MoS2 with a 1nm Ti seed layer, we observed shifts in the Mo 3d and S 2p peaks towards higher binding energy, without the production of MoxSy signals. This confirms that the 1nm Ti seeding layer effectively protects MoS2 during the ALD process. Electrical analysis indicated that depositing a 1nm Ti seeding layer on the MoS2 channel resulted in a negative shift in the transistor's threshold voltage (Vt), along with increases in carrier mobility (μ) and on-current (Ion). Further, utilizing ALD to grow Al2O3 and hafnium dioxide HfO2 continued to shift the threshold voltage (Vt) negatively, with additional increases in carrier mobility (μ) and on-current (Ion). These results demonstrate that using Ti as a seed layer not only effectively protects MoS2 from damage during the ALD process but also confirms that Ti, Al, Al2O3, and HfO2 all exhibit N-type doping effects on MoS2. These findings provide significant insights for the fabrication of future top-gate devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:58:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:58:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目 次 vi 圖 次 x 表 次 xiii Chapter1 緒論 1 1.1 二維材料簡介 1 1.1.1 摩爾定律極限 1 1.1.2 二維材料的優勢 2 1.2 二硫化鉬簡介 3 1.2.1 過渡金屬二硫族化物 3 1.2.2 二硫化鉬(MoS2) 4 1.3 高介電(High-κ)材料簡介 7 1.4 材料表面分析儀 8 1.5 研究動機 10 1.5.1 二硫化鉬(MoS2)/摻雜劑(Dopant)的異質介面 10 1.5.2 二硫化鉬(MoS2)/高介電(High-κ)材料的異質介面 12 Chapter2 實驗介紹 14 2.1 設備介紹 14 2.1.1 化學氣相沉積系統(Chemical Vapor Deposition, CVD) 14 2.1.2 拉曼(Raman)/光致螢光(Photoluminescence,PL)光譜儀 16 2.1.3 電子束蒸鍍機(Electron Beam Evaporator) 17 2.1.4 熱電阻式蒸鍍機(Thermal evaporator) 19 2.1.5 原子層沉積(Atomic layer deposition, ALD) 19 2.1.6 快速熱退火(Rapid Thermal Annealing,RTA) 21 2.1.7 步進式曝光機 22 2.1.8 三點式電性量測系統 22 2.1.9 光電子能譜儀(Photoemission spectroscopy, PES) 23 2.1.9.1 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 24 2.1.9.2 紫外光電子能譜(Ultraviolet Photoelectron Spectroscopy, UPS) 25 2.1.9.3 光電子能譜分析 26 2.1.9.4 真空熱蒸鍍系統(High Vacuum Thermal Evaporation System) 27 2.2 製程介紹 28 2.2.1 濕式轉移製程(Wet transfer process) 28 2.2.2 PES量測樣品製備 29 2.2.3 元件製造(Device Fabrication) 30 2.2.4 電性參數的萃取 30 Chapter3 摻雜劑(Dopant)與二硫化鉬的界面關係 33 3.1 真空熱電阻式蒸鍍摻雜劑與量測流程 33 3.2 碘化鉍(BiI3)與二硫化鉬(MoS2)的摻雜關係 35 3.2.1 碘化鉍(BiI3)與二硫化鉬(MoS2)的界面分析 35 3.2.2 碘化鉍(BiI3)與二硫化鉬(MoS2)的電性分析 36 3.3 氯化鉀(KCl)與二硫化鉬(MoS2)的摻雜關係 37 3.3.1 氯化鉀(KCl)與二硫化鉬(MoS2)的界面分析 37 3.3.2 氯化鉀(KCl)與二硫化鉬(MoS2)的電性分析 