Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94585
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊士進zh_TW
dc.contributor.advisorShih-Chin Yangen
dc.contributor.author呂柏廷zh_TW
dc.contributor.authorBo-Ting Lyuen
dc.date.accessioned2024-08-16T16:53:02Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] Y. He, S. Yang, S. Lin, W. He, and Z. Yang, "Satellite Attitude Control for Emergency Mode Using Reaction Wheels and Magnetic Torquers," in 2023 6th International Conference on Robotics, Control and Automation Engineering (RCAE), 3-5 Nov. 2023 2023, pp. 207-211, doi: 10.1109/RCAE59706.2023.10398835.
[2] A. Bellar, M. A. S. Mohammed, and A. Adnane, "Minimum power consumption of the microsatellite attitude control using pyramidal reaction wheel configuration," in 2016 8th International Conference on Modelling, Identification and Control (ICMIC), 15-17 Nov. 2016 2016, pp. 253-257, doi: 10.1109/ICMIC.2016.7804118.
[3] F. H. Manggala, R. P. Ramadhan, H. Wijanto, H. Mayditia, E. Edwar, and H. Vidyaningtyas, "Prototype of Micro Reaction Wheel for Cubesat," in 2019 IEEE 13th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 3-4 Oct. 2019 2019, pp. 209-213, doi: 10.1109/TSSA48701.2019.8985474.
[4] B. Çolak, A. Özdemir, Ö. ş, B. Selamlar, M. E. Öncüler, and S. Çetinkaya, "First Reaction Wheel Qualified in Türkiye," in 2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST), 7-9 June 2023 2023, pp. 1-6, doi: 10.1109/RAST57548.2023.10198020.
[5] B. T. Lyu, Y. J. Lin, S. C. Yang, B. H. Sie, and W. D. Chung, "Novel Four-Phase Spherical Reaction Wheel Motor with Vector Control for Three-DOF CubeSat Attitude Determination and Control System," in IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, 16-19 Oct. 2023 2023, pp. 1-6, doi: 10.1109/IECON51785.2023.10312721.
[6] R. Takehana and K. Uchiyama, "Attitude controller design for a small satellite using spherical reaction wheel system," in 2017 11th Asian Control Conference (ASCC), 17-20 Dec. 2017 2017, pp. 1841-1846, doi: 10.1109/ASCC.2017.8287454.
[7] S.-H. Lee, H.-H. Seo, and S.-W. Rhee, "Performance Analysis of Magnetic Torquer for Spacecraft Control," presented at the ICCAS2005, Gyeonggi-Do, Korea, 2005.
[8] N. Bedrossian, S. Bhatt, W. Kang, and I. Ross, "Zero-propellant maneuver guidance," Control Systems, IEEE, vol. 29, pp. 53-73, 11/01 2009, doi: 10.1109/MCS.2009.934089.
[9] D. C. Hsiao and M. F. Hsieh, "Integrated Design and Analysis of Reaction Wheel Motor Applied to Satellite Attitude Control," in 2021 24th International Conference on Electrical Machines and Systems (ICEMS), 31 Oct.-3 Nov. 2021 2021, pp. 1090-1094, doi: 10.23919/ICEMS52562.2021.9634235.
[10] A. Wade, R. Jackson, J. Keeble, and J. Orr, "REACTION WHEEL ACTUATOR DEVELOPMENT: JUMPING FROM HUNDREDS TO THOUSANDS," 2023.
[11] 蕭定承, "應用於衛星反應輪之永磁同步馬達與同極式磁浮軸承之整合設計," 博士, 電機工程學系, 國立成功大學, 台南市, 2023. [Online]. Available: https://hdl.handle.net/11296/6rq5hu
[12] A. Parviainen, "Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines," Doctor, Lappeenranta University of Technology, Lappeenranta, Finland 2005.
[13] K. Bastiaens, J. Jansen, S. Jumayev, and E. A. Lomonova, Design of an axial-flux permanent magnet machine for an in-wheel direct drive application. 2017, pp. 1-7.
