請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94593完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖國基 | zh_TW |
| dc.contributor.advisor | Kuo-Chi Liao | en |
| dc.contributor.author | 盧柏任 | zh_TW |
| dc.contributor.author | Po-Jen Lu | en |
| dc.date.accessioned | 2024-08-16T16:55:54Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 1.Davis, D. A., T. J. Derbes, and M. E. Head. 2018. Culture of small zooplankton for the feeding of larval fish. SRAC Publication 701: 1-6.
2.Fu, Y., H. Hada, T. Yamashita, Y. Yoshida, and A. Hino. 1997. Development of continuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia 358: 145-151. 3.Fulks, W., and K. L. Main. 1991. Rotifer and microalgae culture systems. In "1991 proceedings of a US-Asia workshop", 61-71. 4.Hino, A., S. Aoki, and M. Ushiro. 1997. Nitrogen-flow in the rotifer Brachionus rotundiformis and its significance in mass cultures. In "1996 Live Food in Aquaculture", 77-82. 5.Hirata, H., and S. Yamasaki. 1987. Effect of feeding on the respiration rate of the rotifer Brachionus plicatilis. Springer eBooks: 283-288. 6.Önal U., I. Celik, and S. Ergun. 2010. The performance of a small-scale, high-density, continuous system for culturing the rotifer Brachionus plicatilis. Turk. J. Vet. Anim. Sci. 34(2): 187-195. 7.Önal U., G. Topaloglu, and A. Sepil. 2015. The performance of continuous rotifer (Brachionus Plicatilis) culture system for ornamental fish production. J. Life Sciences 9: 207-213. 8.Polumpung, A., K. G. Lim, M. K. Tan, S. R. M. Shaleh, R. K. Y. Chin, and K. T. T. Kin. 2022. Optimizing High-Density Aquaculture Rotifer Detection Using Deep Learning Algorithm. In "2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)", 1-6. 9.Roboflow. 2022. Roboflow. Ver.1.0. Dwyer, B.: Roboflow, Inc. 10.Simbeye, D. S. 2018. A wireless sensor network based solar powered harvesting system for aquaculture. Scitech Research Organisation 7(2): 733-743. 11.SOLIDWORKS. 2017. Waltham, M.: Dassault Systems SolidWorks Corporation. 12.Stelzer, C. P. 2009. Automated system for sampling, counting, and biological analysis of rotifer populations. Limnology and oceanography: Methods 7(12): 856-864. 13.Yin, X. W., and C. J. Niu. 2007. Effect of pH on survival, reproduction, egg viability and growth rate of five closely related rotifer species. Aquatic Ecology 42(4): 607-616. 14.YOLOv8. 2023. YOLO by Ultralytics. Ver.8.0.0. Jocher, G.: Ultralytics. 15.Yu, J., and K. Hirayama. 1986. The effect of un-ionized ammonia on the population growth of the rotifer in mass culture. Nippon Suisan Gakkaishi 52(9): 1509-1513. 16.李亦欣。2018。錳催化靛藍光度法快速測定水體中總氨方法之研究。碩士論文。台北:國立臺灣大學海洋研究所。 17.賴胤皓。2023。水產養殖用水中氨氮的流動螢光檢測。碩士論文。台北:國立臺灣大學生物機電工程學系。 18.張文緯。2023。基於影像辨識與自動化監控之輪蟲智慧養殖系統。碩士論文。台北:國立臺灣大學生物機電工程學系。 19.鄭金華、陳弘成。1985。蟳苗人工培育之研究Ⅱ.輪蟲及豐年蝦無節幼蟲在蟳苗培育上之餌料價值。臺灣水產學會刊,12(2),78-86。 20.陳政廷。2017。餌料生物換水器暨高密度輪蟲連續生產系統之研發。碩士論文。台北:國立臺灣大學漁業科學研究所。 21.陳政廷、朱元南。2019。餌料生物或浮游生物的養殖系統及懸浮式換水器。中華人民共和國新型專利號ZL201821731509.3。 22.蔡有詳。2022。投餌量和換水對輪蟲連續生產的影響。碩士論文。台北:國立臺灣大學漁業科學研究所。 23.蘇惠美。2001。餌料生物-海水輪蟲之培養與利用 (二)。水產動物防疫簡訊12: 5-9。 24.王俊平。2009。比較不同高度不飽和脂肪酸滋養之輪蟲餵食點帶石斑魚苗之發生與基因表現。碩士論文。台北:國立臺灣大學漁業科學研究所。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94593 | - |
| dc.description.abstract | 輪蟲為水產養殖海水魚種幼苗之重要開口餌料生物,其具備增殖速度快、泳速慢、分布廣泛、魚苗適口性佳、高營養價值、及可高密度培養等優點。本研究基於前人研發之連續式輪蟲生產技術,檢視高投餌量對於輪蟲養殖系統之影響,期間亦檢視其殘餘餌料之變化。接續建置一輪蟲智慧養殖系統,導入殘餘餌料面積辨識與自動化監控技術。殘餘餌料面積辨識系統係基於前人研發之輪蟲自動計數,進一步訓練模型使其辨識殘餘餌料,藉以量化水中殘餘餌料。結合包含氨氮自動檢測單元、自動清淤單元、及自動取樣單元。氨氮自動檢測單元可將檢測資料經由微控制器ESP32,以無線傳輸之方式傳送至雲端資料庫內,提供養殖業者於手機應用程式查閱數據;自動清淤單元可大幅減少清淤所需耗費勞力;自動取樣單元則可遠端針對水體進行取樣,監測輪蟲密度及殘餌面積,以達到自動化監控目的。透過量化殘餘餌料及輪蟲智慧養殖系統之開發與驗證,優化餌料應用並大幅節省養殖人力,減少業者親自抵達場域進行輪蟲系統維護之必要性。 | zh_TW |