38 3.4 碘化鈉(NaI)與二硫化鉬(MoS2)的摻雜關係 39 3.4.1 碘化鈉(NaI)與二硫化鉬(MoS2)的界面分析 39 3.4.2 碘化鈉(NaI)與二硫化鉬(MoS2)的電性分析 41 3.5 碘化鉀(KI)與二硫化鉬(MoS2)的摻雜關係 41 3.5.1 碘化鉀(KI)與二硫化鉬(MoS2)的界面分析 41 3.5.2 碘化鉀(KI)與二硫化鉬(MoS2)的電性分析 43 3.6 氯化鋰(LiCl)與二硫化鉬(MoS2)的介面關係 44 3.7 溴化鉀(KBr)與二硫化鉬(MoS2)的介面關係 45 Chapter4 高介電(High-κ)材料與二硫化鉬的界面關係 48 4.1 原子層沉積高介電(High-κ)材料與量測流程 48 4.2 利用ALD在MoS2上直接生長介電層的介面關係 49 4.2.1 利用ALD在MoS2上直接生長氧化鋁(Al2O3)的介面關係 49 4.2.2 利用ALD在MoS2上直接生長二氧化鉿(HfO2)的介面關係 50 4.3 高溫下前驅物(precursor)對二硫化鉬(MoS2)的影響 51 4.4 不同金屬種子層(Metal seeding layer)對MoS2保護效果的比較 53 4.4.1 不同厚度的鈦(Ti)種子層的保護效果比較 54 4.4.2 不同厚度的鋁(Al)種子層的保護效果比較 55 4.5 MoS2上以鈦(Ti)種子層1nm生長介電層後的介面關係 57 4.5.1 MoS2上以鈦(Ti)種子層1nm生長氧化鋁(Al2O3)的摻雜效果 57 4.5.2 MoS2上以鈦(Ti)種子層1nm生長二氧化鉿(HfO2)的摻雜效果 58 4.6 利用原子力顯微鏡(AFM)比較鈦(Ti)種子層對介電層生長的幫助 60 4.7 高介電(High-κ)材料與二硫化鉬(MoS2)的電性分析 60 4.7.1 直接在二硫化鉬(MoS2)生長氧化鋁(Al2O3)的電性分析 61 4.7.2 直接在二硫化鉬(MoS2)生長二氧化鉿(HfO2)的電性分析 62 4.7.3 含Ti 1nm種子層的MoS2上生長氧化鋁(Al2O3)的電性關係 62 4.7.4 含Ti 1nm種子層的MoS2上生長二氧化鉿(HfO2)的電性關係 63 Chapter5 總結 66 參考文獻 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | X射線光電子能譜 | zh_TW |
| dc.subject | 金屬種子層 | zh_TW |
| dc.subject | 二硫化鉬 | zh_TW |
| dc.subject | 二維材料 | zh_TW |
| dc.subject | 光電子能譜儀 | zh_TW |
| dc.subject | Atomic layer deposition (ALD) | en |
| dc.subject | Two-dimensional(2D) materials | en |
| dc.subject | Molybdenum disulfide (MoS2) | en |
| dc.subject | Photoelectron spectroscopy (PES) | en |
| dc.subject | X-ray photoelectron spectroscopy (XPS) | en |
| dc.subject | Metal seeding layer | en |
| dc.title | 利用光電子能譜分析二硫化鉬在元件中的異質介面 | zh_TW |
| dc.title | Analysis of the Heterojunction Interface of Molybdenum Disulfide in Devices Using Photoelectron Spectroscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張子璿;陳美杏;陳奕君;吳肇欣 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Hsuan Chang;Mei-Hsin Chen;I-Chun Cheng;Chao-Hsin Wu | en |
| dc.subject.keyword | 二維材料,二硫化鉬,光電子能譜儀,X射線光電子能譜,金屬種子層,原子層沉積, | zh_TW |
| dc.subject.keyword | Two-dimensional(2D) materials,Molybdenum disulfide (MoS2),Photoelectron spectroscopy (PES),X-ray photoelectron spectroscopy (XPS),Metal seeding layer,Atomic layer deposition (ALD), | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202404183 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2029-08-10 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-10 | 6.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