[14] w. Junfeng, Design of a miniature axial flux flywheel motor with PCB winding for nanosatellites. 2012, pp. 544-548.
[15] J. Zhao, Y. Wang, T. Ma, X. Liu, and J. Li, "Losses and Thermal Analysis of an Integrated PCB Coreless Axial Flux PMSM with the Drive System," IEEE Transactions on Industrial Electronics, vol. 70, no. 11, pp. 11022-11032, 2023, doi: 10.1109/TIE.2022.3229395.
[16] F. Tokgoz, G. Cakal, and O. Keysan, "Comparison of PCB winding topologies for axial-flux permanent magnet synchronous machines," IET Electric Power Applications, vol. 14, 02/08 2021, doi: 10.1049/iet-epa.2020.0622.
[17] F. Marcolini, G. D. Donato, F. G. Capponi, M. Incurvati, and F. Caricchi, "On Winding Manufacturing Technologies for Coreless Axial-Flux Permanent-Magnet Machines," in 2023 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 13-14 April 2023 2023, pp. 1-7, doi: 10.1109/WEMDCD55819.2023.10110905.
[18] A. Bauer, B. H. Zacher, and C. Schumann, "Enhanced Cooling of Multilayer PCB Motor Windings Using Thermal Vias," in IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 13-16 Oct. 2021 2021, pp. 1-5, doi: 10.1109/IECON48115.2021.9589724.
[19] F. Tokgoz, G. Ö, F. Karakaya, G. Cakal, and O. Keysan, "Mechanical and Thermal Design of an Optimized PCB Motor for an Integrated Motor Drive System With GaNFETs," IEEE Transactions on Energy Conversion, vol. 38, no. 1, pp. 653-661, 2023, doi: 10.1109/TEC.2022.3213896.
[20] Z. Zhu, Y. Pang, and Y. Chen, "A Fault Diagnosis Method for Satellite Reaction Wheel Based on PSO-ELM," in 2022 41st Chinese Control Conference (CCC), 25-27 July 2022 2022, pp. 4002-4007, doi: 10.23919/CCC55666.2022.9902163.
[21] E. A. Omran and W. A. Murtada, "Fault Detection and Identification of spacecraft reaction wheels using Autoregressive Moving Average model and neural networks," in 2016 12th International Computer Engineering Conference (ICENCO), 28-29 Dec. 2016 2016, pp. 77-82, doi: 10.1109/ICENCO.2016.7856449.
[22] A. Rahimi, K. D. Kumar, and H. Alighanbari, "Fault Isolation of Reaction Wheels for Satellite Attitude Control," IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 1, pp. 610-629, 2020, doi: 10.1109/TAES.2019.2946665.
[23] Z. Chen, "Satellite Reaction Wheel Fault Detection Based on Adaptive Threshold Observer," in 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), 15-17 Oct. 2021 2021, pp. 1-6, doi: 10.1109/PHM-Nanjing52125.2021.9612876.
[24] S. Doug, C. Grant, and R. E. Zee., "Enabling Reaction Wheel Technology for High Performance Nanosatellite Attitude Control.," presented at the 21st Annual AIAA/USU Conference on Small Satellites, 2007.
[25] V. Miškovský, H. Kubátová, and M. Novotný, "Influence of passive hardware redundancy on differential power analysis resistance of AES cipher implemented in FPGA," Microprocessors and Microsystems, vol. 51, pp. 220-226, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.micpro.2017.04.014.
[26] S. Milano, "Allegro Hall-Effect Sensor ICs."
[27] Y. Deguchi, K. Yamamoto, K. Otomo, Y. Nagatsu, and H. Hashimoto, "Evaluation of Magnetic Absolute Encoder Using an Eccentric Structure with Feedback Correction," in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 21-23 Oct. 2018 2018, pp. 3764-3769, doi: 10.1109/IECON.2018.8591365.
[28] K. Jankowska and M. Dybkowski, "Classification of Optoelectronic Rotary Encoder Faults Based on Deep Learning Methods in Permanent Magnet Synchronous Motor Drive System," Electronics, vol. 12, no. 19, doi: 10.3390/electronics12194184.