| dc.description.abstract | Rotifers are common live feeds offered to larvae of marine fish in aquaculture. They are characterized by their rapid reproduction and abilities to thrive in high-density conditions. Their small size and slow swimming velocity make them an ideal prey for larvae of marine fish. In the current study, a previously established continuous culture system is utilized to investigate the effect of high feed concentration on the density of rotifers. Automated residual feed area recognition, monitoring, and controlling technology are subsequently adopted to develop an advanced smart aquaculture system. The residual feed area recognition system is modified based on a previously developed automated rotifer counting system. A deep learning algorithm is further trained and applied to identify and quantify the residual feed in waterbody. Automatic ammonia-nitrogen detection, sludge removal, and sampling units are further developed and integrated into the smart aquaculture system. The data of ammonia-nitrogen concentration is wirelessly transmitted to a cloud database via a microcontroller. The automatic sludge removal unit can significantly reduce the requirement for manual labor. The automatic sampling unit enables aquaculturists to remotely sample and count the density of rotifer and residual feed area. This proposed rotifer culture system is verified to be effective in reducing the feed usage as well as the labor requirements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:55:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:55:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 viii 第一章 前言 1 1-1. 研究背景與目的 1 第二章 文獻探討 3 第三章 材料與方法 6 3-1. 實驗設計與量測 6 3-1-1. 高密度輪蟲人工養殖 6 3-1-2. 輪蟲智慧養殖實驗 8 3-2. 應用YOLOv8模型於殘餘餌料辨識及面積計算 9 3-3. 自動化監控系統 11 3-3-1. 氨氮自動檢測單元 11 3-3-2. 自動清淤單元 13 3-3-3. 自動取樣單元 14 3-3-4. 殘餌面積辨識對於投餌量之動態調整 15 第四章 結果與討論 16 4-1. 輪蟲人工養殖實驗結果 16 4-1-1. 第一次高密度輪蟲人工養殖實驗結果 16 4-1-2. 第二次高密度輪蟲人工養殖實驗結果 21 4-1-3. 輪蟲人工養殖實驗結果整理與比較 25 4-2. 殘餌辨識模型訓練結果 27 4-3. 自動化監控系統各單元驗證 33 4-3-1. 氨氮自動檢測單元驗證 33 4-3-2. 自動清淤單元驗證 35 4-3-3. 自動取樣單元驗證 37 4-3-4. 殘餌面積辨識對於投餌量之動態調整建議 39 4-4. 輪蟲智慧養殖實驗結果 41 4-5. 人工養殖與智慧養殖實驗結果整理與比較 45 第五章 結論 47 參考文獻 48 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 智慧養殖 | zh_TW |
| dc.subject | 輪蟲 | zh_TW |
| dc.subject | 殘餘餌料 | zh_TW |
| dc.subject | 自動化監控 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | automated monitoring and control system | en |
| dc.subject | smart aquaculture | en |
| dc.subject | rotifer | en |
| dc.subject | residual feed | en |
| dc.subject | deep learning | en |
| dc.title | 應用自動清淤、水質監測、及殘餌辨識之 低勞力輪蟲智慧生產系統 | zh_TW |
| dc.title | Applications of Automated Sludge Removing, Waterbody Monitoring, and Residual Feed Recognition to Smart Rotifer Aquaculture System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳筱梅;朱元南;陳立涵;洪福良 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Mei Wu;Yuan-Nan Chu;Li-Han Chen;Fu-Liang Hung | en |
| dc.subject.keyword | 智慧養殖,輪蟲,殘餘餌料,自動化監控,深度學習, | zh_TW |
| dc.subject.keyword | smart aquaculture,rotifer,residual feed,automated monitoring and control system,deep learning, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202403901 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
