請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94584完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣 | zh_TW |
| dc.contributor.advisor | Chao-Hsin Wu | en |
| dc.contributor.author | 黃湘婷 | zh_TW |
| dc.contributor.author | Siang-Ting Huang | en |
| dc.date.accessioned | 2024-08-16T16:52:40Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] Global Insights into the Co-Packaged Optics Technology Platform. (2022, August 31). Yole group. https://www.yolegroup.com/strategy-insights/global-insights-into-the-co-packaged-optics-technology-platform/
[2] E. A. Kadir, R. Shubair, S. K. Abdul Rahim, M. Himdi, M. R. Kamarudin and S. L. Rosa, "B5G and 6G: Next Generation Wireless Communications Technologies, Demand and Challenges," 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 2021, pp. 1-6, doi: 10.1109/ICOTEN52080.2021.9493470. [3] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Emerging challenges: Mobile networking for “smart dust”,” Journal of Communications and Networks, vol. 2, no. 3, pp. 188–196, 2000, doi:10.1109/JCN.2000.6596708. [4] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” in Proceedings of the 10th ACM SIG COMM conference on Internet measurement, 2010, pp. 267–280, doi: 10.1145/1879141.1879175. [5] C. Develder, M. De Leenheer, B. Dhoedt, M. Pickavet, D. Colle, F. De Turck, and P. Demeester, “Optical networks for grid and cloud computing applications,” Proceedings of the IEEE, vol.100, no. 5, pp. 1149–1167, 2012, doi: 10.1109/JPROC.2011.2179629. [6] C. Kachris, K. Kanonakis, and I. Tomkos, “Optical interconnection networks indata centers: recent trends and future challenges,” IEEE Communications Magazine, vol. 51, no. 9, pp. 39–45, 2013, doi: 10.1109/MCOM.2013.6588648. [7] E. Agrell, M. Karlsson, A. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton et al., “Roadmap of optical communications,” Journal of optics, vol. 18, no. 6, p. 063002, 2016, doi: 10.1088/2040-8978/18/6/063002. [8] D. Wang and M. Zhang, “Artificial intelligence in optical communications: From machine learning to deep learning,” Frontiers in Communications and Networks, vol. 2, 2021, doi: 10.3389/frcmn.2021.656786. [9] C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 1021–1036, 2012, doi: 10.1109/SURV.2011.122111.00069. [10] S. J. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking,” in 2012 16th International Conference on Optical Network Design and Modelling (ONDM), 2012, pp. 1–6, doi: 10.1109/ONDM.2012.6210261. [11] X. Pang, O. Ozolins, R. Lin, L. Zhang, A. Udalcovs, L. Xue, R. Schatz, U. Westergren, S. Xiao, W. Hu, G. Jacobsen, S. Popov, and J. Chen, “200 gbps/lane im/dd technologies for short reach optical interconnects,” Journal of Lightwave Technology, vol. 38, no. 2, pp. 492–503, 2020, doi: 10.1109/JLT.2019.2962322. [12] Cisco, “Global cloud index: Forecast and methodology 2016-2021,” 2018, available: https://virtualization.network/Resources/Whitepapers/ 0b75cf2e-0c53-4891-918e-b542a5d364c5 white-paper-c11-738085. pdf [Accessed: (02 April 2024)]. [13] C.Cole,“Beyond100gclientoptics,”IEEECommunicationsMagazine, vol.50,no.2,pp. s58–s66,2012,doi:10.1109/MCOM.2012.6146486. [14] R. Nagarajan, I. Lyubomirsky, and O. Agazzi, “Low power dsp-based transceivers for data center optical fiber communications (invited tutorial),” Journal of Lightwave Technology, vol. 39, no. 16, pp. 5221–5231, 2021, doi: 10.1109/JLT.2021.3089901. [15] J. Krause Perin, A. Shastri, and J. M. Kahn, “Data center links beyond 100gbit/s per wavelength,” Optical Fiber Technology, vol. 44, pp. 69–85, 2018, doi: 10.1016/j.yofte.2017.12.006. [16] D. Che and X. Chen, “Modulation format and digital signal processing for im-dd optics at post-200g era,” Journal of Lightwave Technology, vol. 42, no. 2, pp. 588–605, 2024, doi: 10.1109/JLT.2023.3311716. [17] I. Lyubomirsky and W. A. Ling, “Advanced modulation for datacenter interconnect,” in Optical Fiber Communication Conference. Optica Publishing Group, 2016, p. W4J.3, doi: 