[29] J. X. Shen, Z. Q. Zhu, and D. Howe, "PM brushless drives with low-cost and low-resolution position sensors," in The 4th International Power Electronics and Motion Control Conference, 2004. IPEMC 2004., 14-16 Aug. 2004 2004, vol. 2, pp. 1033-1038 Vol.2.
[30] X. Zhang and W. Zhang, "An improved rotor position estimation in PMSM with low-resolution hall-effect sensors," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 22-25 Oct. 2014 2014, pp. 2722-2727, doi: 10.1109/ICEMS.2014.7013961.
[31] N. Muley, A. Saxena, and P. Chaudhary, "Comparative Evaluation of Methods for Continuous Rotor Position Estimation using Low Resolution Hall Sensors," in 2021 National Power Electronics Conference (NPEC), 15-17 Dec. 2021 2021, pp. 1-6, doi: 10.1109/NPEC52100.2021.9672505.
[32] Z. Yong, H. Wenxin, Y. Jufeng, B. Feifei, and L. Saide, "A PMSM rotor position estimation with low-cost Hall-effect sensors using improved PLL," in 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 1-4 June 2016 2016, pp. 804-807, doi: 10.1109/ITEC-AP.2016.7513058.
[33] M. Zhao, Q. An, C. Chen, F. Cao, and S. Li, "Observer Based Improved Position Estimation in Field-Oriented Controlled PMSM with Misplaced Hall-Effect Sensors," Energies, vol. 15, no. 16, doi: 10.3390/en15165985.
[34] Q. An, C. Chen, M. Zhao, T. Ma, and K. Ge, "Research on Rotor Position Estimation of PMSM Based on Hall Position Sensor," in 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 1-4 Aug. 2021 2021, pp. 2088-2094, doi: 10.1109/ICIEA51954.2021.9516180.
[35] G. D. Donato, G. Scelba, M. Pulvirenti, G. Scarcella, and F. G. Capponi, "Low-Cost, High-Resolution, Fault-Robust Position and Speed Estimation for PMSM Drives Operating in Safety-Critical Systems," IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 550-564, 2019, doi: 10.1109/TPEL.2018.2820042.
[36] S. Y. Kim, C. Choi, K. Lee, and W. Lee, "An Improved Rotor Position Estimation With Vector-Tracking Observer in PMSM Drives With Low-Resolution Hall-Effect Sensors," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4078-4086, 2011, doi: 10.1109/TIE.2010.2098367.
[37] Y. Huang, M. Zhao, J. Zhang, and M. Lu, "The Hall Sensors Fault-Tolerant for PMSM Based on Switching Sensorless Control With PI Parameters Optimization," IEEE Access, vol. 10, pp. 114048-114059, 2022, doi: 10.1109/ACCESS.2022.3218325.
[38] M. Ebadpour, N. Amiri, and J. Jatskevich, "Fast Fault-Tolerant Control for Improved Dynamic Performance of Hall-Sensor-Controlled Brushless DC Motor Drives," IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 14051-14061, 2021, doi: 10.1109/TPEL.2021.3084921.
[39] M. Ahmed Baba, M. Naoui, and M. Cherkaoui, "Fault-Tolerant Control Strategy for Hall Sensors in BLDC Motor Drive for Electric Vehicle Applications," Sustainability, vol. 15, no. 13, doi: 10.3390/su151310430.
[40] L. Dong, J. Jatskevich, Y. Huang, M. Chapariha, and J. Liu, "Fault Diagnosis and Signal Reconstruction of Hall Sensors in Brushless Permanent Magnet Motor Drives," IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 118-131, 2016, doi: 10.1109/TEC.2015.2459072.
[41] 林恒慶, "基於霍爾感測之載具馬達弦波驅動暫態故障補償與容錯控制," 碩士, 機械工程學研究所, 國立臺灣大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/z42juw
[42] 黃任翊, "霍爾感測式直流無刷馬達驅動容錯控制," 國立臺灣大學, 2020. [Online]. Available: https://doi.org/10.6342/NTU202002624
[43] M. Aqil and J. Hur, "A Direct Redundancy Approach to Fault-Tolerant Control of BLDC Motor With a Damaged Hall-Effect Sensor," IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1732-1741, 2020, doi: 10.1109/TPEL.2019.2917559.
[44] M. Aqil and J. Hur, "Multiple Sensor Fault Detection Algorithm for Fault Tolerant Control of BLDC Motor," Electronics, vol. 10, no. 9, doi: 10.3390/electronics10091038.
[45] E. Oland and R. Schlanbusch, "Reaction wheel design for CubeSats," 06/01 2009, doi: 10.1109/RAST.2009.5158296.
[46] A. Iqbal, A. Lamine, I. Ashraf, and Mohibullah, "Matlab/Simulink Model of Space Vector PWM for Three-Phase Voltage Source Inverter," in Proceedings of the 41st International Universities Power Engineering Conference, 6-8 Sept. 2006 2006, vol. 3, pp. 1096-1100, doi: 10.1109/UPEC.2006.367646.
[47] M. M. Finckenor and K. K. d. Groh, A Researcher’s Guide to: Space Environmental Effects: National Aeronautics and Space Administration, 2020.
[48] L. A. Al-Essa, A. H. Abdel-Hamid, T. Alballa, and A. F. Hashem, "Reliability analysis of the triple modular redundancy system under step-partially accelerated life tests using Lomax distribution," Scientific Reports, vol. 13, no. 1, p. 14719, 2023/09/07 2023, doi: 10.1038/s41598-023-41363-3
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94585-
dc.description.abstract本論文提出了一個專為大型衛星應用的軸向磁通馬達(Axial Flux Motor-AFM)反應輪,為了確保衛星系統的高可靠性,本文提出集成的印刷電路板(Printed Circuit Board-PCB)定子繞組取代傳統的漆包線繞組,此 PCB 設計能利用自動化製版工藝使定子繞組安裝精確一致,與傳統銅漆包線繞組相比將製造引發的變異和故障風險降到最低。而 PCB 定子繞組電感與磁通量較低的缺點,可以透過軸向磁通的架構來補償,提升轉矩以及功率密度。
在反應輪驅動方面,霍爾感測器經常被選用來進行馬達角度位置回授,傳統
漆包線繞組需要額外感測器固定治具,降低感測器位置偏差問題。但是透過本論文提出的集成 PCB 電路板硬體,霍爾感測器可以直接利用表面貼焊技術安裝,簡化感測器安裝流程。此外 PCB 硬體的特性可輕易實現兩個獨立霍爾傳感器組的冗餘設計,針對此 PCB 集成優點,本論文提出新型的控制容錯控制方法(Fault Tolerant Control-FTC),能在最多三個霍爾感測器故障情況下確保反應輪穩定運行,使反應輪系統滿足太空環境中具有高可靠性的要求。
本論文製造了一個反應輪雛型體進行測試,經實驗結果證明提出的集成PCB 定子之軸向磁通反應輪在緊湊的體積重量限制下表現出色。提出的雙重冗餘霍爾傳感器設計與容錯控制方法,可使反應輪在霍爾感測器失效時,無論是在旋轉還是靜止啟動狀態下皆能正常工作。
zh_TW
dc.description.abstractThis thesis proposes an axial flux motor (AFM) reaction wheel specifically designed for large satellite applications. An integrated PCB stator winding is proposed to replace the conventional enameled copper winding. The proposed PCB design not only leverages the PCB automation process to achieve the precise wire fabrication but also minimizes potential winding faults caused by conventional cooper winding manufacturing process. The drawback of PCB winding with low inductance and low magnetic flux linkage can be improved by the advanced axial flux motor topology.
Regarding to the reaction wheel motor drive, the installation of Hall effect sensors requires the additional fixture on conventional copper winding to maintain the position measurement accuracy. However, the Hall sensors can be directly mounted on the proposed PCB stator hardware. This fabrication advantage further improves the position sensor reliability on the reaction wheel operation. More importantly, the PCB topology allows the dual-redundant design on Hall sensors. Under this advantage, this thesis proposes a novel fault tolerant control (FTC) . This FTC ensures the stable operation of reaction wheel even with up to three Hall sensor failures. It thereby enhances the overall system stability to meet the demanded satellite reliability requirement.