10.1364/OFC.2016.W4J.3. [18] T. Sudo, Y. Matsui, G. Carey, A. Verma, D. Wang, V. Lowalekar, M. Kwakernaak, F. Khan, N. Dalida, R. Patel, A. Nickel, B. Young, J. Zeng, Y. L. Ha, and C. Roxlo, “Challenges and opportunities of directly modulated lasers in future data center and 5g networks,” in Optical Fiber Communication Conference (OFC) 2021. Optica Publishing Group, 2021, p. Tu1B.3, doi: 10.1364/OFC.2021.Tu1B.3. [19] J. Bashir, E. Peter, and S. R. Sarangi, “A survey of on-chip optical interconnects,” ACM Comput. Surv., vol. 51, no. 6, jan 2019, doi: 10.1145/3267934. [20] S. Kumar, G. Papen, K. Schmidtke, and C. Xie, “Chapter 14 - intra-data center interconnects, networking, and architectures,” in Optical Fiber Telecommunications VII, A. E. Willner, Ed. Academic Press, 2020, pp. 627–672, doi: 10.1016/B978-0-12-816502-7.00016-6. [21] T. Paoli and J. Ripper, “Direct modulation of semiconductor lasers,” Proceedings of the IEEE, vol. 58, no. 10, pp. 1457–1465, 1970, doi: 10.1109/PROC.1970.7971. [22] N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly modulated semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1–19, 2018, doi: 10.1109/JSTQE.2017.2720959. [23] Stephanie michel. (2022, January 11). Data Center Ethernet on the Move to 224 Gbps. Keysight. https://www.keysight.com/blogs/en/inds/2021/12/01/data-center-ethernet-on-the-move-to-224-gbps [24] William yue. (2020, February 26). The Difference Between EML and DML. Approved Networks. https://approvednetworks.com/blog/the-difference-between-eml-and-dml/ [25] Active Cooling of Optical Transceivers. (2020, September 22). Laird Thermal Systems. https://lairdthermal.com/cn/thermal-technical-library/application-notes/active-cooling-optical-transceivers [26] Ntt. (2013, May 28). Development of Laser-Enabling Data Transmission with Ultra-Low Energy Consumption. Phys.Org. https://phys.org/news/2013-05-laser-enabling-transmission-ultra-low-energy-consumption.html#google_vignette [27] K. Dutting, W. Idler, and P. Wiedermann, “10 Gbit/s DFB laser/monitor PICs for low-cost high-speed laser modules,” Electron. Lett., vol. 29, no. 24, pp. 2145–2146, 1993. [28] P. J. A. Thijs, T. van Dongen, L. F. Tiemeijer, and J. J. M. Binsma, “High-performance λ = 1.3 μm InGaAsP-InP strained-layer quantum well lasers,” IEEE J. Lightwave Technol., vol. 12, no. 1, pp. 28–37, Jan. 1994. [29] B. Fernier, F. Gerard, P. Pagnod, G. Michaud, G. Ripoche, G. Vendrome, and R. M. Capella, “1.3 μm SLMQW DFB lasers with high quantum efficiency for −40-85◦C operation,” Electron. Lett., vol. 31, no. 25, pp. 2174–2175, 1995. [30] C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-Performance uncooled 1.3-μm AlxGayIn1−x−yAs/InP strained-layer quantum-well lasers for subscriber loop application,” Quantum. Electron., vol. 30, no. 2, pp. 511–523, 1994. [31] P. J. A. Thijs, T. van Dongen, J. J. M. Binsma, and E. J. Jansen, “High performance buried heterostructure λ = 1.5 μm InGaAs/AlGaInAs strained-layer quantum well laser diodes,” in Proc. 8th Int. Conf. Indium Phosphide and Related Mater., Schwabisch-Gmund, Germany, Apr. 1996, pp. 765– 768, Paper ThA 2-2. [32] T. R. Chen, P. C. Chen, J. Ungar, M. A. Newkirk, S. Oh, and N. Bar Chaim, “Low-threshold and high-temperature operation of InGaAlAs-InP lasers,” IEEE Photon. Technol. Lett., vol. 9, no. 1, pp. 17–18, Jan. 1997. [33] T. Ishikawa, T. Higashi, T. Uchida, T. Fujii, T. Yamamoto, H. Shoji, and M. Kobayashi, “Evaluation of differential gain of 1.3μm AlGaInAs/InP strained MQW lasers,” in Proc. 10th Intern. Conf. Indium Phosphide Related Mater.,, Tsukuba, Japan, May,1998, pp. 729–732, Paper ThP-55. [34] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “High extinction ratio operation at 40-Gb/s direct modulation in 1.3-μm InGaAlAs-MQW RWG DFB lasers,” in Proc. Opt. Fiber Commun. (OFC’2006),p.3,PaperOWC5. [35] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon.Technol. Lett., vol. 19, no. 19, pp. 1436–1438, Oct. 2007. [36] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/sdirectmodulationof1.3-μmsemi-insulatingburied heterostructure AlGaInAs MQW DFB lasers,” in Proc. 21st IEEE Int. Semicond. Laser Conf. (ISLC’2008), Sep., pp. 19–20, Paper MB7. [37] K. Otsubo, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “Low-driving-current high-speed direct modulation up to 40 Gb/s using 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW distributed reflector (DR) lasers,” in Proc. Opt. Fiber Commun. (OFC’2009), pp. 1–3, Paper OThT6. [38] T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps directly modulation of 1.3-μm-wavelength AlGaInAs distributed reflector lasers with semi insulating buried-heterostructure,” in Proc. IEEE 22nd Int. Semicond. Laser Conf. (ISLC’2010), Sep., pp. 222–223, Paper ThB3. [39] T. Fukamachi et al., "Wide Temperature Range Operation of 25-Gb/s 1.3-μm InGaAlAs Directly Modulated Lasers," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 5, pp. 1138-1145, Sept.-Oct. 2011, doi: 10.1109/JSTQE.2011.2114644. [40] R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3µm InGaAsP high speed semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 23, no. 9, pp. 1410–1418, 1987, doi: 10.1109/JQE.1987.1073527. [41] K. Uomi, E. Aoki, T. Tsuchiya, and M. Suzuki, “High-speed properties of 1.55 um InGaAsP-InGaAsP MQW l/4 shifted DFB lasers,” in Laser Diode Technology and Applications IV, vol. 1634. SPIE, 1992, pp. 110–118, doi: 10.1117/12.59128. [42] T. Ishikawa, T. Higashi, T. Uchida, T. Fujii, T. Yamamoto, H. Shoji, and M. Kobayashi, “Evaluation of differential gain of 1.3 µm AlGaInAs/InP strained MQW lasers,” in Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No.98CH36129), 1998, pp. 729–732, doi: 10.1109/ICIPRM.1998.712746. [43] J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron., vol. QE-22, no. 6, pp. 833–844, Jun. 1986. [44] K. Uomi, N. Chinone, T. Ohtoshi, and T. Kajimura, “High relaxation oscillation frequency (beyond 10 GHz) of GaAlAs multiquantum well lasers,” in Proc. 12th Int. Symp. GaAs Related Compounds, Karuizawa, Japan, Sep. 1985, (Inst. Phys. Ser., 1986, no. 79, pp. 703–708). [45] K. Uomi, H. Nakano, and N. Chinone, “Intrinsic modulation bandwidth in ultra-high-speed 1.3 and 1.55 μm GaInAsP DFB lasers,” Electron. Lett., vol. 25, pp. 1689–1690, 1989. [46] J. Hong, C. Blaauw, R. Moore, S. Jatar, and S. Dzioba, “Strongly gain coupled (SGC) coolerless (-40◦C–+85◦C) MQW DFB lasers,” IEEE J. Select. Topics. Quantum Electron., vol. 5, no. 3, pp. 442–448, May/Jun. 1999. [47] A. B. Massara, K. A. Williams, I. H. White, R. V. Penty, A. Galbraith, P. Crump, and P. Harper, “Ridge waveguide InGaAsP lasers with uncooled 10 Gbit/s operation at 70◦C,” Electron. Lett., vol. 35, no. 19, pp. 1646 1647, 1999. [48] G. Sakaino, Y. Hisa, K. Takagi, T. Aoyagi, T. Nishimura, and E. Omura, “Uncooled and directly modulated 1.3 μm DFB laser diode for serial 10 Gb/s ethernet,” in Proc. Eur. Conf. Opt. Commun., (ECOC’2000), Munich, Germany, pp. 125–126. [49] J. K. White, C. Blaauw, P. Firth, and P. Aukland, “85◦C Investigation of uncooled 10-Gb/s directly modulated InGaAsP RWG GC-DFB lasers,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 773–775, Aug. 2001. [50] M. Silver, W. E. Booij, S. Malik, A. Galbraith, S. Uppal, P. F. McBrien, G. M. Berry, P. D. Ryder, S. J. Chandler, D. M. Atkin, R. Harding, and R. M. Ash, “Very wide temperature (–20 and 95 ◦C) operation of an uncooled 2.5 Gbit/s 1300 nm DFB laser,” in Proc. IEEE 14th Annu. Meet. Lasers and Electro-Optics Society, (LEOS 2001), Nov., pp. 796–797, Paper ThQ2. [51] D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, and Y. Eo, “High-temperature and high-speed operation of a 1.3-μm uncooled InGaAsP-InP DFB laser,” IEEE Photon. Technol. Lett., vol. 14, no. 9, pp. 1240–1242, Sep. 2002. [52] G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers. New York: Van Nostrand Reinhold, 1986. [53] Y. Sugiyama, T. Inata, T. Fujii, Y. Nakata, S. Muto, and S. Hiyamizu, “Conduction band edge discontinuity of In0.52 (Ga1−x Alx )0.48 As (0≤x≤1) heterostructures,” Jpn. J. Appl. Phys., vol. 25, no. 8, pp. L648–L650, 1986. [54] C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B, vol. 39, no. 3, pp. 1871–1881, 1989. [55] C.E. Zah, R. Bhat, B.N. Pathak, F. Favire,W. Lin, M.C. Wang, N.C. Andreadakis, D.M. Hwang, M.A. Koza, T.P. Lee, Z. Wang, D. Dar36by, D. Flanders, and J.J. Hsieh, “High-performance un cooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron., vol.30, no.2, pp.511–522, 1994. [56] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “High extinction ratio operation at 40-Gb/s direct modulation in 1.3-μm InGaAlAs-MQW RWG DFB lasers,” in Proc. Opt. Fiber Commun. (OFC’2006),p.3,PaperOWC5. [57] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1436–1438, Oct. 2007. [58] K. Otsubo, “Uncooled 25 Gbit/s directly modulation of semi-insulating buried-heterostructure 1.3 μm AlGaInAs quantum-well DFB lasers,” Electron. Lett., vol. 44, no. 10, pp. 631–632, 2008. [59] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, and T. Yamamoto, “40-Gb/sdirectmodulationof1.3-μmsemi-insulatingburied heterostructure AlGaInAs MQW DFB lasers,” in Proc. 21st IEEE Int. Semicond. Laser Conf. (ISLC’2008), Sep., pp. 19–20, Paper MB7. [60] K. Otsubo, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “Low-driving-current high-speed direct modulation up to 40 Gb/s using 1.3-μm semi-insulating buried-heterostructure AlGaInAs MQW distributed reflector (DR) lasers,” in Proc. Opt. Fiber Commun. (OFC’2009), pp. 1–3, Paper OThT6. [61] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa and Y. Ogawa, "30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser," in IEEE Photonics Technology Letters, vol. 9, no. 1, pp. 25-27, Jan. 1997, doi: 10.1109/68.554159. [62] A. K. Verma, M. Steib, Y. L. Ha, and T. Sudo, “25 Gbps 1.3 μm DFB laser for 10–25 km transmission in 100 GBE systems,” inProc. Opt. Fiber Commun. (OFC’2009), pp. 1–3, Paper OThT2. [63] R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G. Roggero, A. Stano, and M. Meliga, “Uncooled 20 Gb/s direct modulation of high yield, highly reliable 1300 nm InGaAlAs ridge DFB lasers,” in Proc. Opt. Fiber Commun. (OFC’2009), pp. 1–3, Paper OThT1. [64] T. Fukamachi, T. Shiota, T. Kitatani, T. Ban, Y. Matsuoka, R. Mita, T. Sugawara, S. Tanaka, K. Shinoda, K. Adachi, and M. Aoki, “95◦C uncooled and high power 25-Gbps direct modulation of InGaAlAs ridge waveguide DFB Laser,” in Proc. 35th Eur. Conf. Opt. Commun. (ECOC’2009), pp. 1–2. [65] T. Fukamachi, K. Adachi, K. Shinoda, S. Tsuji, T. Kitatani, S. Tanaka, and M. Aoki, “Recent progress in 1.3-μm uncooled InGaAlAs directly modulated lasers,” in Proc. 22nd IEEE Int. Semicond. Laser Conf.,Sep. 2010, pp. 218–219, Paper ThB1 (Invited). [66] K. Adachi, K. Shinoda, T. Shiota, T. Fukamachi, T. Kitatani, Y. Matsuoka, D. Kawamura, T. Sugawara, and S. Tsuji, “100◦C, 25 Gbit/s direct modulation of 1.3 μm surface emitting laser,” in Proc. Conf. Lasers Electro-Optics (CLEO’2010), May, Paper CME4. [67] K. Adachi, K. Shinoda, T. Kitatani, Y. Matsuoka, T. Sugawara, and S. Tsuji, “Uncooled 25-Gb/s 2-km transmission of a 1.3-μm surface emitting laser,” in Proc. IEEE 22nd Int. Semicond. Laser Conf., Sep. 2010, pp. 218–219, Paper TuC5. [68] T. Yamamoto, A. Uetake, K. Otsubo, M. Matsuda, S. Okumura, S. Tomabechi, and M. Ekawa, “Uncooled 40-Gbps directly modulation of 1.3-μm-wavelength AlGaInAs distributed reflector lasers with semi insulating buried-heterostructure,” in Proc. IEEE 22nd Int. Semicond. Laser Conf. (ISLC’2010), Sep., pp. 222–223, Paper ThB3. [69] 50G PAM4 技術白皮書. (n.d.). Huawei Carrier. https://carrier.huawei.com/~/media/cnbg/downloads/technical%20topics/fixed%20network/acrobat%20document-cn.pdfS [70] II-VI, “1300 nm 28 Gb/s NRZ DFB Laser Diode Chips,” https://ii-vi.com/product/28-gbaud-dfb-laser-diode-chip/ [71] BROADCOM, “Signal Lasers for Digital Transmission,” https://www.broadcom.com/products/fiber-optic-modules components/components-broadband/long-reach-inp-die/edge-emitting-lasers [72] Lumentum, “DMLs,” https://www.lumentum.com/en/optical-communications/products/source-lasers-and-photodiodes/dmls [73] MACOM, “25G Distributed Feedback Lasers,” https://www.macom.com/products/optical-components/lasers/distributed-feedback-lasers [74] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511–521 (1994). [75] M. Kondow, T. Kitatani, S. Nakatsuka, M. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, “GaInNAs: a novel material for long wavelength semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 719-730 (1997). [76] T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Large modulation bandwidth (13.1 GHz) of 1.3 µm-range quantum dot lasers with high dot density and thin barrier layer,” Proc. CSW2016, MoC3-4 (2016). [77] H. Sato, T. Tsuchiya, T. Kitatani, A. Taike, H. Uchiyama, K. Shinoda, N. Takahashi, K. Nakahara, and M. Aoki, “In-situ cleaning for highly reliable 1.3-m InGaAlAs buried heterostructure laser,” Proc. OFC2014, MF50 (2014). [78] Y. Takino, M. Shirao, N. Sato, T. Amemiya, N. Nishiyama, and S. Arai, “Improved Regrowth Interface of AlGaInAs/InP-Buried Heterostructure Lasers by In-Situ Thermal Cleaning,” IEEE J. Quantum Electron. 48, 971–979 (2012). [79] H. Ichikawa, C. Fukuda, S. Matsukawa, K. Hamada, N. Ikoma, and T. Nakabayashi “Improvement in electrostatic-discharge tolerance of 1.3µm AlGaInAs/InP buried heterostructure laser diodes,” Proc. IPRM2009, WA2.5 (2009). [80] R. Herrick, C. Roxlo, O. Sjolund, and T. Sudo, “Methods for testing lasers using optical burn-in,” U.S. Patent U.S. Pat. No. 7,795,896. [81] K. Takagi et al., "120/spl deg/C 10-gb/s uncooled direct Modulated 1.3-μm AlGaInAs MQW DFB laser diodes," in IEEE Photonics Technology Letters, vol. 16, no. 11, pp. 2415-2417, Nov. 2004, doi: 10.1109/LPT.2004.834926. [82] T. Nakamura et al., "1.3-/spl mu/m AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-gb/s operation," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 1, pp. 141-148, Jan.-Feb. 2005, doi: 10.1109/JSTQE.2004.841691. [83] 盧廷昌, 王興宗. (2022). 半導體雷射技術(2版) (9786263177215th ed.). 五南出版社. [84] K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka, “56-Gb/s Direct Modulation in InGaAlAs BH-DFB Lasers at 55°C,” Proc. OFC2014, Th3A.1 (2014). [85] K. Nakahara, K. Suga, K. Okamoto, S. Hayakawa, M. Arasawa, T. Nishida, R. Washino, T. Kitatani, M. Mitaki, H. Sakamoto, Y. Sakuma, and S. Tanaka, Nakahara 112-G/s PAM-4 Uncooled (25°C to 85°C) Directly Modulation of 1.3-μm InGaAlAs-MQW DFB BH Lasers with Record High Bandwidth”, Proc. ECOC2019, PD.2.4 (2019). [86] Han, Y., et al. (2022). Direct modulation bandwidth enhancement of uncooled DFB laser operating over a wide temperature range based on groove-in-trench waveguide structure. Optics Express, 30(9), 15757-15765. [87] M. Okai, S. Tsuji, and N. Chinone, “Stability of the longitudinal mode in =4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron., vol. 25, pp. 1314–1319, June 1989. [88] Nakahara, Kouji et al. “28-Gb/s directly modulated InGaAlAs ACPM DFB lasers with high mask margin of 22% at 55°C.” 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013): 1-3. [89] C. Zah, R. Bhat, and T. Lee, “High temperature operation of algainas/inp lasers,” in Seventh International Conference on Indium Phosphide and Related Materials, 1995, pp. 14–17, doi: 10.1109/ICIPRM.1995.522064. [90] S. Selmic, T.-M. Chou, J. Sih, J. Kirk, A. Mantle, J. Butler, D. Bour, and G. Evans, “Design and characterization of 1.3-µm AlGaInAs-InP multiple-quantum-well lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 2, pp. 340–349, 2001, doi: 10.1109/2944.954148. [91] J. Yong, J. Rorison, and I. White, “1.3-µm quantum-well InGaAsP, AlGaInAs, and InGaAsN laser material gain: a theoretical study,” IEEE Journal of Quantum Electronics, vol. 38, no. 12, pp. 1553–1564, 2002, doi: 10.1109/JQE.2002.805100. [92] V. B. Yekta and H. Kaatuzian, “Design considerations to improve high temperature characteristics of 1.3µm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers,” Optik, vol. 122, no. 6, pp. 514 519, 2011, doi: 10.1016/j.ijleo.2010.03.016. [93] R. Michalzik, “VCSEL Fundamentals,” Chap. 2 in VCSELs, R. Michalzik (Ed.), pp. 19–75, Springer, Berlin, 2013 [94] L. A. Coldren and S. W. Corzine, Diode lasers and photonics integrated circuits, John Wiley & sons, New York, USA, 1995, p.221. [95] Mendoza-Alvarez JG, Coldren LA, Alping A, Yan RH, Hausken T, Lee K, Pedrotti K. Analysis of depletion edge translation lightwave modulators. IEEE J Lightwave Technol 1988;6: 793. [96] F. Tan, R. Bambery, M. Feng, and J. Holonyak, N., “Relative intensity noise of a quantum well transistor laser,” Applied Physics Letters, vol. 101, no. 15, p. 151118, 10 2012, doi: 10.1063/1.4760225. [97] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012, doi: 10.1002/9781118148167. [98] “IEEE standard for ethernet- amendment 10: Media access control parameters, physical layers, and management parameters for 200 gb/s and 400 gb/s operation,” IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz 2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017), pp. 1–372, 2017, doi: 10.1109/IEEESTD.2017.8207825. [99] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Kikawa, F. Hamano, S. Fujisaki, T. Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa, “12.5-gb/s direct modulation up to 115°c in 1.3-µm InGaAlAs MQW RWG DFB lasers with notch-free grating structure,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 159–165, 2004, doi: 10.1109/JLT.2003.822157. [100] T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-gbps direct modulation ridge waveguide MQW-DFB laser up to 85°c,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference. Optica Publishing Group, 2009, p. OThT3, doi: 10.1364/OFC.2009.OThT3. [101] H. Yagi, K. Koyama, Y. Onishi, H. Yoshinaga, H. Ichikawa, N. Kaida, T. Nomaguchi, K. Hiratsuka, and K. Uesaka, “26 gbit/s direct modulation of AlGaInAs/InP lasers with ridge-waveguide structure buried by benzocyclobutene polymer,” in 2009 IEEE International Conference on Indium Phosphide and Related Materials, 2009, pp. 371–374, doi: 10.1109/ICIPRM.2009.5012445. [102] W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-gb/s direct modulation of a 1.3-µm InGaAlAs-based DFB laser with a ridge waveguide structure,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1500908–1500908, 2013, doi: 10.1109/JSTQE.2013.2238509. [103] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-µm AlGaInAs multiple-quantum well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 687–693, 2009, doi: 10.1109/JSTQE.2009.2015194. [104] K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fuka machi, Y. Sakuma, and S. Tanaka, “Direct modulation at 56 and 50 gb/s of 1.3-µm InGaAlAs ridge-shaped-BH DFB lasers,” IEEE Pho tonics Technology Letters, vol. 27, no. 5, pp. 534–536, 2015, doi: 10.1109/LPT.2014.2384520. [105] T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “AlGaInAs semi-insulating buried-heterostructure dis tributed reflector lasers for low-driving-current high-speed direct modulation,” in Novel In-Plane Semiconductor Lasers XI, A. A. Belyanin and P. M. Smowton, Eds., vol. 8277, International Society for Optics and Photonics. SPIE, 2012, p. 82770B, doi: 10.1117/12.906607. [106] ——,“50-gbps direct modulation using 1.3-µm AlGaInAs MQW distribute reflector lasers,” in European Conference and Exhibition on Optical Communication. Optica Publishing Group, 2012, p. P2.11, doi: 10.1364/ECEOC.2012.P2.11. [107] T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “43 gb/s 1.3-µm dfb laser for 40 km transmission,” Journal of Lightwave Technology, vol. 30, no. 15, pp. 2520–2524, 2012, doi: 10.1109/JLT.2012.2203095. [108] Y. Han, Q. Tian, S. Yang, J. Luan, R. Zhang, P. He, D. Liu, and M. Zhang, “Direct modulation bandwidth enhancement of uncooled dfb laser operating over a wide temperature range based on groove-in-trench waveguide structure,” Opt. Express, vol. 30, no. 9, pp. 15757–15765, Apr 2022, doi: 10.1364/OE.456979. [109] K. Nakahara, Y. Wakayama, K. Hiruma, T. Kitatani, K. Shinoda, T. Fukamachi, Y. Sakuma, and S. Tanaka, “28-gb/s directly modulatedingaalas acpm dfb lasers with high mask margin of 22% at 55°c,” in Optical Fiber Communication Conference/National Fiber Optic Engi neers Conference 2013. Optica Publishing Group, 2013, p. OTh4H.3, doi: 10.1364/OFC.2013.OTh4H.3. [110] K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka, “1.3 µm InGaAlAs asymmetric corrugation-pitch-modulated DFB lasers with high mask margin at 28 gbit/s,” Electronics Letters, vol. 50, no. 13, pp. 947–948, 2014, doi: 10.1049/el.2014.0797. [111] N. Sasada, T. Nakajima, Y. Sekino, A. Nakanishi, M. Mukaikubo, M. Ebisu, M. Mitaki, S. Hayakawa, and K. Naoe, “Wide-temperature range (25–80°c) 53-gbaud pam4 (106-gb/s) operation of 1.3-µm directly modulated DFB lasers for 10-km transmission,” Journal of Lightwave Technology, vol. 37, no. 7, pp. 1686–1689, 2019, doi: 10.1109/JLT.2019.2894173. [112] K. Nakahara, K. Suga, K. Okamoto, S. Hayakawa, M. Arasawa, T. Nishida, R. Washino, T. Kitatani, M. Mitaki, H. Sakamoto, Y. Sakuma, and S. Tanaka, “112-gb/s pam-4 uncooled (25°c to 85°c) directly modulation of 1.3-µm InGaAlAs -MQW DFB BH lasers with record high bandwidth,” in 45th European Conference on Optical Communication (ECOC 2019), 2019, pp. 1–3, doi: 10.1049/cp.2019.10 [113] Matniyaz, Turghun. “Free-space NPR mode locked erbrium doped fiber laser based frequency comb for optical frequency measurement.” (2018). [114] Catherine. (2024, June 12). 400G ZR, DR4, FR4, LR4, SR8 QSFP-DD Optical Transceiver Overview. FiberMall. https://www.fibermall.com/blog/an-overview-of-400g-optical-transceiver.htm | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94584 | - |
| dc.description.abstract | 本論文以高溫優化的直接調變1310奈米分佈式回饋雷射 (Distributed Feedback Laser, DFB laser) 為主題,以其在高溫工作環境下保持高速、低噪音雷射作為目標,將透過雷射的直流、光頻譜、高頻小訊號、噪音以及數據傳輸等特性進行量化分析。該雷射具有單一共振腔和簡易蝕刻的 RWG 結構,於25°C和65°C時,它分別保持低閾值電流為6.1 mA和11.7 mA,同時展現出高斜率效率,在25°C時達到0.507 mW/mA,在65°C時達到0.393 mW/mA,確保了於高頻率下的有效調變。該雷射在廣泛的溫度範圍內保持穩定的縱向光譜,SMSR 大於40 dB。它支持高調變頻寬,在25°C時為25.38 GHz,在65°C時為19.44 GHz,促進了高速數據傳輸。該雷射支持 NRZ 的50 Gb/s 的數據傳輸速率和 PAM-4 的35 Gbaud(70 Gb/s),具有低 RIN (<-147.14 dB/Hz)。
本論文分為五個章節,在第一章,本論文會提及在生成式人工智能 (Artificial Intelligence, AI) 以及5G通訊背景下數據中心所處理的數據正以指數級別在增長,而這些需求也連帶著促使光通訊快速成長。除了應對數據中心高密度、低能耗的需求以外,在高溫工作環境下仍保持高速以及低噪音特性也會是不可忽視的條件。因此,如何針對高溫操作環境進行元件優化將會是不可忽視的研究方向;第二章將會介紹半導體雷射基本操作原理,並展示設計高溫優化及高速直接調變DFB雷射時,元件結構以及材料上所需要考量之因素,以及本實驗所設計的雷射結構;第三章會介紹此研究中該直接調變DFB雷射之直流特性量測方法與架設設計,分別為Light-Current-Voltage、光頻譜、接面溫度 (junction temperature) 以及相對強度噪音 (Relative Intensity Noise, RIN) ;第四章則為該直接調變DFB雷射之高頻特性量測方法與架設設計,分別為電光轉換 (Electro-Optics Response) 並透過非歸零 (Non-Return-to-Zero, NRZ) 以及四階脈衝振幅調變 (4-Level Pulse Amplitude Modulation, PAM-4) 之碼型來驗證數據傳輸;第五章則為該研究之總結並結合相關領域之文獻回顧得以勾勒出未來研究之可行方向。 | zh_TW |
| dc.description.abstract | This thesis focuses on the high-temperature optimization of directly modulated 1310 nm distributed feedback lasers. The objective is to maintain high-speed, low-noise laser performance in high-temperature operating environments. A quantitative analysis will be conducted on the direct current, optical spectrum, high-frequency small signal, relative intensity noise, and data transmission characteristics of the laser. The laser features a single resonant cavity and a simply etched ridge waveguide structure, maintaining low threshold currents of 6.1 mA and 11.7 mA at 25°C and 65°C, respectively, while demonstrating high slope efficiencies of 0.507 mW/mA at 25°C and 0.393 mW/mA at 65°C, ensuring effective modulation at high frequencies. The laser exhibits a stable longitudinal spectrum over a wide temperature range with an SMSR greater than 40 dB. It supports high modulation bandwidths of 25.38 GHz at 25°C and 19.44 GHz at 65°C, facilitating high-speed data transmission. The laser supports NRZ data transmission rates of 50 Gb/s and PAM-4 at 35 Gbaud (70 Gb/s) with low RIN (<-147.14 dB/Hz).
The thesis is divided into five chapters. In the first chapter, the exponential growth of data processed by data centers driven by generative artificial intelligence (AI) and 5G communications is discussed, highlighting the rapid expansion of optical communications. Meeting the demands for high-density, low-power consumption in data centers, while maintaining high-speed and low-noise performance in high-temperature environments, is an essential consideration. Therefore, optimizing components for high-temperature operation is a crucial research direction. The second chapter introduces the basic operating principles of semiconductor lasers and presents the factors to be considered in the device structure and materials when designing high-temperature optimized and high-speed directly modulated DFB lasers. The laser structure designed in this study is also discussed. The third chapter covers the DC characteristics measurement methods and setup design for the directly modulated DFB laser, including Light-Current-Voltage, optical spectrum, junction temperature, and relative intensity noise (RIN). The fourth chapter describes the high-frequency characteristics measurement methods and setup design for the directly modulated DFB laser, including electro-optic response, and verifies data transmission using Non-Return-to-Zero (NRZ) and 4-Level Pulse Amplitude Modulation (PAM-4) formats. The fifth chapter summarizes the research and integrates a literature review from relevant fields to outline potential future research directions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:52:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:52:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 I 誌謝 II 中文摘要 IV ABSTRACT V 目次 VII 圖次 X 表次 XVI Chapter 1 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 6 Chapter 2 高溫優化之高速1.31-μm 直接調變分佈式回饋雷射 8 2.1 半導體雷射的基本原理 8 2.1.1 雙異質接面 8 2.1.2 半導體雷射震盪條件 10 2.1.3 半導體雷射輸出特性 13 2.2 分佈式回饋雷射操作原理 15 2.2.1 Fabry-Perot雷射 15 2.2.2 DFB雷射 15 2.2.3 DFB雷射之光柵結構 17 2.2.4 DFB雷射之模態特性 20 2.3 高速直接調變雷射之文獻探討 22 2.3.1 數據中心之架構 22 2.3.2 直接調變雷射和外部調變雷射之比較 24 2.3.3 直接調變雷射對IM/DD系統的必要性 26 2.3.4 O-band 雷射光源對data-center range光通訊的必要性 28 2.4 高速直接調變DFB雷射設計之要點 31 2.4.1 非致冷 (uncooled) 操作對於高效率數據中心之必要性 31 2.4.2 高溫及高速調變之優化依據 35 2.5 本實驗之高溫優化高速 1.31-μm直接調變DFB雷射 49 Chapter 3 高溫優化高速 1.31-μm直接調變DFB雷射之直流特性 55 3.1 LIV (Light power (L)-current (I)-voltage (V)) 56 3.1.1 LIV量測架設 56 3.1.2 LIV量測結果與分析 57 3.2 光頻譜量測 63 3.2.1 光頻譜量測架設 63 3.2.2 變溫光頻譜量測結果與分析 64 3.3 接面溫度 70 3.4 相對強度噪音(Relative Intensity Noise, RIN) 75 3.4.1 相對強度噪音量測架設 78 3.4.2 相對強度噪音量測結果 80 Chapter 4 高溫優化高速 1.31-μm直接調變DFB雷射之高頻特性 89 4.1 電光響應 (Electro/Optics response) 89 4.1.1 電光響應量測架設 90 4.1.2 電光響應量測結果 90 4.2 IEEE 200G/400G 光通訊指標 95 4.3 變溫非歸零(non-return-to-zero, NRZ)碼型之數據傳輸 99 4.3.1 變溫非歸零碼型之量測架設 99 4.3.2 變溫非歸零碼型之量測結果 101 4.4 變溫四階脈衝振幅調變(4-Level Pulse Amplitude Modulation, PAM-4)碼型之數據傳輸 109 4.4.1 變溫四階脈衝振幅調變碼型之數據傳輸量測架設 109 4.4.2 變溫四階脈衝振幅調變碼型之數據傳輸量測結果 110 Chapter 5 總結 116 5.1 研究成果總結 116 5.1.1 1.31 µm DM-DFB 雷射的基準測試與比較分析 116 5.1.2 結論 118 5.2 優化方向與未來展望 119 REFERENCE 122 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 高溫優化高速1310奈米直接調變分佈式回饋雷射用於200GbE以上光通訊網路 | zh_TW |
| dc.title | High-Temperature Optimized High-Speed 1310 nm Directly Modulated Distributed Feedback Laser for Optical Communication Beyond 200 GbE | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃定洧;李三良;吳育任 | zh_TW |
| dc.contributor.oralexamcommittee | Ding-Wei Huang;San-Liang Lee;Yuh-Renn Wu | en |
| dc.subject.keyword | 高溫優化,高速,分佈式回饋雷射,高速光通訊, | zh_TW |
| dc.subject.keyword | high-temperature optimization,high-speed,distributed feedback laser,high speed optical communication, | en |
| dc.relation.page | 138 | - |
| dc.identifier.doi | 10.6342/NTU202402472 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2029-07-28 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-28 | 8.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