A reaction wheel prototype is also fabricated for the experimental verification. The experimental results demonstrate that the AFM reaction wheel design with the proposed PCB stator performs excellently in a compact volume at lightweight. Moreover, the proposed FTC with dual-redundant Hall sensors can operate normally for the reaction wheel in both rotational and stationary startup states under different Hall sensor failures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:53:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:53:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
中文摘要 ii
ABSTRACT iii
目次 v
表次 ix
圖次 xi
符號列表 xv
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 反應輪馬達在衛星的應用 3
1.2.2 反應輪馬達設計 6
1.2.3 位置感測器介紹 9
1.2.4 霍爾感測器解析度改善 13
1.2.5 霍爾感測器容錯控制 17
1.3 研究目的 23
1.3.1 集成PCB繞線定子設計 23
1.3.2 感測器冗餘設計 23
1.3.3 感測器容錯控制 24
1.4 論文大綱 24
第2章 反應輪馬達設計 25
2.1 反應輪規格分析 25
2.2 反應輪機構設計 27
2.3 反應輪磁路設計 28
2.3.1 繞線方法 29
2.3.2 有限元素法分析 29
2.3.3 線性模型模擬 33
2.4 反應輪定子設計 35
2.5 反應輪樣機測試 38
2.5.1 反電動勢與力矩實驗 39
2.5.2 電流控制實驗 40
2.5.3 速度控制實驗 42
2.5.4 樣機測試小結 42
第3章 霍爾感測器冗餘設計 44
3.1 霍爾感測器失效原因 44
3.2 冗餘設計與可靠度分析 46
3.2.1 分析原理 46
3.2.2 冗餘設計效益比較 48
3.3 霍爾感測器雙重冗餘設計 49
3.3.1 狀態表示方法 49
3.3.2 感測器排列幾何比較 50
3.4 感測器失效模式統計 54
3.4.1 單感測器失效模式統計 54
3.4.2 雙感測器失效模式統計 56
3.4.3 不同排列失效模式比較 59
3.4.4 三感測器失效模式統計 59
3.5 雙重冗餘設計應用 62
第4章 霍爾感測器容錯控制方法 63
4.1 失效偵測方法 63
4.2 錯誤消除方法 68
4.3 容錯控制方法 68
4.4 容錯控制實驗 72
4.4.1 馬達旋轉中單感測器失效 72
4.4.2 馬達靜止下單感測器失效 76
4.4.3 馬達旋轉中雙感測器失效 80
4.4.4 馬達靜止下雙感測器失效 84
4.4.5 馬達旋轉中三感測器失效 88
4.4.6 馬達靜止下三感測器失效 90
4.4.7 容錯實驗總結 92
第5章 結論及未來工作 93
5.1 結論 93
5.1.1 PCB-AFM反應輪馬達設計 93
5.1.2 霍爾感測器冗餘設計及容錯控制 93
5.2 未來工作 94
5.2.1 反應輪設計優化 94
5.2.2 結合混和式角度估測架構 94
參考文獻 96
-
dc.language.isozh_TW-
dc.title印刷電路板繞組及冗餘位置感測器集成之軸向磁通馬達於衛星反應輪應用zh_TW
dc.titleIntegration of PCB Winding and Redundant Position Sensor in Axial Permanent Magnet Motor for Satellite Reaction Wheelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳景然;陳偉倫;黃仁宏zh_TW
dc.contributor.oralexamcommitteeChing-Jan Chen;Woei-Luen Chen;Peter J. Huangen
dc.subject.keyword衛星反應輪,霍爾感測器,容錯控制,冗餘設計,zh_TW
dc.subject.keywordSatellite Reaction Wheel,Hall sensor,Fault tolerant control,Redundant design,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202403553-
dc.rights.note未授權-
dc.date.accepted2024-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
6.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved